首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 531 毫秒
1.
Germinability and responses to storage and dehydration werestudied throughout the development of the desiccation-sensitiveseeds of Avicennia marina. Seeds acquired the ability to produceroots at 55 d after fruit set (DAFS) which is shortly afterhistodifferentiation, but the capacity for full germinability(seedling establishment) was not attained until 70 DAFS, whichis midway through the phase of growth and reserve accumulation.Pre-mature seeds showed a germination lag that was equivalentto the period between harvest and full maturity, but, followingshort-term storage, this was reduced to that of mature seeds.At no stage, however, would seeds with an intact pericarp germinate. Once seeds were fully germinated, storage lifespan under non-desiccatingconditions was independent of developmental stage, but was considerablyreduce by the presence of the pericarp, probably because offungal contamination. Prior to the acquisition of full germinationcapacity, the seeds were unable to tolerate any dehydrationbut became tolerant to slight water loss once they became fullygerminable, after which desiccation sensitivity was not influencedby the stage of development. If rapidly dried, excised axesof germinable seeds survived to lower water contents than didaxes removed from seeds following slower drying.Copyright 1993,1999 Academic Press Desiccation-tolerance/sensitivity, germination, mangrove, recalcitrant, seed development, seed storage  相似文献   

2.
Early histodifferentiation of the embryo of Avicennia marina(Forssk) Vierh was characterized by the formation of endospermhaustoria Once the growth phase was initiated, subsequent embryodevelopment was extra-ovular The mature seed, therefore, wasenclosed by a pericarp originating entirely from the ovary wallGrowth and reserve deposition was not initiated until 45–50d after fruit set (DAFS), when respiratory activity had peakedWater content remained constant from the earliest stages ofembryogenesis to seed abscission and respiratory activity, althoughdeclining somewhat after the completion of histodifferentiation,remained relatively high throughout seed development The ultrastructureof the meristematic root primordia was indicative of metabolicactivity, remaining essentially similar in all respects fromthe end of histodifferentiation until the mature seeds wereabscised During this phase cotyledon cells became highly vacuolatedand the soluble sugars, which constituted the major nutrientreserves of mature seeds, increased considerably Seeds of A,marina initiate germination, without the requirement for additionalwater, as soon as they are shed It is proposed that the accumulationof soluble sugars, rather than insoluble complex reserves, isa major factor in the developmental strategy of these highlyrecalcitrant seeds Anatomy, Avicennia marina, biochemistry, homoiohydrous, recalcitrant, seed development/maturation, ultrastructure  相似文献   

3.
In the recalcitrant seeds of Avicennia marina, protein content and the rates of protein synthesis increase during histodifferentiation. This is similar to the situation in desiccation tolerant seeds. During the stage of reserve accumulation the protein content and rates of synthesis remain constant and there is no de novo synthesis of proteins which might qualify as storage proteins. There is also no change in the nature of proteins present in either axis or cotyledonary tissues during development or germination. Similarly, fluorographs of axis proteins show only very limited changes in the patterns of protein synthesis during development and germination, at least until the onset of root growth. Heat-stable proteins are present from an early developmental stage. However, no late embryogenic abundant (LEA) proteins are synthesised during the late stages of development, indicating that seedling establishment is independent of such maturation proteins. It is suggested that the lack of desiccation tolerance of A. marina seeds might be related to the absence of desiccation-related LEAs. Although the rate of protein synthesis increases during germination, protein metabolism appears to remain qualitatively the same as that occurring during development. The present results suggest that in these desiccation sensitive seeds, protein metabolism characterising development changes imperceptibly into that of germination.  相似文献   

4.
Seeds of Hancornia speciosa germinated best at a temperatureof 20–30 °C. The viability of the seeds during storagewas short and the best storage conditions for viability entailedkeeping the seeds in polyethylene bags. Seed viability was maintainedonly when the seeds were stored at a moisture content above30%; storage conditions which allowed dehydration resulted ina rapid loss of viability (the seeds showed recalcitrant behaviour). Low temperature during storage did not improve longevity. Arelationship between germination and moisture content was established,but when the moisture content fell below 25% there was a drasticreduction of germination. After 9 weeks of storage, even athigh moisture content, seeds lost viability. Loss of seed viability during seed dehydration was associatedwith increased leakage of electrolytes and organic solutes,and reduced tetrazolium staining during subsequent imbibition. Hancornia speciosa, germination, recalcitrant seeds, storage, moisture  相似文献   

