首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 218 毫秒
1.
Replication protein A (RPA) plays essential roles in DNA metabolism, including replication, checkpoint, and repair. Recently, we described an in vitro system in which the phosphorylation of human Chk1 kinase by ATR (ataxia telangiectasia mutated and Rad3-related) is dependent on RPA bound to single-stranded DNA. Here, we report that phosphorylation of other ATR targets, p53 and Rad17, has the same requirements and that RPA is also phosphorylated in this system. At high p53 or Rad17 concentrations, RPA phosphorylation is inhibited and, in this system, RPA with phosphomimetic mutations cannot support ATR kinase function, whereas a non-phosphorylatable RPA mutant exhibits full activity. Phosphorylation of these ATR substrates depends on the recruitment of ATR and the substrates by RPA to the RPA-ssDNA complex. Finally, mutant RPAs lacking checkpoint function exhibit essentially normal activity in nucleotide excision repair, revealing RPA separation of function for checkpoint and excision repair.  相似文献   

2.
The single-stranded DNA (ssDNA)-binding protein replication protein A (RPA) is essential for both DNA replication and recombination. Chromatin immunoprecipitation techniques were used to visualize the kinetics and extent of RPA binding following induction of a double-strand break (DSB) and during its repair by homologous recombination in yeast. RPA assembles at the HO endonuclease-cut MAT locus simultaneously with the appearance of the DSB, and binding spreads away from the DSB as 5′ to 3′ exonuclease activity creates more ssDNA. RPA binding precedes binding of the Rad51 recombination protein. The extent of RPA binding is greater when Rad51 is absent, supporting the idea that Rad51 displaces RPA from ssDNA. RPA plays an important role during RAD51-mediated strand invasion of the MAT ssDNA into the donor sequence HML. The replication-proficient but recombination-defective rfa1-t11 (K45E) mutation in the large subunit of RPA is normal in facilitating Rad51 filament formation on ssDNA, but is unable to achieve synapsis between MAT and HML. Thus, RPA appears to play a role in strand invasion as well as in facilitating Rad51 binding to ssDNA, possibly by stabilizing the displaced ssDNA.  相似文献   

3.
Rad51, Rad52, and replication protein-A (RPA) play crucial roles in the repair of DNA double-strand breaks in Saccharomyces cerevisiae. Rad51 mediates DNA strand exchange, a key reaction in DNA recombination. Rad52 recruits Rad51 into single-stranded DNAs (ssDNAs) that are saturated with RPA. Rad52 also promotes annealing of ssDNA strands that are complexed with RPA. Specific protein-protein interactions are involved in these reactions. Here we report new biochemical characteristics of these protein interactions. First, Rad52-RPA interaction requires multiple molecules of RPA to be associated with ssDNA, suggesting that multiple contacts between the Rad52 ring and RPA-ssDNA filament are needed for stable binding. Second, RPA-t11, which is a recombination-deficient mutant of RPA, displays a defect in interacting with Rad52 in the presence of salt above 50 mM, explaining the defect in Rad52-mediated ssDNA annealing in the presence of this mutation. Third, ssDNA annealing promoted by Rad52 is preceded by aggregation of multiple RPA-ssDNA complexes with Rad52, and Rad51 inhibits this aggregation. These results suggest a regulatory role for Rad51 that suppresses ssDNA annealing and facilitates DNA strand invasion. Finally, the Rad51-double-stranded DNA complex disrupts Rad52-RPA interaction in ssDNA and titrates Rad52 from RPA. This suggests an additional regulatory role for Rad51 following DNA strand invasion, where Rad51-double-stranded DNA may inhibit illegitimate second-end capture to ensure the error-free repair of a DNA double-strand break.  相似文献   

