首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The steroid-binding subunit of the glucocorticoid receptor is known to be a approximately 100-kDa phosphoprotein composed of an immunogenic, DNA-binding, and steroid-binding domain. When isolated from WEHI-7 cells, this protein contains between two and three phosphoryl groups per steroid-binding site (Mendel WEHI-7 cells, this protein contains between two and three phosphoryl groups per steroid-binding site (Mendel et al., 1987). To identify the domains that contain these phosphorylated sites, we have analyzed the phosphate content of selected proteolytic fragments of the approximately 100-kDa steroid-binding protein from nonactivated and activated receptors. The approximately 100-kDa steroid-binding protein from WEHI-7 cells grown in the presence of [32P]orthophosphate was covalently labeled with [3H]dexamethasone 21-mesylate, purified with the BuGR2 monoclonal antibody, digested with chymotrypsin or trypsin, and analyzed by sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE). Chymotrypsin digestion of this protein yields a approximately 45-kDa fragment containing both the steroid-binding and DNA-binding domains, which contained both 32P and 3H. Trypsin digestion of the protein yields a approximately 29-kDa fragment encompassing the steroid-binding domain but not the DNA-binding domain of the approximately 100-kDa protein, which also contained both 32P and 3H. The 32P/3H ratio of each fragment provides a measure of phosphate content per steroid-binding site and indicated that each fragment has approximately 30% of the phosphate content of the intact protein. This is sufficient to account for one of the three receptor phosphoryl groups.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

2.
We have used a monoclonal antibody to purify glucocorticoid-receptor complexes from WEHI-7 mouse thymoma cells. Molybdate-stabilized, nonactivated complexes were found to contain two distinct proteins which could be separated by polyacrylamide gel electrophoresis under denaturing and reducing conditions. One of the proteins, 100 kDa, was labeled when cytosol was incubated with the affinity ligand [3H]dexamethasone 21-mesylate. The second protein, 90 kDa, was not labeled. Several lines of evidence, including Western blot analysis of purified nonactivated complexes, indicate that only the 100-kDa protein is directly recognized by the antibody. The 90-kDa protein appears to be purified as a component of the nonactivated complex due to noncovalent association with the 100-kDa protein. Both the 100-kDa and 90-kDa components of the nonactivated complex become labeled with 35S when cells are grown in medium containing [35S]methionine. Using cells labeled in this manner, we have shown that activated (i.e. DNA-binding) cytosolic complexes, formed by warming either in intact cells or under cell-free conditions, contain only the 100-kDa protein. Complexes extracted from nuclei of warmed cells similarly contain only the 100-kDa protein. These results indicate that the 100-kDa and 90-kDa components of nonactivated complexes separate upon activation. Purification of nonactivated complexes from cells grown in medium containing [32P]orthophosphoric acid indicates that both the 100-kDa and 90-kDa components are phosphoproteins which can be labeled with 32P. Therefore, resolution of the two proteins will be essential in order to determine whether the receptor is dephosphorylated on activation.  相似文献   