5.
Although fungi cause a recognized problem during storage of recalcitrant seeds of many tropical species, there are no data to date on defence strategies of these seeds against fungal attack. To ascertain whether recalcitrant seeds of Avicennia marina elaborate compounds that might suppress fungal proliferation during hydrated storage, the production and efficacy of beta-1,3-glucanase (EC 3.2.1.39) and chitinase (EC 3.2.1.14) were studied in relation to histopathological changes. Freshly harvested seeds had low beta-1,3-glucanase and chitinase activities and fluorescence microscopy revealed progressive deterioration of the internal tissues of these seeds associated with fungal infection during hydrated storage. In seeds treated to minimize associated fungi (clean seeds), beta-1,3-glucanase and chitinase activities increased significantly during 10 d of hydrated storage. Similar high levels of activity were observed when these seeds were experimentally infected with Fusarium moniliforme and subjected to further storage. The histopathological observations indicated delayed disease development in the 10-d clean-storage period, although the hypersensitive response was not observed. The results suggest that, although the recalcitrant seeds of A. marina elaborate some antifungal enzymes, there is a lack of effective defence strategies that might lead to successful responses against fungal infections.  相似文献   

6.
This study compared the responses of Avicennia marina and Trichilia dregeana seeds, both of which are recalcitrant, to partial dehydration and storage. Seeds of A. marina exhibited a faster rate of water and viability loss (± 50% viability loss in 4 days) during partial dehydration, compared with T. dregeana (± 50% viability loss in 14 days). In A. marina embryonic axes, reactive oxygen species (ROS) production peaked on 4 days of dehydration and was accompanied by an increase in the GSH:GSSG ratio; it appears that the glutathione system alone could not overcome dehydration-induced oxidative stress in this species. In A. marina, ROS and axis water content levels increased during hydrated storage and were accompanied by a decline in the GSH:GSSG ratio and rapid viability loss. In T. dregeana embryonic axes, ROS production (particularly hydrogen peroxide) initially increased and thereafter decreased during both partial dehydration and hydrated storage. Unlike in A. marina embryonic axes, this reduced ROS production was accompanied by a decline in the GSH:GSSG ratio. While T. dregeana seeds may have incurred some oxidative stress during storage, a delay in and/or suppression of the ROS-based trigger for germination may account for their significantly longer storage longevity compared with A. marina. Mechanisms of desiccation-induced seed viability loss may differ across recalcitrant-seeded species based on the rate and extent to which they lose water during partial drying and storage. While recalcitrant seed desiccation sensitivity and, by implication, storage longevity are modulated by redox metabolism, the specific ROS and antioxidants that contribute to this control may differ across species.  相似文献   

7.
To test the hypothesis that desiccation sensitivity increases with storage time, recalcitrant seeds of Avicennia marina (Forssk.) Vierh. were dehydrated by soaking in polyethylene glycol solutions after inreasing periods of storage. Germination characteristics and the ultrastructure of root primorida were assessed before and after dehydration. Short-term storage enhanced the apparent rate of germination, consistent with the hypothesis that these seeds commence germination in storage. Root primordia of stored seeds initially showed enhanced subcellular activity, including cell division and vacuolation. Increased storage time resulted in the onset and progression of deleterious changes.
Newly shed seeds and seeds stored up to the stage of cell division were comparatively resistant to desiccation. As storage time increased, subsequent dehydration caused increasing subcellular damange and consequent reduction in the rates of germination relative to non-dehydrated controls. Ultrastructural results suggest that after the initiation of cell division of seeds in storage, there is a requirement for additional water for the germination process to continue. A model for the behaviour of recalcitrant seeds is proposed.  相似文献   