4.
Replication protein A (RPA), the eukaryotic single-stranded DNA-binding complex, is essential for multiple processes in cellular DNA metabolism. The “canonical” RPA is composed of three subunits (RPA1, RPA2, and RPA3); however, there is a human homolog to the RPA2 subunit, called RPA4, that can substitute for RPA2 in complex formation. We demonstrate that the resulting “alternative” RPA (aRPA) complex has solution and DNA binding properties indistinguishable from the canonical RPA complex; however, aRPA is unable to support DNA replication and inhibits canonical RPA function. Two regions of RPA4, the putative L34 loop and the C terminus, are responsible for inhibiting SV40 DNA replication. Given that aRPA inhibits canonical RPA function in vitro and is found in nonproliferative tissues, these studies indicate that RPA4 expression may prevent cellular proliferation via replication inhibition while playing a role in maintaining the viability of quiescent cells.Replication protein A (RPA)3 is a stable complex composed of three subunits (RPA1, RPA2, and RPA3) that binds single-stranded DNA (ssDNA) nonspecifically. RPA (also referred to as canonical RPA) is essential for cell viability (1), and viable missense mutations in RPA subunits can lead to defects in DNA repair pathways or show increased chromosome instability. For example, a missense change in a high affinity DNA-binding domain (DBD) was demonstrated to cause a high rate of chromosome rearrangement and lymphoid tumor development in heterozygous mice (2). RPA has also been shown to have increased expression in colon and breast cancers (3, 4). High RPA1 and RPA2 levels in cancer cells are also correlated with poor overall survival (3, 4), which is consistent with RPA having a role in efficient cell proliferation.RPA is a highly conserved complex as all eukaryotes contain homologs of each of the three RPA subunits (1). At least some plants (e.g. rice) and some protists (e.g. Cryptosporidium parvum) contain multiple genes encoding for subunits of RPA (5, 6). In rice, there is evidence for multiple RPA complexes that are thought to perform different cellular functions (5). In contrast, only a single alternative form of RPA2, called RPA4, has been identified in humans (7). RPA4 was originally identified as a protein that interacts with RPA1 in a yeast two-hybrid screen (7). The RPA4 subunit is 63% identical/similar to RPA2. Comparison of the sequences of RPA4 and RPA2 suggests that the two proteins have a similar domain organization.4 RPA4 appears to contain a putative core DNA-binding domain (DBD G) flanked by a putative N-terminal phosphorylation domain and a C terminus containing a putative winged-helix domain (Fig. 1A). The RPA4 gene is located on the X chromosome, intronless, and found mainly in primates.4 Initial characterization of RPA4 by Keshav et al. (7) indicated that either RPA2 or RPA4, but not both simultaneously, interacts with RPA1 and RPA3 to form a complex. This analysis also showed that RPA4 is expressed in placenta and colon tissue but was either not detected or expressed at low levels in most established cell lines examined (7).Open in a separate windowFIGURE 1.Properties of aRPA complex. A, schematic diagram of the structural and functional domains of the three subunits of RPA and (proposed for) RPA4: DNA-binding domains (DBD A-G), the phosphorylation domain (PD), winged-helix domain (WH), and linker regions (lines). The sequence similarity between RPA2 and RPA4 is indicated for each domain of the subunit. B, gel analysis of 2 μg of RPA4/3, RPA. or aRPA separated on 8-14% SDS-PAGE gels and visualized by Coomassie Blue staining. The position of each RPA subunit is indicated. C, hydrodynamic properties of aRPA and RPA complexes. The sedimentation coefficient and Stokes'' radius were determined as described previously by sedimentation on a 15-35% glycerol gradient and chromatography on a Superose 6 10/300 GL column (GE Healthcare), respectively (13). Mass and frictional coefficients were calculated using the method of Siegal and Monty (8). The predicted mass was based upon the amino acid sequence derived from the DNA sequence.These studies describe the purification and functional analysis of an alternative RPA (aRPA) complex containing RPA1, RPA3, and RPA4. The aRPA complex is a stable heterotrimeric complex similar in size and stability to the canonical RPA complex (RPA1, RPA3, and RPA2). aRPA interacts with ssDNA in a manner indistinguishable from canonical RPA; however, it does not support DNA replication in vitro. Mixing experiments demonstrate that aRPA also inhibits canonical RPA from functioning in DNA replication. Hybrid protein studies paired with structural modeling have allowed for the identification of two regions of RPA4 responsible for this inhibitory activity. Data presented here are consistent with recent analyses of RPA4 function in human cells,4 and we conclude that RPA4 has anti-proliferative properties and has the potential to play a regulatory role in human cell proliferation through the control of DNA replication.  相似文献   