3.
Glucocorticoid receptors have been proposed to undergo an ATP-dependent recycling process in intact cells, and a functional role for receptor phosphorylation has been suggested. To further investigate this possibility we have examined the phosphate content of the steroid-binding protein of all glucocorticoid receptor forms which have been isolated from WEHI-7 mouse thymoma cells. By labeling of intact cells with 32Pi for 18-20 h in the absence of hormone, covalent binding of [3H]dexamethasone 21-mesylate, immunopurification and SDS-PAGE analysis, the steroid binding protein was found to contain, on average, 2-3 phosphates as phosphoserine. One third of the phosphates were associated with proteolytic fragments encompassing the C-terminal steroid-binding domain. The central DNA-binding domain was not phosphorylated, leaving the other two thirds of the phosphates localized in the N-terminal domain. The phosphate content of various receptor forms from cells incubated with 32Pi and [35S]methionine was compared using 35S to normalize for quantity of protein. In ATP-depleted cells a non-steroid-binding form of the receptor (the "null" receptor) is found tightly bound to the nucleus, even without steroid. The phosphate content of null receptors was two thirds that of cytosolic receptors from normal cells, suggesting phosphorylation-dependent cycling in the absence of hormone. Addition of glucocorticoid agonists, but not antagonist, to 32P- and 35S-labeled cells increased the phosphate content of the cytosolic steroid-binding protein up to 170%, indicating an average increase in the phosphates from about 3 to 5. After 30 min of hormone treatment the phosphate content of the steroid-binding protein of cytosolic activated (DNA-binding) and nonactivated receptors, and that of nuclear receptors extractable with high salt concentrations and/or DNase I digestion, was the same. No change in the phosphate content of the 90-kDa heat shock protein associated with unliganded and nonactivated receptors was detected following association of the free protein with the receptor and following hormone binding of the receptor. Analysis of the unextractable nuclear receptors indicated that they contained less phosphate (60% of that of cytosolic receptors), similarly to null receptors, indicating that dephosphorylation is associated with the unextractable nuclear fraction. The rate of hormone-dependent phosphorylation appeared to be much faster than the rate of dephosphorylation in the presence of hormone, the latter determined by a chase of the 32P label with unlabeled phosphate. Our results show that phosphorylation and dephosphorylation are involved in the mechanism of action of glucocorticoid receptors.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

4.
Several lines of evidence have suggested that glucocorticoid receptor function may be regulated by phosphorylation-dephosphorylation reactions, and it has been proposed that dephosphorylation accompanies activation to the DNA-binding form. The phosphate content of the approximately 100-kDa steroid-binding protein has been determined directly and was found not to change during activation in intact cells (Mendel, D.B., Bodwell, J.E., and Munck, A. (1987) J. Biol. Chem. 262, 5644-5648). We have now determined the effect of interaction with the receptor and of activation on the phosphate content of the approximately 90-kDa heat shock protein (Hsp 90), which is thought to be a non-steroid-binding subunit of nonactivated glucocorticoid receptors that dissociates on activation. Monoclonal antibodies AC88 and BuGR2 were used to purify free Hsp 90 and cytosolic nonactivated glucocorticoid-receptor complexes, respectively, from WEHI-7 cells grown in the presence of 32Pi and [35S] methionine. Cell-free activation of the nonactivated receptor-antibody complexes immobilized on protein A-Sepharose minicolumns allowed the recovery of the Hsp 90 dissociated from the complexes during activation. Proteins were separated by denaturing polyacrylamide gel electrophoresis, and the 32P/35S ratio, which was used as a measure of the phosphate content relative to protein, was determined for the free, receptor-associated, and dissociated forms of the Hsp 90, as well as for the approximately 100-kDa steroid-binding protein of non-activated and activated receptors. The three forms of the Hsp 90 had the same phosphate contents, as did the approximately 100-kDa steroid-binding protein before and after activation. Based upon these results, we conclude that no net change in the phosphorylation occurs when the Hsp 90 associates with the approximately 100-kDa steroid-binding protein to form nonactivated receptors and that neither protein component of nonactivated complexes is dephosphorylated when they dissociate during thermal activation under cell-free conditions.  相似文献   

5.
Dexamethasone 21-mesylate is a highly specific synthetic glucocorticoid derivative that binds covalently to glucocorticoid receptors via sulfhydryl groups. We have identified the amino acid that reacts with the dexamethasone 21-mesylate by using enzymatic digestion and microsequencing for radiolabel. Nonactivated glucocorticoid receptors obtained from labeling intact WEHI-7 mouse thymoma cells with [3H]dexamethasone 21-mesylate were immunopurified and analyzed by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. The purified approximately 100-kDa steroid-binding subunit was eluted from gel slices and subjected to enzymatic digestion. Trypsin digestion followed by reversed-phase high-performance liquid chromatography (reversed-phase HPLC) produced a single [3H]dexamethasone 21-mesylate labeled peptide. Automated Edman degradation of this peptide revealed that the [3H]dexamethasone 21-mesylate was located at position 5 from the amino terminus. Dual-isotope labeling studies with [3H]dexamethasone 21-mesylate and [35S]methionine demonstrated that this peptide contained methionine. Staphylococcus aureus V8 protease digestion of [3H]dexamethasone 21-mesylate labeled steroid-binding subunits generated a different radiolabeled peptide containing label at position 7 from the amino terminus. On the basis of the published amino acid sequence of the murine glucocorticoid receptor, our data clearly identify cysteine-644 as the single residue in the steroid-binding domain that covalently binds dexamethasone 21-mesylate.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