8.
The coast of the Yellow Sea in China, like many other temperate coastal zones, has been experiencing a dramatic decline in the abundance of seagrass. Intensive efforts have been made to restore seagrass communities along the coast to restore the function of the coastal ecosystem. Transplanting adult Zostera marina shoots is labor‐intensive, time‐consuming, expensive, and detrimental to donor beds; thus, restoring seagrass communities through the use of seeds is highly valued in current, large‐scale restoration trials. In this study, an effective method for collecting, processing, and storing Z. marina seeds was developed. From 2009 to 2013, respectively, 122,000, 421,000, 364,000, 1,041,000, and 1,091,000 seeds were successfully collected. Two‐way analysis of variance (ANOVA) showed the interaction between salinity and temperature significantly affected the cumulative germination rate (CGR) (p < 0.01) during the storage period and the viability (p < 0.01) of seeds after storage. The germination rate after storage was significantly affected by salinity and temperature (p < 0.01). The highest viability (89.8 ± 1.0%) and germination rate (75.6 ± 4.5%) were found among seeds stored at 4°C and a salinity of 44.5 psu for 7 months. The cost for planting 1 ha of sea bottom with Z. marina seeds ranged from $2,613 to $80,900 depending on the seeding density and seed loss during storage. The average cost per Z. marina seed in this study was $0.00586.  相似文献   

9.
The moisture content/probit viability relationship for storedseeds of Zizania palustris L. and Spartina anglica C. E. Hubbardwas linear and independent of the rate of embryo drying. Theseresults provide firm evidence of recalcitrant storage physiologyin these taxa. Preliminary tests strongly suggest that freshseeds of Porteresia coarctata (Roxb.) Tateoka are also intolerantof desiccation In Z. palustris apparent differences in desiccation tolerancebetween individuals can be partly explained by wide variationin individual embryo moisture contents during desiccation. Long-termstorage experiments in solutions of polyethylene glycol 6000(PEG) suggest that the actual variation in desiccation toleranceis confined to a narrow range of embryo water potentials inthe range –2 to –3 MPa. Despite the presence of prolonged dormancy in seeds of Z. palustrisand S. anglica there is no evidence of a significant effectof dormancy or storage period (up to the point of visible germination)on the limits of desiccation tolerance Aquatic grasses, seeds, storage, desiccation intolerance  相似文献   

10.
Flow cytometric analyses of nuclear DNA levels were carriedout during development, stratification and germination of dormantseeds from three tree species with contrasting characteristics.Norway maple (Acer platanoides) and sycamore (Acer pseudoplatanus)have orthodox (desiccation-tolerant) and recalcitrant (desiccation-sensitive)storage behaviours, respectively, and require only a periodof cold to break dormancy, whereas, orthodox cherry (Prunusavium) seeds require an initial warm period before cold stratificationto fully stimulate germination. Whole embryos and radicle tipsof both Norway maple and sycamore were found to have stablehigh levels of 4C DNA during the latter stages of developmentand both contained nuclei arrested at the 2C and 4C levels atmaturity. Mature cherry embryos had nuclei predominantly arrestedat the 2C level. This suggests that the acquisition of desiccationtolerance is not correlated with the arrest of the cell cycleat any particular nuclear DNA level. Neither DNA replicationin radicle cells nor germination occurred when seeds were maintainedmoist at a constant 20 °C. However, in the late stages ofcold treatment during stratification, nuclear DNA levels inradicle cells changed in advance of radicle emergence in theorthodox Norway maple and cherry, whereas in the recalcitrantsycamore, change was not recorded until after radicle emergence.These results show that DNA replication has potential use asan indicator of the progress of tree seeds through stratificationtreatments used to break some types of dormancy. The ways inwhich this indicator could be exploited for seed quality andperformance testing are discussed.Copyright 1998 Annals of BotanyCompany Norway maple,Acer platanoidesL., sycamore,Acer pseudoplatanusL., cherry,Prunus aviumL., DNA replication, flow cytometry, seed dormancy, stratification  相似文献   

