首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
Purification and characterization of corn glutathione S-transferase   总被引:9,自引:0,他引:9  
Two glutathione S-transferase (GST) activities have been identified and purified from etiolated corn tissue. The first, designated GST I enzyme, is constitutively present in corn tissue, and the second, designated GST II enzyme, is present only in tissue which has been treated with chemical antidotes which protect corn against chloroacetanilide herbicides. The total activity constitutes approximately 2% of the soluble protein in these tissues. The native forms of these enzymes have molecular weights of approximately 50 000 as determined by Sephadex G-100 chromatography. On sodium dodecyl sulfate-polyacrylamide gels, GST I enzyme migrates primarily as a single band of molecular weight 29 000, and GST II enzyme migrates as primarily two bands of molecular weight 29 000 and 27 000. Both enzymes catalyze the formation of a glutathione-herbicide conjugate in vitro when the herbicide alachlor is used as a substrate. This conjugation results in elimination of the biological activity of the herbicide.  相似文献   

2.
A novel cytosolic Alpha class glutathione S-transferase (GST) that is not normally expressed in mouse liver was found to be markedly induced (at least 20-fold) by the anti-carcinogenic compound butylated hydroxyanisole. This enzyme (designated GST Ya1 Ya1) did not bind to either the S-hexylglutathione-Sepharose or the glutathione-Sepharose affinity matrices, and purification was achieved by using bromosulphophthalein-glutathione-Sepharose. The purified isoenzyme, which comprises subunits of Mr 25,600, was characterized, and its catalytic, electrophoretic, immunochemical and structural properties are documented. GST Ya1 Ya1 was shown to be distinct from the Alpha class GST that is expressed in normal mouse liver and is composed of 25,800-Mr subunits; the Alpha class isoenzyme that is constitutively expressed in the liver is now designated GST Ya3 Ya3. Hepatic concentrations of GST Ya3 Ya3 were not significantly affected when mice were treated with butylated hydroxyanisole. Both Pi class GST (subunit Mr 24,800) and Mu class GST (subunit Mr 26,400) from female mouse liver were induced by dietary butylated hydroxyanisole. By contrast, hepatic concentrations of microsomal GST (subunit Mr 17,300) were unaffected.  相似文献   

3.
In the adult dog liver cytosol we identified four glutathione S-transferase (GST) subunits, Yd1 (Mr 26,000), Yd2 (Mr 27,000), Yd3 (Mr 28,000), and Ydf (Mr 27,400), and purified GST forms comprising Yd1, Yd2, and Yd3, to apparent homogeneity. Unlike rat transferases the enzyme activity toward 1,2-dichloro-4-nitrobenzene (DCNB) was not retained on the affinity column. Thus the DCNB-active enzyme, GST YdfYdf, from the flow-through fraction of the affinity column was also purified to homogeneity by gel filtration, DE52 chromatography, chromatofocusing, and hydroxylapatite column chromatography. Immunoblot analysis of dog GSTs revealed that the subunits Yd1, Yd2, and Yd3 belong to the pi, alpha, and mu class, respectively. On the contrary, Ydf had no reactivity with antibodies raised against any of the three classes of GST. Each subunit, Yd1, Yd2, Yd3, and Ydf, was distinguishable by its own retention time on reverse-phase high performance liquid chromatography. N-terminal amino acid sequences of the dog GSTS Yd1Yd1 and Yd3Yd3 revealed a high degree of homology to the pi and mu class transferases from rat, human, and mouse, respectively, while the N terminus of Yd2Yd2 is blocked. N-terminal amino acid sequences of GST YdfYdf showed no homology to any of the three classes of GST. The most significant property noted of GST YdfYdf is the high specific activity toward DCNB, exceeding by 1 order of magnitude the corresponding values for the known mu class GSTs. The present results strongly suggest that dog GST YdfYdf is a unique enzyme distinct from the hitherto characterized GST isozymes.  相似文献   