6.
[3H]Triamcinolone acetonide glucocorticoid receptor complexes from human salivary gland adenocarcinoma cells (HSG cells) were shown to be activated with an accompanying decrease in molecular weight in intact cells, as analyzed by gel filtration, DEAE chromatography, the mini-column method and glycerol gradient centrifugation. Glucocorticoid receptor complexes consist of steroid-binding protein (or glucocorticoid receptor) and non-steroid-binding factors such as the heat-shock protein of molecular weight 90,000. To determine whether the steroid-binding protein decreases in molecular weight upon activation, affinity labeling of glucocorticoid receptor in intact cells by incubation with [3H]dexamethasone 21-mesylate, which forms a covalent complex with glucocorticoid receptor, was performed. Analysis by gel filtration and a mini-column method indicated that [3H]dexamethasone 21-mesylate-labeled receptor complexes can be activated under culture conditions at 37 degrees C. SDS-polyacrylamide gel electrophoresis of [3H]dexamethasone 21-mesylate-labeled steroid-binding protein resolved only one specific 92 kDa form. Furthermore, only one specific band at 92 kDa was detected in the nuclear fraction which was extracted from the cells incubated at 37 degrees C. These results suggest that there is no change in the molecular weight of steroid-binding protein of HSG cell glucocorticoid receptor complexes upon activation and that the molecular weight of nuclear-binding receptor does not change, although the molecular weight of activated glucocorticoid receptor complexes does decrease. Triamcinolone acetonide induced an inhibitory effect on DNA synthesis in HSG cells. Dexamethasone 21-mesylate exerted no such effect and blocked the action of triamcinolone acetonide on DNA synthesis. These results suggests that dexamethasone 21-mesylate acts as antagonist of glucocorticoid in HSG cells. The fact that dexamethasone 21-mesylate-labeled receptor complexes could be activated and could bind to DNA or nuclei as well as triamcinolone acetonide-labeled complexes suggests that dexamethasone 21-mesylate-labeled complexes can not induce specific gene expression after their binding to DNA.  相似文献   

7.
[3H]Triamcinolone acetonide glucocorticoid receptor complexes from human salivary gland adenocarcinoma cells (HSG cells) were shown to be activated with an accompanying decrease in molecular weight in intact cells, as analyzed by gel filtration, DEAE chromatography, the mini-column method and glycerol gradient centrifugation. Glucocorticoid receptor complexes consist of steroid-binding protein (or glucocorticoid receptor) and non-steroid-binding factors such as the heat-shock protein of molecular weight 90 000. To determine whether the steroid-binding protein decreases in molecular weight upon activation, affinity labeling of glucocorticoid receptor in intact cells by incubation with [3H]dexamethasone 21-mesylate, which forms a covalent complex with glucocorticoid receptor, was performed. Analysis by gel filtration and a mini-column method indicated that [3H]dexamethasone 21-mesylate-labeled receptor complexes can be activated under culture conditions at 37°C. SDS-polyacrylamide gel electrophoresis of [3H]dexamethasone 21-mesylate-labeled steroid-binding protein resolved only one specific 92 kDa form. Furthermore, only one specific band at 92 kDa was detected in the nuclear fraction which was extracted from the cells incubated at 37°C. These results suggest that there is no change in the molecular weight of steroid-binding protein of HSG cell glucocorticoid receptor complexes upon activation and that the molecular weight of nuclear-binding receptor does not change, although the molecular weight of activated glucocorticoid receptor complexes does decrease. Triamcinolone acetonide induced an inhibitory effect on DNA synthesis in HSG cells. Dexamethasone 21-mesylate exerted no such effect and blocked the action of triamcinolone acetonide on DNA synthesis. These results suggests that dexamethasone 21-mesylate acts as antagonist of glucocorticoid in HSG cells. The fact that dexamethasone 21-mesylate-labeled receptor complexes could be activated and could bind to DNA or nuclei aas well as triamcinolone acetonide-labeled complexes suggests that dexamethasone 21-mesylate-labeled complexes can not induce specific gene expression after their binding to DNA.  相似文献   