11.
An Intermediate Category of Seed Storage Behaviour?: I. COFFEE   总被引:15,自引:3,他引:12  
Seeds of four cultivars of arabica coffee (Coffea arabica L.)were tested for germination following hermetic storage for upto 12 months at several different combinations of temperaturesbetween –20 °C and 15 °C and moisture contentsbetween 5% and 10% (wet basis). Most of the seeds from one cultivarwithstood desiccation to between 5% and 6% moisture content,a seed water potential of approximately –250 MPa, butthose of the remaining three cultivars were much more sensitiveto desiccation damage. Moreover, in all four cultivars, seedlongevity at cool and sub-zero temperatures, and at low moisturecontents did not conform with orthodox seed storage behaviour:viability was lost more rapidly under these conditions thanat either warmer temperatures or higher moisture contents. Theresults confirm that coffee seeds fail to satisfy the definitionsof either typical orthodox or recalcitrant seed storage behaviour.These results, therefore, point to the possibility of a thirdcategory of storage behaviour intermediate between those oforthodox and recalcitrant seeds. One of the main features ofthis category is that dry seeds are injured by low temperatures. Key words: coffee, Coffea arabica L., seed storage, seed longevity, desiccation, temperature  相似文献   

12.
13.
In constrast to seeds of orthodox species, those of recalcitrantspecies do not acquire desiccation tolerance during their developmentand are shed from the parent plant at high water contents. Dehydrinproduction in seeds of recalcitrant species was examined duringdevelopment and germination, in response to abscisic acid (ABA),and following the imposition of various water-deficit-relatedstresses, including desiccation, water stress, high salt, highosmolarity, and low temperature. Two tropical species exhibiteda differential capacity to produce dehydrin-related proteinsduring seed maturation. Dehydrins were present in axes and cotyledonsof Castanospermum australe seeds during mid-maturation and atmaturity. In Trichilia dregeana, no dehydrin-related polypeptideswere detected in the mature seed. During the development ofC. australe seeds, the nature of the dehydrin related polypeptidesaccumulated in the cotyledons and axis changed and new polypeptideswere detected in the mature seeds that were not present duringmid-maturation. The dehydrins present in cotyledons of matureseeds (31, 37 and 40 kDa) were still detectable after germination(i.e. in untreated seedlings). These dehydrins became less abundantin the cotyledons of C. australe seedlings following ABA andall stress treatments except cold, although most of the dehydrinswere still detectable. An exception was the desiccation-treatedseedlings, in which no dehydrins were detected. In the rootsof C. australe seedlings, no dehydrins were found after germinationnor were they induced in the root by ABA or any of the stresstreatments imposed on seedlings. Seedlings of Trichilia dregeanadid not produce dehydrins in the roots or cotyledons when exposedto ABA or water-deficit-related stresses. Key words: Dehydrin, ABA, desiccation, recalcitrant, seed  相似文献   

14.
Effects of 2 °C chilling on the threshold moisture contentsand water potentials for various physiological processes wereestimated forAesculus hippocastanumL. seed. Seed harvested atthe time of maximum seed fall exhibited a dual response to drying:partial drying from near 50% to 32–40% moisture contentprogressively increased germination percentage (at 16 °C)up to various peak values; further desiccation was detrimental,confirming that the seeds are ‘recalcitrant’. Themoisture content for optimum germination was increased by atleast 10% as the chilling period was raised from 0 to 9 weeks.A negative linear relationship was found between log10mean timeto germinate and probit final germination, regardless of pre-treatment,indicating that partial desiccation and chilling are interchangeablein promoting germination of hydrated seed. For nearly fullyhydrated seeds, increasing the chilling period from 6 to 26weeks increased the viability-loss onset point for desiccationinjury from near 40% to about 48% moisture content without alteringthe drying rates of seed tissues. Extending moist chilling invarious seed lots from 0 to 26 weeks decreased subsequent longevityat 16 °C. For 26-week-chilled seeds longevity (the periodto lose one probit of germination) differed above and belowa threshold moisture content of 48%. It remained constant inthe moisture-content range 48–38%, but increased progressivelyas moisture content was raised above 48%. This threshold moisturecontent coincided with the value above which chilled seed pre-germinatedin storage. The results indicate that post-harvest desiccationand chilling alter the water relations of various physiologicalprocesses and a schematic summary is presented which relatesthe results to an axis water sorption isotherm.Copyright 1998Annals of Botany Company Aesculus hippocastanumL., horse chestnut, chilling, moisture content, water potential, desiccation tolerance, longevity, recalcitrant seed, embryo axis, maturation, germination.  相似文献   