4.
Several forms of glutathione S-transferase (GST) are present in human kidney, and the overall isoenzyme pattern of kidney differs significantly from those of other human tissues. All the three major classes of GST isoenzymes (alpha, mu and pi) are present in significant amounts in kidney, indicating that GST1, GST2 and GST3 gene loci are expressed in this tissue. More than one form of GST is present in each of these classes of enzymes, and individual variations are observed for these classes. The structural, immunological and functional properties of GST isoenzymes of three classes differ significantly from each other, whereas the isoenzymes belonging to the same class have similar properties. All the cationic GST isoenzymes of human kidney except for GST 9.1 are heterodimers of 26,500-Mr and 24,500-Mr subunits. GST 9.1 is a dimer of 24,500-Mr subunits. All the cationic isoenzymes of kidney GST cross-react with antibodies raised against a mixture of GST alpha, beta, gamma, delta and epsilon isoenzymes of liver. GST 6.6 and GST 5.5 of kidney are dimers of 26,500-Mr subunits and are immunologically similar to GST psi of liver. Unlike other human tissues, kidney has at least two isoenzymes (pI 4.7 and 4.9) associated with the GST3 locus. Both these isoenzymes are dimers of 22,500-Mr subunits and are immunologically similar to GST pi of placenta. Some of the isoenzymes of kidney do not correspond to known GST isoenzymes from other human tissues and may be specific to this tissue.  相似文献   

5.
We have developed chromatographic and mathematical protocols that allowed the high resolution of glutathione S-transferase (GST) subunits, and the identification of a previously unresolved GST monomer in rat kidney cytosol; the monomer was identified tentatively as subunit 6. Also, an aberrant form of GST 7-7 dimer appeared to be present in the kidney. This development was utilized to illustrate the response of rat kidney GST following cis-platinum treatment in vivo. Rat kidney cytosol was separated into three 'affinity families' of GST activity after elution from a GSH-agarose matrix. The affinity peaks were characterized by quantitative differences in their subunit and dimeric compositions as determined by subsequent chromatography on a cation-exchange matrix and specific activity towards substrates. By use of these criteria, the major GST dimers of affinity peaks were tentatively identified. The major GST dimers in peak I were GST 1-1 and 1-2, in affinity peak II it was GST 2-2, and in peak III they were GST 3-3 and 7-7. GST 3-6 and/or 4-6, which have not been previously resolved in kidney cytosol, were also present in peak II. Alterations in the kidney cytosolic GST composition of male rats were detected subsequent to the administration of cis-platinum (7.0 mg/kg subcutaneously, 6 days). This treatment caused a pronounced alteration in the GST profile, and the pattern of alteration was markedly different from that reported for other chemicals in the kidney or in the liver. In general, the cellular contents of the GSTs of the Alpha and the Mu classes decreased and increased respectively. It is postulated that the decrease in the Alpha class of GSTs by cis-platinum treatment may be related to renal cortical damage and the loss of GSTs in the urine. The increase in the Mu class of GSTs could potentially stem from a lowered serum concentration of testosterone; the latter is a known effect of cis-platinum treatment.  相似文献   

6.
Human genes for glutathione S-transferases   总被引:11,自引:2,他引:9  
The tissue distribution of different glutathione S-transferases (GST) is analysed by electrophoresis. The existence of GST"e" (erythrocyte), GST3, GST1, and GST2 is confirmed. GST"e" the fastest and most thermolabile of different GST analysed is observed only in erythrocyte cells. GST3 which migrates more slowly than GST"e" is present in all tissues and cells analysed, excepted for erythrocyte cells in which only GST"e" is observed. GST1 presents a polymorphism with four phenotypes, 1, 1/2, 2, and 0 controlled by three alleles 1, 2, and 0 (null). With the sample of 56 livers analysed the different frequencies obtained are 9%, 5%, 43%, 43% for the phenotypes 1, 1/2, 2, and 0 respectively and 0.074 (p), 0.279 (q), 0.647 (r) for the alleles, 1, 2, and 0 (null). GST2 presents variant patterns due probably, in the majority of cases, to post-synthetic modifications rather than allelic variation. Two new GST are described, GST4 and GST5. GST4 abundant in muscle tissue is a dimeric protein. GST4 forms with GST1 a heterodimeric band. GST5 is observed in brain homogenates. For the chromosome localization the results obtained by man (leucocytes)-mouse somatic cell hybrid analysis indicate that the gene for leucocytes GST is on chromosome 11. This gene is the structural GST3 gene.  相似文献   