8.
We have previously reported that molybdate-stabilized cytosol prepared from 32P-labeled L-cells contains two phosphoproteins (a 90-92- and a 98-100-kDa protein) that elute from an affinity resin of deoxycorticosterone-derivatized agarose in a manner consistent with the predicted behavior of the glucocorticoid receptor (Housley, P. R., and Pratt, W. B. (1983) J. Biol. Chem. 258, 4630-4635). In the present work we report that both the 90-92- and 98-100-kDa 32P-labeled proteins are also extracted from molybdate-stabilized cytosol by incubation with a monoclonal antibody and protein A-Sepharose. Only the 98-100-kDa protein is specifically labeled when either L-cell cytosol or L-cell cytosol proteins bound to the affinity resin are labeled with the glucocorticoid binding site-specific affinity ligand [3H]dexamethasone 21-mesylate. The 98-100-kDa protein labeled with [3H]dexamethasone mesylate is adsorbed to protein A-Sepharose in an immune-specific manner after reaction with the monoclonal antibody. Sodium dodecyl sulfate-polyacrylamide gel analysis of the protein A-Sepharose-bound material resulting from incubating the monoclonal antibody with a mixture of 32P-labeled cytosol and [3H]dexamethasone mesylate-labeled cytosol demonstrates identity of the 98-100-kDa [3H]dexamethasone mesylate-labeled band with the 98-100-kDa 32P-labeled band and clear separation from the nonsteroid-binding 90-92-kDa phosphoprotein. The results of immunoblot experiments demonstrate that the 90-92-kDa protein is structurally distinct from the 98-100-kDa steroid-binding protein. As the 90-92-kDa nonsteroid-binding phosphoprotein co-purified with the 98-100-kDa uncleaved form of the glucocorticoid receptor by two independent methods, one of which is based on recognizing a steroid-binding site and the other of which is based on recognizing an antibody binding site, we propose that the 90-92-kDa phosphoprotein is a component of the molybdate-stabilized, untransformed glucocorticoid-receptor complex in L-cell cytosol.  相似文献   

9.
The glucocorticoid receptor is present in the cytosol of cell extracts as a large nonactivated (i.e. non-DNA-binding) approximately 9 S (Mr 300,000) complex. Experimental evidence indicates that the purified nonactivated glucocorticoid receptor contains a single steroid-binding protein and two approximately 90-kDa nonsteroid-binding subunits identified as heat shock protein (hsp) 90. Translation of the glucocorticoid receptor mRNA in vitro in reticulocyte lysates produces a large nonactivated glucocorticoid receptor complex similar to that found in cytosols. The cell-free synthesized glucocorticoid receptor is able to bind steroid and can be activated further to the DNA-binding form. To test the hypothesis of an active role played by hsp90 in the stabilization of a competent steroid-binding conformation of the glucocorticoid receptor, we have synthesized the receptor in a reticulocyte lysate that has been depleted of hsp90 by immunoadsorption with AC88 anti-hsp90. Although the translation capacity of the reticulocyte system was reduced considerably upon hsp90 removal, the glucocorticoid receptor was synthesized, and a significant number of molecules were found to bind [3H]triamcinolone acetonide. Chromatography on DEAE-cellulose showed that most of the receptor molecules synthesized in hsp90-depleted lysate had lost the capacity to form an oligomeric receptor complex. Addition of purified rat liver hsp90 to the hsp90-depleted lysate before translation did not increase steroid binding nor did it restore formation of the heteromeric receptor complex. Analysis of [35S] methionine-labeled glucocorticoid receptor molecules synthesized in the hsp90-depleted lysate showed the production of polypeptides differing from the expected chromatographic pattern on DEAE-cellulose. Upon addition of purified hsp90 to the hsp90-depleted lysate, before translation, the 35S-labeled synthesized receptor fractionated on DEAE-cellulose as an intermediate peak between activated and nonactivated receptor forms. The data suggest that hsp90 alone may not be sufficient for the formation of the nonactivated steroid receptor complex.  相似文献   