5.
The ability of replication protein A (RPA) to bind single-stranded DNA (ssDNA) underlines its crucial roles during DNA replication and repair. A combination of immunofluorescence and live cell imaging of GFP-tagged RPA70 revealed that RPA, in contrast to other replication factors, does not cluster into replication foci, which is explained by its short residence time at ssDNA. In addition to replication, RPA also plays a crucial role in both the pre- and post-incision steps of nucleotide excision repair (NER). Pre-incision factors like XPC and TFIIH accumulate rapidly at locally induced UV-damage and remain visible up to 4 h. However, RPA did not reach its maximum accumulation level until 3 h after DNA damage infliction and a chromatin-bound pool remained detectable up to 8 h, probably reflecting its role during the post-incision step of NER. During the pre-incision steps of NER, RPA could only be visualized at DNA lesions in incision deficient XP-F cells, however without a substantial increase in residence time at DNA damage. Together our data show that RPA is an intrinsically highly dynamic ssDNA-binding complex during both replication and distinct steps of NER.  相似文献   

6.
The single-stranded DNA (ssDNA)-binding protein replication protein A (RPA) is essential for both DNA replication and recombination. Chromatin immunoprecipitation techniques were used to visualize the kinetics and extent of RPA binding following induction of a double-strand break (DSB) and during its repair by homologous recombination in yeast. RPA assembles at the HO endonuclease-cut MAT locus simultaneously with the appearance of the DSB, and binding spreads away from the DSB as 5′ to 3′ exonuclease activity creates more ssDNA. RPA binding precedes binding of the Rad51 recombination protein. The extent of RPA binding is greater when Rad51 is absent, supporting the idea that Rad51 displaces RPA from ssDNA. RPA plays an important role during RAD51-mediated strand invasion of the MAT ssDNA into the donor sequence HML. The replication-proficient but recombination-defective rfa1-t11 (K45E) mutation in the large subunit of RPA is normal in facilitating Rad51 filament formation on ssDNA, but is unable to achieve synapsis between MAT and HML. Thus, RPA appears to play a role in strand invasion as well as in facilitating Rad51 binding to ssDNA, possibly by stabilizing the displaced ssDNA.  相似文献   

7.
The RFA1 gene encodes the large subunit of the yeast trimeric single-stranded DNA binding protein replication protein A (RPA), which is known to play a critical role in DNA replication. A Saccharomyces cerevisiae strain carrying the rfa1-44 allele displays a number of impaired recombination and repair phenotypes, all of which are suppressible by overexpression of RAD52. We demonstrate that a rad52 mutation is epistatic to the rfa1-44 mutation, placing RFA1 and RAD52 in the same genetic pathway. Furthermore, two-hybrid analysis indicates the existence of interactions between Rad52 and all three subunits of RPA. The nature of this Rad52-RPA interaction was further explored by using two different mutant alleles of rad52. Both mutations lie in the amino terminus of Rad52, a region previously defined as being responsible for its DNA binding ability (U. H. Mortenson, C. Beudixen, I. Sunjeuaric, and R. Rothstein, Proc. Natl. Acad. Sci. USA 93:10729–10734, 1996). The yeast two-hybrid system was used to monitor the protein-protein interactions of the mutant Rad52 proteins. Both of the mutant proteins are capable of self-interaction but are unable to interact with Rad51. The mutant proteins also lack the ability to interact with the large subunit of RPA, Rfa1. Interestingly, they retain their ability to interact with the medium-sized subunit, Rfa2. Given the location of the mutations in the DNA binding domain of Rad52, a model incorporating the role of DNA in the protein-protein interactions involved in the repair of DNA double-strand breaks is presented.  相似文献   