7.
Human muscle glutathione S-transferase isozyme, GST zeta (pI 5.2) has been purified by three different methods using immunoaffinity chromatography, DEAE cellulose chromatography, and isoelectric focusing. GST zeta prepared by any of the three methods does not recognize antibodies raised against the alpha, mu, or pi class glutathione S-transferases of human tissues. GST zeta has a blocked N-terminus and its peptide fingerprints also indicate it to be distinct from the alpha, mu, or pi class isozymes. As compared to GSTs of alpha, mu, and pi classes, GST zeta displays higher activities toward t-stilbene oxide and Leukotriene A4 methyl ester. GST zeta also expresses GSH-peroxidase activity toward hydrogen peroxide. The Kms of GST zeta for CDNB and GSH were comparable to those reported for other human GSTs but its Vmax for CDNB, 7620 mol/mol/min, was found to be considerably higher than that reported for other human GSTs. The kinetics of inhibition of GST zeta by hematin, bile acids, and other inhibitors also indicate that it was distinct from the three classes of GST isozymes. These studies suggest that GST zeta corresponds to a locus distinct from GST1, GST2, and GST3 and probably corresponds to the GST4 locus as suggested previously by Laisney et al. (1984, Human Genet. 68, 221-227). The results of peptide fingerprints and kinetic analysis indicate that as compared to the pi and alpha class isozymes, GST zeta has more structural and functional similarities with the mu class isozymes. Besides GST zeta several other GST isozymes belonging to pi and mu class have also been characterized in muscle. The pi class GST isozymes of muscle have considerable charge heterogeneity among them despite identical N-terminal sequences.  相似文献   

8.
To investigate structural relationship between amphibian and mammalian GSTs the complete amino acid sequence of the major form of glutathione transferase present in toad liver (Bufo bufo) was determined. The enzyme subunit is composed of 210 amino acid residues corresponding to a molecular mass of 24,178 Da. In comparison with the primary structure of amphibian bbGSTP1-1, toad liver GST showed 54% sequence identity. On the other hand, toad liver GST showed about 45-55% sequence identity when compared with other pi class GST and less then 25% identity with GST of other classes. Amino acid residues involved in the H site and in the key and lock structure of the toad enzyme are significantly different from those of bbGSTP1-1 and other mammalian pi class GST. On the basis of its structural and immunological properties the toad liver GST, indicated as bbGSTP2-2, could represent the prototype of a subset of the pi family.  相似文献   

9.
Enzyme-linked immunoassays (ELISAs) based on the double-antibody sandwich technique have been developed for the quantitative analysis of the major human cytosolic class Pi, Mu and Alpha glutathione transferases (GSTs). The procedures were optimized with respect to antibody concentration for coating of plates as well as other parameters in order to achieve high sensitivity and accuracy. No cross-reactivity was detected between members of the three different classes of GSTs or among the Mu class GSTs M2-2, M3-3 and M4-4 with the ELISA for GST M1-1. The ELISAs have been applied to establish the cytosolic GST profiles of 10 cell lines and to monitor the plasma GST levels in cancer patients. The results revealed that the class Pi GST was the dominant isoenzyme in six (LS 174T, HCT-8, Hu 549 Pat, K-562, U-937 and Hu 549) out of nine tumor cell lines and immortalized hepatocytes (Chang Liver). The isoenzymes A1-1 and M1-1 were determined to be the major GST components in Hep G2 and HeLa cells, respectively. In a clinical study, the majority of the patients with urinary bladder cancer were found to have increased plasma levels of both GST A1-1 and GST P1-1 (10/15), while patients with renal cancer frequently showed increases only in GST P1-1 (5/8). The results demonstrate that the ELISAs are suitable for analyzing GST phenotypes in both normal and tumor cells and in monitoring plasma levels of GSTs in cancer patients.  相似文献   

10.
A cDNA containing the entire coding sequence for the subunit protein of rat liver class theta glutathione S-transferase (GST) Yrs-Yrs was isolated from a rat liver lambda gt11 cDNA library. The cDNA, designated GST theta-1, consisted of 1,258 bp which had an open reading frame of 732 bp encoding a polypeptide of 244 amino acid (AA) residues, including the leading AA Met to be removed on expression. The authenticity of the cDNA structure was supported by matching its deduced AA sequence with N-termini of Yrs and peptides obtained thereof by tryptic digestion as well as by CNBr cleavage. The deduced AA sequence of the subunit Yrs (M.W. 27,311) had only a weak homology (19-23%) with those of rat liver classes alpha, mu, and pi GST isozymes. Thus, the first evidence for the molecular cloning of the class theta GST was provided.  相似文献   

11.
Oxyuranus scutellatus scutellatus toxins 1 (OS1) and 2 (OS2) are two phospholipase A2S (PLA2) isolated from the venom of the Australian Taipan snake. Their iodinated derivatives have been used to characterize PLA2 binding sites on rabbit skeletal muscle. Competition and cross-linking experiments indicate that 125I-labelled OS2 binding sites in rabbit skeletal muscle in vivo are distributed into two classes of receptors. One class binds OS2 and OS1 and is insensitive to the bee venom PLA2. It is composed of a 180 kDa binding protein. This class of PLA2 receptor is expressed at a high level in rabbit myotube membranes. The other class of PLA2 receptor identified with 125I-OS2 also binds with high affinity the bee venom PLA2 but not OS1 and is composed of major polypeptides of 34, 48 and 82 kDa. This second class of receptor is similar to the one found in brain membranes. The density of the two classes of receptors varies during muscle development.  相似文献   