10.
We have observed that the approximately 90-kDa non-steroid-binding component of nonactivated glucocorticoid receptors purified from WEHI-7 mouse thymoma cells (which has been identified as the approximately 90-kDa heat shock protein) consistently migrates as a doublet during polyacrylamide gel electrophoresis under denaturing and reducing conditions. It has recently been reported that murine Meth A cells contain a tumor-specific transplantation antigen (TSTA) which is related or identical to the approximately 90-kDa heat shock protein (Ullrich, S.J., Robinson, E.A., Law, L.W., Willingham, M., and Appella, E. (1986) Proc. Natl. Acad. Sci. U.S.A. 83, 3121-3125). The observation that TSTA and the approximately 90-kDa heat shock protein isolated from these cells exists as two isoforms of similar molecular mass and charge has suggested to us that the doublet we observed is also due to the existence of two isoforms. However, unlike TSTA, which appears to contain the two isoforms in similar relative abundance, nonactivated glucocorticoid-receptor complexes seem to contain predominantly the lower molecular mass isoform. We have therefore conducted this study to determine whether TSTA and the approximately 90-kDa component of glucocorticoid receptors are indeed related, to establish whether the receptor preferentially binds one isoform of the approximately 90-kDa heat shock protein, and to investigate the stoichiometry of the nonactivated receptor complex. By comparing Meth A TSTA and the approximately 90-kDa component of the receptor in their reactions with the AC88 monoclonal antibody (specific for the approximately 90-kDa heat shock protein) and a polyclonal antibody directed against Meth A TSTA, we found that these two proteins are indistinguishable and probably identical. We then used the BuGR1 (directed against the steroid-binding subunit of glucocorticoid receptors) and AC88 monoclonal antibodies to purify, respectively, receptor-associated and free approximately 90-kDa heat shock protein from WEHI-7 cells grown for 48 h with [35S]methionine to metabolically label proteins to steady state. Following analysis of the proteins by polyacrylamide gel electrophoresis under denaturing and reducing conditions, the relative amounts of the two isoforms in each sample were determined from the 35S counts and the known methionine content of each isoform. We found that approximately three-quarters of both the receptor-associated and the free approximately 90-kDa heat shock protein is present as the lower molecular weight isoform, indicating no preferential binding of either isoform in the receptor. The long-term metabolic labeling approach has also enabled us to direc  相似文献   

11.
A C Smith  J M Harmon 《Biochemistry》1987,26(2):646-652
The structural organization of the steroid-binding protein of the IM-9 cell glucocorticoid receptor was investigated by using one- and two-dimensional gel electrophoresis of proteolytic receptor fragments. One-dimensional sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) of receptor fragments isolated after trypsin digestion of immunopurified [3H]dexamethasone 21-mesylate ([3H]DM-) labeled receptor revealed the presence of a stable 26.5-kilodalton (kDa) steroid-containing, non-DNA-binding fragment, derived from a larger, less stable, 29-kDa fragment. The 26.5-kDa tryptic fragment appeared to be completely contained within a 41-kDa, steroid-containing, DNA-binding species isolated after chymotrypsin digestion of the intact protein. Two-dimensional electrophoretic analysis of the [3H]DM-labeled tryptic fragments resolved two (pI congruent to 5.7 and 7.0) 26.5-kDa and two (pI congruent equal to 5.7 and 6.8) 29-kDa components. This was the same number of isoforms seen in the intact protein, indicating that the charge heterogeneity of the steroid-binding protein is the result of modification within the steroid-containing, non-DNA-binding, 26.5-kDa tryptic fragment. Two-dimensional analysis of the 41-kDa [3H]DM-labeled chymotryptic species revealed a pattern of isoforms more complex than that seen either in the intact protein or in the steroid-containing tryptic fragments. These results suggest that the 41-kDa [3H]DM-labeled species resolved by one-dimensional SDS-PAGE after chymotrypsin digestion may be composed of several distinct proteolytic fragments.  相似文献   