8.
DNA repair and DNA damage checkpoints work in concert to help maintain genomic integrity. In vivo data suggest that these two global responses to DNA damage are coupled. It has been proposed that the canonical 30 nucleotide single-stranded DNA gap generated by nucleotide excision repair is the signal that activates the ATR-mediated DNA damage checkpoint response and that the signal is enhanced by gap enlargement by EXO1 (exonuclease 1) 5′ to 3′ exonuclease activity. Here we have used purified core nucleotide excision repair factors (RPA, XPA, XPC, TFIIH, XPG, and XPF-ERCC1), core DNA damage checkpoint proteins (ATR-ATRIP, TopBP1, RPA), and DNA damaged by a UV-mimetic agent to analyze the basic steps of DNA damage checkpoint response in a biochemically defined system. We find that checkpoint signaling as measured by phosphorylation of target proteins by the ATR kinase requires enlargement of the excision gap generated by the excision repair system by the 5′ to 3′ exonuclease activity of EXO1. We conclude that, in addition to damaged DNA, RPA, XPA, XPC, TFIIH, XPG, XPF-ERCC1, ATR-ATRIP, TopBP1, and EXO1 constitute the minimum essential set of factors for ATR-mediated DNA damage checkpoint response.  相似文献   

9.
The budding yeast Srs2 protein possesses 3′ to 5′ DNA helicase activity and channels untimely recombination to post-replication repair by removing Rad51 from ssDNA. However, it also promotes recombination via a synthesis-dependent strand-annealing pathway (SDSA). Furthermore, at the replication fork, Srs2 is required for fork progression and prevents the instability of trinucleotide repeats. To better understand the multiple roles of the Srs2 helicase during these processes, we analysed the ability of Srs2 to bind and unwind various DNA substrates that mimic structures present during DNA replication and recombination. While leading or lagging strands were efficiently unwound, the presence of ssDNA binding protein RPA presented an obstacle for Srs2 translocation. We also tested the preferred directionality of unwinding of various substrates and studied the effect of Rad51 and Mre11 proteins on Srs2 helicase activity. These biochemical results help us understand the possible role of Srs2 in the processing of stalled or blocked replication forks as a part of post-replication repair as well as homologous recombination (HR).  相似文献   

10.
Homologous recombination is involved in the repair of DNA damage and collapsed replication fork, and is critical for the maintenance of genomic stability. Its process involves a network of proteins with different enzymatic activities. Human DNA helicase B (HDHB) is a robust 5′-3′ DNA helicase which accumulates on chromatin in cells exposed to DNA damage. HDHB facilitates cellular recovery from replication stress, but its role in DNA damage response remains unclear. Here we report that HDHB silencing results in reduced sister chromatid exchange, impaired homologous recombination repair, and delayed RPA late-stage foci formation induced by ionizing radiation. Ectopically expressed HDHB colocalizes with Rad51, Rad52, RPA, and ssDNA. In vitro, HDHB stimulates Rad51-mediated heteroduplex extension in 5′-3′ direction. A helicase-defective mutant HDHB failed to promote this reaction. Our studies implicate HDHB promotes homologous recombination in vivo and stimulates 5′-3′ heteroduplex extension during Rad51-mediated strand exchange in vitro.  相似文献   