15.
Soybean seeds [Glycine max (L.) Merr.] synthesize de novo andaccumulate several non-storage, soluble polypeptides duringnatural and precocious seed maturation. These polypeptides havepreviously been coined ‘maturation polypeptides’.The objective of this study was to determine the fate of maturationpolypeptides in naturally and precociously matured soybean seedsduring rehydration, germination, and seedling growth. Developingsoybean seeds harvested 35 d after flowering (mid-development)were precociously matured through controlled dehydration, whereasnaturally matured soybean seeds were harvested directly fromthe plant. Seeds were rehydrated with water for various timesbetween 5 and 120 h. Total soluble proteins and proteins radio-labelledin vivo were extracted from the cotyledons and embryonic axesof precociously and naturally matured and rehydrated seed tissuesand analyzed by one-dimensional PAGE and fluorography. The resultsindicated that three of the maturation polypeptides (21, 31and 128 kDa) that had accumulated in the maturing seeds (maturationpolypeptides) continued to be synthesized during early stagesof seed rehydration and germination (5–30 h after imbibition).However, the progression from seed germination into seedlinggrowth (between 30 and 72 h after imbibition) was marked bythe cessation of synthesis of the maturation polypeptides followedby the hydrolysis of storage polypeptides that had been synthesizedand accumulated during seed development. This implied a drasticredirection in seed metabolism for the precociously maturedseeds as these seeds, if not matured early, would have continuedto synthesize storage protein reserves. Glycine max (L.) Merr, soybean, cotyledons, maturation, germination/seedling growth  相似文献   

16.
Proteolytic Activities in x Haynaldoticum sardoum Seeds of Different Ages   总被引:1,自引:0,他引:1  
Carboxypeptidase, aminopeptidase and proteinase activities weremeasured in endosperms from dry and germinating x Haynaldoticumsardoum naturally aged seeds. Carboxypeptidase activity, presentin dry seeds, decreased slightly during germination and remainednearly unchanged during the storage period. Aminopeptidase activityincreased during germination in younger seeds, but decreasedin non-viable seeds. Proteinase activity was absent in dry seeds,increased during germination in younger seeds and disappearedin the older ones. Proteinase activity was not recovered in old endosperms followingtransplantation of young embryos, and was recovered only toa very small extent in young endosperms following transplantationof old embryos. Young endosperms onto which young embryos hadbeen transplanted gave maximum recovery of enzyme activity,although this was lower than in young intact seeds. These results suggest that the reduced or delayed availabilityof nutrients to the embryo axis is not the only factor causingthe failure of seeds to germinate, the ageing process beinga progressive phenomenon affecting both embryo and endosperm. x Haynaldoticum sardoum, Denti de cani, seed ageing, proteolytic activities, embryo-transplantation  相似文献   

17.
Studies were made on bambarranut seeds (Voandzeia subterraneaThouars) after 0, 6, 12, 18 and 24 months of storage in gunnybags under laboratory conditions (25–35 °C). Seeddeterioration during storage was indicated by delayed germination,reduced germinability, reduced growth of seedlings and increasednumber of stunted seedlings culminating in a total failure ofgermination after two years. Slight depletion of food reserves occurred during seed storage.The loss in fat was higher than starch or protein. Total solublesugars decreased while the content of total fatty acids andamino acids and soluble protein increased. Total nitrogen (N)remained unaffected while soluble-N and amino-N increased. Allthese components showed a rapid change (increase or decrease)from 12 months to 18 months of storage which was associatedwith commencement of rapid decline in germinability of the seedsand growth of the seedlings. Initial rapid imbibition of water was observed in viable aswell as non-viable seeds, though at a higher rate in the latterand followed by a lag period in both. At the end of 24 h ofimbibition, water content in non-viable seeds was less thanthat in viable ones. Key words: Voandzeia subterranea, Seed germination, Seed storage  相似文献   