12.
We have investigated the stability of the [3H]dexamethasone 21-mesylate-labeled nonactivated glucocorticoid-receptor complex in rat thymus cytosol containing 20 mM sodium molybdate. Cytosol complexes were analyzed under nondenaturing conditions by gel filtration chromatography in the presence of molybdate and under denaturing conditions by polyacrylamide gel electrophoresis in the presence of sodium dodecyl sulfate. When analyzed under nondenaturing conditions, complexes from fresh cytosol and from cytosol left for 2 h at 3 degrees C eluted from gel filtration as a single peak of radioactivity with a Stokes radius of approximately 7.7 nm, suggesting that no proteolysis of the complexes had occurred in either cytosol. When analyzed under denaturing conditions, however, whereas the fresh cytosol gave a receptor band on sodium dodecyl sulfate-polyacrylamide gel electrophoresis at Mr approximately 90,000 (corresponding to the intact complex), the cytosol that had been left for 2 h at 3 degrees C gave only a fragment (Mr approximately 50,000). This fragment, just as the intact complex, could be thermally activated to a DNA-binding form. Proteolysis of the receptor could be blocked by preparing the cytosol in the presence of EGTA, leupeptin, or a heat-stable factor present in the cytosol of rat liver and WEHI-7 mouse thymoma cells. From these results we conclude: (i) 20 mM molybdate does not protect the nonactivated glucocorticoid-receptor complex present in rat thymus cytosol against proteolysis under conditions which are commonly used for cell-free labeling of the receptor, and (ii) the demonstration of a Stokes radius of approximately 8 nm for the nonactivated glucocorticoid-receptor complex is not sufficient to indicate that the receptor complex is present in its intact form.  相似文献   

13.
14.
To determine if activation of the glucocorticoid receptor involves covalent charge modification of the steroid-binding protein, unactivated and activated IM-9 cell glucocorticoid receptors were examined by high resolution two-dimensional gel electrophoresis. As previously reported (Smith, A. C., and Harmon, J. M. (1985) Biochemistry 24, 4946-4951), two-dimensional electrophoresis of immunopurified, [3H]dexamethasone mesylate-labeled, steroid-binding protein from unactivated receptors resolves two 92-kDa isoforms (pI congruent to 5.7 and 6.0-6.5). After activation, the apparent pI of neither isoform was altered, indicating that there had been no covalent charge modification of the steroid-binding protein. Thus, the physicochemical changes observed after activation of the steroid receptor cannot be explained by dephosphorylation or other models which involve covalent charge modification of the steroid-binding protein. This conclusion was consistent with the observation that treatment of immunopurified, affinity-labeled receptors with calf intestine alkaline phosphatase did not alter the apparent pI values or distribution of the steroid-binding protein isoforms. However, chromatography of activated steroid-receptor complexes on DNA-cellulose revealed that only the more basic of the two steroid-binding protein isoforms bound to DNA. Therefore, the charge heterogeneity of the steroid-binding protein may be important in regulating the ability of the steroid-binding protein to interact with DNA.  相似文献   

15.
Two phosphoproteins are adsorbed to protein-A-Sepharose when cytosol from 32P-labeled L-cells is incubated with a monoclonal antibody against the glucocorticoid receptor: one is a 98-100-kDa phosphoprotein that contains the steroid-binding site and the other is a 90-kDa nonsteroid-binding phosphoprotein that is associated with the untransformed, molybdate-stabilized receptor (Housley, P. R., Sanchez, E. R., Westphal, H.M., Beato, M., and Pratt, W.B. (1985) J. Biol. Chem. 260, in press). In this paper we show that the 90-kDa receptor-associated phosphoprotein is an abundant cytosolic protein that reacts with a monoclonal antibody that recognizes the 90-kDa phosphoprotein that binds steroid receptors in the chicken oviduct. The 90-kDa protein immunoadsorbed from L-cell cytosol with this antibody reacts on Western blots with rabbit antiserum prepared against the 89-kDa chicken heat shock protein. Immunoadsorption of molybdate-stabilized cytosol by antibodies against the glucocorticoid receptor results in the presence of a 90-kDa protein that interacts on Western blots with the antiserum against the chicken heat shock protein. The association between the 90-kDa protein and the receptor is only seen by this technique when molybdate is present to stabilize the complex; and when steroid-bound receptors are incubated at 25 degrees C to transform them to the DNA-binding state, the 90-kDa protein dissociates. These observations are consistent with the proposal that the untransformed glucocorticoid receptor in L-cells exists in a complex with the murine 90-kDa heat shock protein.  相似文献   