12.
Rat lens contains two classes of glutathione S-transferase (GST) isozymes; one is class mu, Yb1-Yb1, and the other is class pi, Yp-Yp, judged from their molecular weights, immunological properties and N-terminal amino acid sequences. The expression pattern of GST isozymes in the rat lens is different from that in pig and bovine lenses which have only class pi and class mu isozymes, respectively.  相似文献   

13.
Most fungal glutathione transferases (GSTs) do not fit easily into any of the previously characterised classes by immunological, sequence or catalytic criteria. In contrast to the paucity of studies on GSTs cloned or isolated from fungal sources, a screen of databases revealed 67 GST-like sequences from 21 fungal species. Comparison by multiple sequence alignment generated a dendrogram revealing five clusters of GST-like proteins designated clusters 1, 2, EFIBgamma, Ure2p and MAK16, the last three of which have previously been related to the GST superfamily. Surprisingly, a relatively small number of fungal GSTs belong to mainstream classes and the previously-described fungal Gamma class is not widespread in the 21 species studied. Representative crystal structures are available for the EFIBgamma and Ure2p classes and the domain structures of representative sequences are compared with these. In addition, there are some "orphan" sequences that do not fit into any previously-described class, but show similarity to genes implicated in fungal biosynthetic gene clusters. We suggest that GST-like sequences are widespread in fungi, participating in a wide range of functions. They probably evolved by a process similar to domain "shuffling".  相似文献   

14.
Cytosolic glutathione transferases (GSTs) were purified from the rat spleen by S-hexyl-GSH-Sepharose chromatography, and two major forms were identified as GSTs 2-2 and 7-7 (GST P). Besides these forms an acidic form (pI 5.8) was purified by chromatofocusing at pH 7-4 and it accounted for about 1% of the total GST activity bound to S-hexyl-GSH-Sepharose. Two-dimensional gel electrophoresis revealed that it is a homodimer (subunit Mr 26,000 with pI 5.8). Immunoblot analysis demonstrated that it was immunologically related to GSTs 2-2 and 1-1, and its N-terminal amino acid was apparently blocked, similarly to other forms of the class Alpha. This form had a low activity towards cumene hydroperoxide or 4-hydroxynon-2-enal, indicating that this form differed from GSTs 10-10 and 8-8 as well as from GSTs 1-1 and 2-2. These results suggest that it is a new form of GST belonging to the class Alpha.  相似文献   

15.
16.
Glutathione transferase isoenzymes from human prostate.   总被引:1,自引:0,他引:1       下载免费PDF全文
By using affinity-chromatography and isoelectric-focusing techniques, several forms of glutathione transferase (GSTs) were resolved from human prostate cytosol. All the three major classes of GST, i.e. Alpha, Mu and Pi, are present in human prostate. However, large inter-individual variation in the qualitative and quantitative expression of different isoenzymes resulted in the samples investigated. The most abundant group of prostate isoenzymes showed acid (pI 4.3-4.7) behaviour and were classified as Pi class GSTs on the basis of their immunological and structural properties. Immunohistochemical staining of Pi class GSTs was prevalently distributed in the epithelial cells surrounding the alveolar lumen. Class Mu GSTs are also expressed, although in small amounts and in a limited number of samples, by human prostate. The major cationic isoenzyme purified from prostate, GST-9.6; (pI 9.6; apparent subunit molecular mass of 28 kDa), appears to be different from the cationic GST alpha-epsilon forms isolated from human liver and kidney as evidenced by its structural, kinetical and immunological properties. This enzyme, which accounts for about 20-30% (on protein basis) of total amount of GSTs, is expressed by only 40% of samples. GST-9.6 has the ability to cross-react in immunoblotting analysis with antisera raised against rat liver GST 2-2, rather than with antisera raised against members of human Alpha, Mu and Pi class GSTs. Although prostate GST-9.6 shows close relationship with the human skin GST pI 9.9, it does not correspond to any other known human GST.  相似文献   

17.
1. By using affinity chromatography and chromatofocusing analysis at least two major glutathione transferases, named GST II and GST III can be isolated from Gammarus italicus. 2. GST II has an isoelectric point at pH 5.0 and is composed of two subunits with an apparent molecular mass of 28 KDa. 3. GST III which has an isoelectric point at pH 4.6 was found to be an heterodimer of 27 KDa and 28 KDa. 4. The 28 KDa subunit cross-reacted in immunoblotting analysis with antisera raised against pi class GST, whereas none of the antisera raised against alpha, mu and pi class GSTs cross-reacted with the 27 KDa subunit.  相似文献   