11.
12.
Homologous recombination is an important biological process that facilitates genome rearrangement and repair of DNA double-strand breaks (DSBs). The induction of Epstein-Barr virus (EBV) lytic replication induces ataxia telangiectasia-mutated (ATM)-dependent DNA damage checkpoint signaling, leading to the clustering of phosphorylated ATM and Mre11/Rad50/Nbs1 (MRN) complexes to sites of viral genome synthesis in nuclei. Here we report that homologous recombinational repair (HRR) factors such as replication protein A (RPA), Rad51, and Rad52 as well as MRN complexes are recruited and loaded onto the newly synthesized viral genome in replication compartments. The 32-kDa subunit of RPA is extensively phosphorylated at sites in accordance with those with ATM. The hyperphosphorylation of RPA32 causes a change in RPA conformation, resulting in a switch from the catalysis of DNA replication to the participation in DNA repair. The levels of Rad51 and phosphorylated RPA were found to increase with the progression of viral productive replication, while that of Rad52 proved constant. Furthermore, biochemical fractionation revealed increases in levels of DNA-bound forms of these HRRs. Bromodeoxyuridine-labeled chromatin immunoprecipitation and PCR analyses confirmed the loading of RPA, Rad 51, Rad52, and Mre11 onto newly synthesized viral DNA, and terminal deoxynucleotidyltransferase-mediated dUTP nick end labeling analysis demonstrated DSBs in the EBV replication compartments. HRR factors might be recruited to repair DSBs on the viral genome in viral replication compartments. RNA interference knockdown of RPA32 and Rad51 prevented viral DNA synthesis remarkably, suggesting that homologous recombination and/or repair of viral DNA genome might occur, coupled with DNA replication to facilitate viral genome synthesis.Replication protein A (RPA), the eukaryotic single-stranded DNA (ssDNA)-binding protein, is a heterotrimeric complex composed of three tightly associated subunits of 70, 32, and 14 kDa (referred as to RPA70, RPA32, and RPA14, respectively) that is essential for DNA replication, recombination, and all major types of DNA repair (4). RPA participates in such diverse pathways through its ability to interact with DNA and numerous proteins involved in its processing. During DNA replication, RPA associates with ssDNA at forks and facilitates nascent-strand DNA synthesis by replicative DNA polymerases localized at replication foci during S phase. Under DNA-damaging conditions, RPA binds to ssDNA at damaged sites and interacts with repair and recombination components to process double-strand DNA breaks (DSBs) and other lesions (6, 14, 21, 32, 38, 41).RPA undergoes both DNA damage-independent and -dependent phosphorylation on the N-terminal 33 residues of RPA32. Unstressed cell cycle-dependent phosphorylation occurs during the G1/S-phase transition and in M phase, primarily at the conserved cyclin-CDK phosphorylation sites of Ser-23 and Ser-29 in the N terminus of the RPA32 subunit (13, 15). In contrast, stress-induced hyperphosphorylation of RPA is much more extensive. Nine potential phosphorylation sites within the N-terminal domain of RPA32, Ser-4, Ser-8, Ser-11/Ser-12/Ser-13, Thr-21, Ser-23, Ser-29, and Ser-33, in response to DNA-damaging agents, have been suggested (33, 54). Although this region of RPA32 is not required for the ssDNA-binding activity of RPA (5, 22), a phosphorylation-induced subtle conformation change in RPA, resulting from altered intersubunit interactions, regulates the interaction of RPA with both interacting proteins and DNA (30). The hyperphosphorylated form of RPA32 is unable to localize to replication centers in normal cells, while binding to DNA damage foci is unaffected (46). Therefore, RPA phosphorylation following damage is thought to both prevent RPA from catalyzing DNA replication and potentially serve as a marker to recruit repair factors to sites of DNA damage. RPA localizes to nuclear foci where DNA repair is occurring after DNA damage and is essential for multiple DNA repair pathways, participating in damage recognition, excision, and resynthesis reactions (4, 56).Mammalian cells can repair DSBs by homologous recombination (HR) or by nonhomologous end joining. HR is an accurate repair process, the first step of which is the resection of the 5′ ends of the DSB to generate 3′ ssDNA overhangs. This reaction is carried out by the Mre11/Rad50/Nbs1 (MRN) complex, which not only functions as a damage sensor upstream of ataxia telangiectasia-mutated (ATM)/ATM-Rad3-related (ATR) activation but also plays a role in DSB repair (4). RPA and members of the RAD52 epistasis group of gene products, such as Rad51, Rad52, and Rad54, bind to the resulting 3′ ssDNA strands and form a helical, nucleoprotein filament that facilitates the invasion of a damaged DNA strand into the homologous double-stranded DNA partner. The human Rad51 protein is a structural and functional homolog of the Escherichia coli RecA protein, which promotes homologous pairing and strand transfer reactions in vitro. Both Rad51 and Rad52 bind specifically to the terminal regions of tailed duplex DNA, the substrate thought to initiate recombination in vivo. Furthermore, nucleoprotein filaments of Rad51, formed on tailed DNA, catalyze strand invasion of homologous duplex DNA in a reaction that is stimulated by Rad52 and RPA (3).Epstein-Barr virus (EBV) is a human herpesvirus that infects B lymphocytes, inducing their continuous proliferation. In B-lymphoblastoid cell lines, there is no production of virus particles, which is termed latent infection (52). Reactivation from latency is characterized by the expression of lytic genes, and one of the first detectable changes is the expression of the BZLF1 immediate-early gene product, which trans-activates viral promoters (16), leading to an ordered cascade of viral early and late gene expression. This lytic EBV DNA replication occurs in discrete sites in nuclei, called replication compartments, in which seven viral replication proteins are assembled (44). The viral genome is amplified several hundredfold by the viral replication machinery and is thought to generate highly branched replication intermediates through HR coupled with viral DNA replication (48). With the progression of lytic replication, the replication compartments become larger and appeared to fuse to form large globular structures that eventually filled the nucleus at late stages of infection (8, 45).We previously isolated latently EBV-infected Tet-BZLF1/B95-8 cells in which the exogenous BZLF1 protein is conditionally expressed under the control of a tetracycline-regulated promoter, leading to a highly efficient induction of lytic replication (28). Using this system, we have demonstrated that the induction of the EBV lytic program results in the inhibition of replication of cellular DNA in spite of the replication of viral DNA (28) and elicits a cellular DNA damage response, with the activation of the ATM-Chk2-p53 DNA damage transduction pathway (29). The DNA damage sensor MRN complex and phosphorylated ATM are recruited and retained in viral replication compartments (29).Here we report that RPA32 is extensively phosphorylated after EBV lytic replication is induced, with the phosphorylation sites in accordance with those for ATM. Phosphorylated RPA, Rad51, and Rad52, which are involved in HR repair (HRR), are recruited and retained in viral replication compartments as well as the MRN complex. Furthermore, DSBs could be demonstrated to occur during viral genome synthesis in the EBV replication compartments. HRR factors might be recruited to repair DSBs on the viral genome in viral replication compartments. RNA interference (RNAi) knockdown of RPA32 and Rad51 prevented viral DNA synthesis remarkably, suggesting that HR and/or repair of viral DNA genome might occur, coupled with DNA replication, to facilitate viral genome synthesis.  相似文献   