16.
Characterization of glucocorticoid receptor in HeLa-S3 cells   总被引:1,自引:0,他引:1  
H Hoschützky  O Pongs 《Biochemistry》1985,24(25):7348-7356
Glucocorticoid receptor of the human cell line HeLa-S3 has been characterized and has been compared to rat and to mouse glucocorticoid receptors. If HeLa cells were lysed in the absence of glucocorticoid, glucocorticoid receptor was isolated in a nonactivated form, which did not bind to DNA-cellulose. If HeLa cells were preincubated with glucocorticoid, glucocorticoid receptor was isolated in an activated, DNA-binding form. HeLa cell glucocorticoid receptor bound [3H]triamcinolone acetonide with a dissociation constant (KD = 1.3 nM at 0 degrees C) that was similar to those of mouse and rat glucocorticoid receptors. Similarly, the relative binding affinities for steroid hormones decreased in the order of triamcinolone acetonide greater than dexamethasone greater than promegestone greater than methyltrienolone greater than aldosterone greater than or equal to moxestrol. Nonactivated and activated receptors were characterized by high-resolution anion-exchange chromatography (FPLC), DNA-cellulose chromatography, and sucrose gradient centrifugation. Human, mouse, and rat nonactivated glucocorticoid receptors had very similar ionic and sedimentation properties. Activated glucocorticoid receptors were eluted at similar salt concentrations from DNA-cellulose columns but at different salt concentrations from the FPLC column. A monoclonal mouse anti-rat liver glucocorticoid receptor antibody [Westphal, H.M., Mugele, K., Beato, M., & Gehring, U. (1984) EMBO J. 3, 1493-1498] did not cross-react with HeLa cell glucocorticoid receptor. Glucocorticoid receptors of HeLa, HTC, and S49.1 cells were affinity labeled with [3H]dexamethasone and with [3H]dexamethasone 21-mesylate. The molecular weights of [3H]dexamethasone 21-mesylate labeled glucocorticoid receptors (MT 96 000 +/- 1000) were undistinguishable by polyacrylamide gel electrophoresis.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

17.
Using a variety of physico-chemical techniques we have recently characterized three distinct forms of glucocorticoid-receptor complexes present in the cytosol from rat thymus cells incubated with glucocorticoid; the relative proportions of these complexes are dependent on the conditions to which the cells or cytosols are exposed. Two of these complexes correspond to the well established nonactivated and activated receptor forms, while the third has properties consistent with mero-receptor. Based on their differential affinities for DNA- and DEAE-cellulose we have developed a rapid mini-column chromatographic procedure for separating these three forms and have used it to examine the stability of complexes in cytosol preparations. We have found that activated glucocorticoid-receptor complexes from rat thymus cells are relatively unstable under cell-free conditions in that they undergo time-dependent losses in DNA binding and are converted to mero-receptor. In contrast, cytosolic glucocorticoid-receptor complexes prepared from WEHI-7 mouse thymoma cells are remarkably stable under similar conditions. Mixing experiments with equal portions of rat thymus and WEHI-7 cytosol revealed that the difference between the two tissues cannot be accounted for merely by differences in amounts of proteolytic enzymes, since addition of rat thymus cytosol to WEHI-7 cytosol containing activated glucocorticoid-receptor complexes does not result in their conversion to mero-receptor. However, the WEHI-7 cytosol affords considerable protection to activated glucocorticoid-receptor complexes in thymus cytosol. The stabilizing factor from WEHI-7 cytosol is heat stable (survives 100 degrees C for 30 min), insensitive to pH over a wide range (4.0-10.0), and appears to be macromolecular. It does not inhibit activation, and thus appears distinct from the previously described endogenous glucocorticoid receptor stabilizing factor responsible for stabilization of thymocyte receptor binding capacity (Leach et al., J. Biol. Chem. 257: 381-388, 1982). We propose that the factor is an endogenous inhibitor of the protease(s) responsible for mero-receptor formation.  相似文献   