18.
The 13 forms of human liver glutathione S-transferases (GST) (Vander Jagt, D. L., Hunsaker, L. A., Garcia, K. B., and Royer, R. E. (1985) J. Biol. Chem. 260, 11603-11610) are composed of subunits in two electrophoretic mobility groups: Mr = 26,000 (Ha) and Mr = 27,500 (Hb). Preparations purified from the S-hexyl GSH-linked Sepharose 4B affinity column revealed three additional peptides at Mr = 30,800, Mr = 31,200, and Mr = 32,200. Immunoprecipitation of human liver poly(A) RNAs in vitro translation products revealed three classes of GST subunits and related peptides at Mr = 26,000, Mr = 27,500, and Mr = 31,000. The Mr = 26,000 species (Ha) can be precipitated with antisera against a variety of rat liver GSTs containing Ya, Yb, and Yc subunits, whereas the Mr = 27,500 species (Hb) can be immunoprecipitated most efficiently by antiserum against the anionic isozymes as well as a second Yb-containing isozyme (peak V) from the rat liver. The Mr = 31,000 band can be immunoprecipitated by antisera preparations against sheep liver, rat liver, and rat testis isozymes. Human liver GSTs do not have any subunits of the rat liver Yc mobility. Antiserum against the human liver GSTs did not cross-react with the Yc subunits of rat livers or brains in immunoblotting experiments. The human liver GST cDNA clone, pGTH1, selected human liver poly(A) RNAs for the Ha subunit(s) in the hybrid-selected in vitro translation experiments. Southern blot hybridization results revealed cross-hybridization of pGTH1 with the Ya, Yb, and Yc subunit cDNA clones of rat liver GSTs. This sequence homology was substantiated further in that immobilized pGTH1 DNA selected rat liver poly(A) RNAs for the Ya, Yb, and Yc subunits with different efficiency as assayed by in vitro translation and immunoprecipitation. Therefore, we have demonstrated convincingly that sequence homology as well as immunological cross-reactivity exist between GST subunits from several rat tissues and the human liver. Also, the multiple forms of human liver GSTs are most likely encoded by a minimum of three different classes of mRNAs. These results suggest a genetic basis for the subunit heterogeneity of human liver GSTs.  相似文献   

19.
The 3-dimensional crystal structure of glutathione S-transferase (GST) of Schistosoma japonicum (Sj) fused with a conserved neutralizing epitope on gp41 (glycoprotein, 41 kDa) of human immunodeficiency virus type 1 (HIV-1) (Muster T et al., 1993, J Virol 67:6642-6647) was determined at 2.5 A resolution. The structure of the 3-3 isozyme rat GST of the mu gene class (Ji X, Zhang P, Armstrong RN, Gilliland GL, 1992, Biochemistry 31:10169-10184) was used as a molecular replacement model. The structure consists of a 4-stranded beta-sheet and 3 alpha-helices in domain 1 and 5 alpha-helices in domain 2. The space group of the Sj GST crystal is P4(3)2(1)2, with unit cell dimensions of a = b = 94.7 A, and c = 58.1 A. The crystal has 1 GST monomer per asymmetric unit, and 2 monomers that form an active dimer are related by crystallographic 2-fold symmetry. In the binding site, the ordered structure of reduced glutathione is observed. The gp41 peptide (Glu-Leu-Asp-Lys-Trp-Ala) fused to the C-terminus of Sj GST forms a loop stabilized by symmetry-related GSTs. The Sj GST structure is compared with previously determined GST structures of mammalian gene classes mu, alpha, and pi. Conserved amino acid residues among the 4 GSTs that are important for hydrophobic and hydrophilic interactions for dimer association and glutathione binding are discussed.  相似文献   

20.
The anionic form of glutathione S-transferase from human (GST pi) and rat (GST Yp) sources has been shown to exist in multiple forms which have similar molecular weights but different isoelectric points (pIs). Treatment with endoglycosidase H caused the acidic forms of GST Yp to be converted to proteins with more basic pIs as compared to the untreated control mixtures, suggesting that an N-linked mannose moiety containing acidic residues had been removed. Inability to detect these carbohydrates by techniques requiring unsubstituted vicinal hydroxyls further suggested acidic substitutions on the sugar moiety. GST pi/Yp carbohydrate modifications were also identified by differential staining procedures. These data represent the first indication that glycosylation of GST can occur. Additionally, this may offer an explanation for the often seen microheterogeneity within a class of GST isozymes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号