18.
Life strategy of plants depends on successful seed germination in the available environment, and sufficient soil water is the most important external factor. Taking into account a broad spectrum of roles played by water in seed viability and its maintenance during germination, the review embraces early germination events in seeds different in their water status. Two seed types are compared, namely orthodox and recalcitrant seeds, in terms of water content in the embryonic axes, vacuole biogenesis, and participation of water channels in membrane water transport. Mature orthodox seeds desiccate to low water content and remain viable during storage, whereas mature recalcitrant seeds are shed while well hydrated but die during desiccation and cannot be stored. In orthodox Vicia faba minor air-dry seeds remaining viable at 8–10% water content in embryonic axes, the vacuoles in hypocotyl are preserved as protein storage vacuoles, then restored to vacuoles in imbibing seeds in the course of protein mobilization. However, in newly produced meristematic root cells, the vacuoles are formed de novo from provacuoles. In recalcitrant Aesculus hippocastanum seeds, embryonic axes have a water content of 63–64% at shedding and they lack protein storage vacuoles but preserve vacuoles preformed in maturing seeds. Independent of the vacuolar biogenetic patterns, their further trend is similar; they expand and fuse, thus producing an osmotic compartment, which precedes and becomes an obligatory step for the initiation of cell elongation. Prior to this, water moves in imbibing seeds through the membranes by diffusion, although the aquaporins forming water channels are present. In both seed types, water channels are opened and actively participate in water transport only after growth initiation. Aquaporin gene expression and their composition change in broad bean embryonic axes after growth initiation. This is the way how a mass water flow into growing seedling cells is achieved, independent of differences in seed water content and vacuole biogenesis patterns.  相似文献   

19.
Zostera marina is the only seagrass species whose seeds have been successfully used in large‐scale restoration. Although progress has been made in refining Z. marina restoration protocols, additional information on Z. marina seed physiology is necessary as the science of seagrass restoration evolves. We tested the germination rates of Z. marina seeds under different relative humidities and temperatures for different periods of time. Z. marina seed moisture content (MC) and germination rates were also tested when seeds were exposed to a temperature of 25°C and relative humidity of 50%. Z. marina seeds suffered higher mortality when exposed to lower relative humidity and higher temperature for longer period of exposure time. A significant negative correlation was detected between seed germination rate and MC. Z. marina seeds are sensitive to desiccation exposure and long periods of exposure to air should be prevented to minimize seed mortality when seeds are used in restoration projects.  相似文献   

20.
《Aquatic Botany》2005,83(3):206-218
Seed germination was evaluated for Annona glabra L. and Pachira aquatica Aubl. in the wetland conditions of La Mancha, Veracruz, Mexico. These species have recalcitrant seeds and hydrochoral dispersal. Germination experiments were carried out under varying moisture (high, middle, and low) and light (below canopy and open sky) levels as well as after being stored in contrasting natural conditions. Seeds were stored both floating in water and buried in wetland soil for 15, 30, 60, and 90 days. P. aquatica seeds germinated faster in low and medium moisture, regardless of light intensity. After 45 days, for example, they exhibited 87–73% germination in medium-moisture/canopy and low-moisture/canopy treatments, respectively. In high moisture, seeds reached similar percentages after 60 days (80%). Storage by burial caused the death of seeds regardless the time they spent underground, while those stored in water germinated at a rate of over 90%. A. glabra seeds germinated better (98%) in low-moisture/sunny conditions. As to storage, they responded favorably to both burial and water techniques but germinated more readily in treatments that involved a long storage period. Evaluation of the germination behavior of A. glabra and P. aquatica seeds subject to varying in situ storage and germination conditions illustrates the response capacity of each species during early phases of development.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号