18.
[3H]Dexamethasone 21-mesylate affinity-labeled glucocorticoid receptors were subjected to controlled proteolysis by trypsin, chymotrypsin, and Staphylococcus aureus V8 protease and then analyzed on denaturing constant percentage or gradient polyacrylamide gels. The molecular weights (Mr congruent to 98 000) and cleavage patterns for rat liver and HTC cell receptors indicated extensive homology between the glucocorticoid receptors from normal rat liver and a transformed rat liver cell line. The major DNA-binding species generated by chymotrypsin treatment was found to be a 42K fragment that was accompanied by several unresolved, slightly lower molecular weight fragments. The meroreceptors obtained after trypsinization were comprised of two species of Mr 30 000 and 28 000. Each of the three proteases, despite their differing specificities, generated fragments with molecular weights close to 42 500, 30 500, and 27 000. Nevertheless, each of the three proteases gave rise to a distinctive "ladder" of labeled fragments. No differences could be detected in the digestion patterns of unactivated and activated HTC cell complexes for all three proteases. Also, native and denatured receptor-steroid complexes yielded surprisingly similar digestion patterns with each enzyme. Digestion of denatured complexes readily generated large amounts of a fragment of Mr congruent to 15 000 that was much smaller than the protease-resistant meroreceptors formed from native complexes. The presence of these approximately 15K fragments suggested that the [3H]dexamethasone 21-mesylate labeling of the steroid-binding cavity is restricted to a relatively small segment of the receptor.  相似文献   

19.
Glucocorticoid receptor phosphorylation in mouse L-cells   总被引:1,自引:0,他引:1  
This paper summarizes our observations on the phosphorylation state of untransformed and transformed glucocorticoid receptors isolated from 32P-labeled L-cells. The 300-350-kDa 9S untransformed murine glucocorticoid receptor complex is composed of a 100-kDa steroid-binding phosphoprotein and one or possibly two units of the 90-kDa heat shock protein (hsp90), which is also a phosphoprotein. Transformation of this complex to the 4S DNA-binding state is accompanied by dissociation of hsp90. When receptors in cytosol are transformed by heating at 25 degrees C, there is no gross change in the degree of phosphorylation of the steroid-binding protein. Both receptors that are bound to DNA after transformation under cell-free conditions and receptors that are located in the nucleus of cells incubated at 37 degrees C in the presence of glucocorticoid are labeled with 32P. The results of experiments in which the 32P-labeled receptor was submitted to limited proteolysis suggest that the 16-kDa DNA-binding domain is phosphorylated and that the 28-kDa steroid-binding domain is not.  相似文献   

20.
We have used bifunctional reagents to examine the subunit composition of the non-DNA-binding form of the rat and human glucocorticoid receptor. Treatment of intact cells and cell extracts with a reversible cross-linker, followed by electrophoretic analysis of immunoadsorbed receptor revealed that three proteins of apparent approximate molecular masses, 90, 53 and 14 kDa are associated with the receptor. The first of these was identified immunochemically as a 90-kDa heat-shock protein (hsp90). The complex isolated from HeLa cells contained 2.2 mol hsp90/mol steroid-binding subunit. Cross-linking of the receptor complex in the cytosol completely prevented salt-induced dissociation of the subunits. The cross-linked receptor was electrophoretically resolved into two oligomeric complexes of apparent molecular mass 288 kDa and 347 kDa, reflecting the association of the 53-kDa protein with a fraction of the receptor. Since no higher oligomeric complexes could be generated by cross-linking cell extracts under different conditions, we conclude that most of the untransformed cytosolic receptor is devoid of additional components.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号