13.
Replication protein A (RPA) is a single-stranded DNA (ssDNA) binding protein involved in various processes, including nucleotide excision repair and DNA replication. The 32 kDa subunit of RPA (RPA32) is phosphorylated in response to various DNA-damaging agents, and two protein kinases, ataxia-telangiectasia mutated (ATM) and the DNA-dependent protein kinase (DNA-PK) have been implicated in DNA damage-induced phosphorylation of RPA32. However, the relative roles of ATM and DNA-PK in the site-specific DNA damage-induced phosphorylation of RPA32 have not been reported. Here we generated a phosphospecific antibody that recognizes Thr21-phosphorylated RPA32. We show that both DNA-PK and ATM phosphorylate RPA32 on Thr21 in vitro. Ionizing radiation (IR)-induced phosphorylation of RPA32 on Thr21 was defective in ATM-deficient cells, while camptothecin (CPT)-induced phosphorylation of RPA32 on Thr21 was defective in cells lacking functional DNA-PK. Neither ATM nor DNA-PK was required for etoposide (ETOP)-induced RPA32 Thr21 phosphorylation. However, two inhibitors of the ATM- and Rad3-related (ATR) protein kinase activity prevented ETOP-induced Thr21 phosphorylation. Inhibition of DNA replication prevented both the IR- and CPT-induced phosphorylation of Thr21, whereas ETOP-induced Thr21 phosphorylation did not require active DNA replication. Thus, the regulation of RPA32 Thr21 phosphorylation by multiple DNA damage response protein kinases suggests that Thr21 phosphorylation of RPA32 is a crucial step within the DNA damage response.  相似文献   

14.
Replication Protein A (RPA) is a heterotrimeric, single-stranded DNA (ssDNA)–binding complex required for DNA replication and repair, homologous recombination, DNA damage checkpoint signaling, and telomere maintenance. Whilst the larger RPA subunits, Rpa1 and Rpa2, have essential interactions with ssDNA, the molecular functions of the smallest subunit Rpa3 are unknown. Here, we investigate the Rpa3 ortholog Ssb3 in Schizosaccharomyces pombe and find that it is dispensable for cell viability, checkpoint signaling, RPA foci formation, and meiosis. However, increased spontaneous Rad11Rpa1 and Rad22Rad52 nuclear foci in ssb3Δ cells indicate genome maintenance defects. Moreover, Ssb3 is required for resistance to genotoxins that disrupt DNA replication. Genetic interaction studies indicate that Ssb3 has a close functional relationship with the Mms1-Mms22 protein complex, which is required for survival after DNA damage in S-phase, and with the mitotic functions of Mus81-Eme1 Holliday junction resolvase that is required for recovery from replication fork collapse. From these studies we propose that Ssb3 plays a critical role in mediating RPA functions that are required for repair or tolerance of DNA lesions in S-phase. Rpa3 orthologs in humans and other species may have a similar function.  相似文献   

15.
Replication protein-A (RPA) is involved in many processes of DNA metabolism, including DNA replication, repair, and recombination. Cells carrying a mutation in the largest subunit of RPA (rfa1-t11: K45E) have defects in meiotic recombination, mating-type switching, and survival after DNA damage caused by UV and methyl methanesulfonate, as well as increased genome instability; however, this mutant has no significant defect in DNA replication. We purified the RPA heterotrimer containing the rfa1-t11 substitution (RPA(rfa1-t11)). This mutant RPA binds single-stranded DNA (ssDNA) with the same site size, and the RPA(rfa1-t11).ssDNA complex shows a similar sensitivity to disruption by salt as the wild-type RPA.ssDNA complex. RPA(rfa1-t11) stimulates DNA strand exchange, provided that the Rad51 protein.ssDNA nucleoprotein complex is assembled prior to introduction of the mutant RPA. However, RPA(rfa1-t11) is displaced from ssDNA by Rad51 protein more slowly than wild-type RPA and, as a consequence, Rad51 protein-mediated DNA strand exchange is inhibited when the ssDNA is in a complex with RPA(rfa1-t11). Rad52 protein can stimulate displacement of RPA(rfa1-t11) from ssDNA by Rad51 protein, but the rate of displacement remains slow compared with wild-type RPA. These in vitro results suggest that, in vivo, RPA is bound to ssDNA prior to Rad51 protein and that RPA displacement by Rad51 protein is a critical step in homologous recombination, which is impaired in the rfa1-t11 mutation.  相似文献   

16.
The eukaryotic single-stranded DNA-binding protein, replication protein A (RPA), is essential for DNA replication, and plays important roles in DNA repair and DNA recombination. Rad52 and RPA, along with other members of the Rad52 epistasis group of genes, repair double-stranded DNA breaks (DSBs). Two repair pathways involve RPA and Rad52, homologous recombination and single-strand annealing. Two binding sites for Rad52 have been identified on RPA. They include the previously identified C-terminal domain (CTD) of RPA32 (residues 224-271) and the newly identified domain containing residues 169-326 of RPA70. A region on Rad52, which includes residues 218-303, binds RPA70 as well as RPA32. The N-terminal region of RPA32 does not appear to play a role in the formation of the RPA:Rad52 complex. It appears that the RPA32CTD can substitute for RPA70 in binding Rad52. Sequence homology between RPA32 and RPA70 was used to identify a putative Rad52-binding site on RPA70 that is located near DNA-binding domains A and B. Rad52 binding to RPA increases ssDNA affinity significantly. Mutations in DBD-D on RPA32 show that this domain is primarily responsible for the ssDNA binding enhancement. RPA binding to Rad52 inhibits the higher-order self-association of Rad52 rings. Implications for these results for the "hand-off" mechanism between protein-protein partners, including Rad51, in homologous recombination and single-strand annealing are discussed.  相似文献   

17.
Ribonucleotides are incorporated into the genome during DNA replication. The enzyme RNase H2 plays a critical role in targeting the removal of these ribonucleotides from DNA, and defects in RNase H2 activity are associated with both genomic instability and the human autoimmune/inflammatory disorder Aicardi-Goutières syndrome. Whether additional general DNA repair mechanisms contribute to ribonucleotide removal from DNA in human cells is not known. Because of its ability to act on a wide variety of substrates, we examined a potential role for canonical nucleotide excision repair in the removal of ribonucleotides from DNA. However, using highly sensitive dual incision/excision assays, we find that ribonucleotides are not efficiently targeted by the human nucleotide excision repair system in vitro or in cultured human cells. These results suggest that nucleotide excision repair is unlikely to play a major role in the cellular response to ribonucleotide incorporation in genomic DNA in human cells.  相似文献   

18.
19.
Regulation of protein expression can be achieved through destruction of proteins by the 26S proteasome. Cellular processes that are regulated by proteolysis include cell cycle progression, stress responses and differentiation. Several nucleotide excision repair proteins in yeast and humans, such as Rad23, Rad4 and XPB, have been shown to co-purify with Cim3 and Cim5, AAA ATPases of the 19S proteasome regulatory subunit. However, it has not been determined if nucleotide excision repair is regulated through protein destruction. We measured nucleotide excision repair in yeast mutants that are defective in proteasome function and found that the repair of the transcribed and non-transcribed strands of an RNA polymerase II-transcribed reporter gene was increased in the absence of proteasome function. Additionally, overexpression of the Rad4 repair protein, which is bound to the repair/proteolytic factor Rad23, conferred higher rates of nucleotide excision repair. Based on our data we suggest that a protein (or proteins) involved in nucleotide excision repair or in regulation of repair is degraded by the 26S proteasome. We propose that decreased proteasome function enables increased DNA repair, due to the transient accumulation of a specific repair factor, perhaps Rad4.  相似文献   

20.
Replication protein A (RPA), the nuclear ssDNA-binding protein in eukaryotes, is essential to DNA replication, recombination, and repair. We have shown that a globular domain at the C terminus of subunit RPA32 contains a specific surface that interacts in a similar manner with the DNA repair enzyme UNG2 and repair factors XPA and RAD52, each of which functions in a different repair pathway. NMR structures of the RPA32 domain, free and in complex with the minimal interaction domain of UNG2, were determined, defining a common structural basis for linking RPA to the nucleotide excision, base excision, and recombinational pathways of repairing damaged DNA. Our findings support a hand-off model for the assembly and coordination of different components of the DNA repair machinery.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号