首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 296 毫秒
1.
2.
3.
4.
5.
In most mammals under natural conditions weaning is gradual. Weaning occurs after the mammary gland naturally produces much less milk than it did at peak and established lactation. Involution occurs following the cessation of milk evacuation from the mammary glands. The abrupt termination of the evacuation of milk from the mammary gland at peak and established lactation induces abrupt involution. Evidence on mice has shown that during abrupt involution, mammary gland utilizes some of the same tissue remodeling programs that are activated during wound healing. These results led to the proposition of the “involution hypothesis”. According to the involution hypothesis, involution is associated with increased risk for developing breast cancer. However, the involution hypothesis is challenged by the metabolic and immunological events that characterize the involution process that follows gradual weaning. It has been shown that gradual weaning is associated with pre-adaption to the forthcoming break between dam and offspring and is followed by an orderly reprogramming of the mammary gland tissue. As discussed herein, such response may actually protect the mammary glands against the development of breast cancer and thus, may explain the protective effect of extended breastfeeding. On the other hand, the termination of breastfeeding during the first 6 months of lactation is likely associated with an abrupt involution and thus with an increased risk for developing breast cancer. Review of the literature on the epidemiology of breast cancer principally supports those conclusions.  相似文献   

6.
7.
8.
Extracellular matrix (ECM) plays an important role in the maintenance of mammary epithelial differentiation in culture. We asked whether changes in mouse mammary specific function in vivo correlate with changes in the ECM. We showed, using expression of beta-casein as a marker, that the temporal expression of ECM-degrading proteinases and their inhibitors during lactation and involution are inversely related to functional differentiation. After a lactation period of 9 d, mammary epithelial cells maintained beta-casein expression up to 5 d of involution. Two metalloproteinases, 72-kD gelatinase (and its 62-kD active form), and stromelysin, and a serine proteinase tissue plasminogen activator were detected by day four of involution, and maintained expression until at least day 10. The expression of their inhibitors, the tissue inhibitor of metalloproteinases (TIMP) and plasminogen activator inhibitor-1, preceded the onset of ECM-degrading proteinase expression and was detected by day two of involution, and showed a sharp peak of expression centered on days 4-6 of involution. When involution was accelerated by decreasing lactation to 2 d, there was an accelerated loss of beta-casein expression evident by day four and a shift in expression of ECM-remodeling proteinases and inhibitors to a focus at 2-4 d of involution. To further extend the correlation between mammary-specific function and ECM remodeling we initiated involution by sealing just one gland in an otherwise hormonally sufficient lactating animal. Alveoli in the sealed gland contained casein for at least 7 d after sealing, and closely resembled those in a lactating gland. The relative expression of TIMP in the sealed gland increased, whereas the expression of stromelysin was much lower than that of a hormone-depleted involuting gland, indicating that the higher the ratio of TIMP to ECM-degrading proteinases the slower the process of involution. To test directly the functional role of ECM-degrading proteinases in the loss of tissue-specific function we artificially perturbed the ECM-degrading proteinase-inhibitor ratio in a normally involuting gland by maintaining high concentrations of TIMP protein with the use of surgically implanted slow-release pellets. In a concentration-dependent fashion, involuting mammary glands that received TIMP implants maintained high levels of casein and delayed alveolar regression. These data suggest that the balance of ECM-degrading proteinases and their inhibitors regulates the organization of the basement membrane and the tissue-specific function of the mammary gland.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

9.
We studied for the first time the mammary gland morphogenesis and its hormonal modulation by immunolocalizing estradiol, progesterone and prolactin receptors (ER, PR and PRLR) in adult females of Lagostomus maximus, a caviomorph rodent which shows a pseudo-ovulatory process at mid-gestation. Mammary ductal system of non-pregnant females lacks expression of both ERα and ERβ. Yet throughout pregnancy, ERα and ERβ levels increase as well as the expression of PR. These increments are concomitant with ductal branching and alveolar differentiation. Even though mammary gland morphology is quite similar to that described for other rodents, alveolar proliferation and differentiation are accelerated towards the second half of pregnancy, once pseudo-ovulation had occurred. Moreover, this exponential growth correlates with an increment of both progesterone and estradiol serum-induced pseudo-ovulation. As expected, PR and PRLR are strongly expressed in the alveolar epithelium during pregnancy and lactation. Strikingly, PRLR is also present in ductal epithelia of cycling glands suggesting that prolactin function may not be restricted to its trophic effect on mammary glands of pregnant and lactating females, but it also regulates other physiological processes in mammary glands of non-pregnant animals. In conclusion, this report suggests that pseudo-ovulation at mid-gestation may be associated to L. maximus mammary gland growth and differentiation. The rise in P and E2-induced pseudo-ovulation as well as the increased expression of their receptors, all events that correlate with the development of a more elaborated and differentiated ductal network, pinpoint a possible relation between this peculiar physiological event and mammary gland morphogenesis.  相似文献   

10.
11.
An understanding of the mechanisms regulating milk yield in sows is crucial for producers to make the best management decisions during lactation. Suckling of mammary glands by piglets is one factor that is essential for development of these glands during lactation and for the maintenance of lactation in sows. The process of mammary development is not static as the majority of it takes place in the last third of gestation, continues during lactation, is followed by involution at weaning and starts over again in the next gestation. During involution, the mammary glands undergo a rapid and drastic regression in parenchymal tissue, and this can also occur during lactation if a gland is not suckled regularly. Indeed, the pattern of regression is similar for glands that involute at weaning or during lactation. Suckling during 12 to 14 h postpartum is insufficient to maintain lactation and the process of involution that occurs in early lactation is reversible within 1 day of farrowing but is irreversible if a gland is not used for 3 days. However, milk yield from a gland which is ‘rescued’ within the first 24 h remains lower throughout lactation. Suckling does not only affect milk yield in the ongoing lactation, but it also seems to affect that of the next lactation. Indeed, non-suckling of a mammary gland in first-parity sows decreased development and milk yield of that gland in second parity. Nursing behaviour of piglets in early lactation was also affected, where changes were indicative of piglets in second parity being hungrier when suckling glands that were not previously used. It is not known, however, if the same effects would be seen between the second and third lactation. Furthermore, the minimum suckling period required to ensure maximal milk yield from a gland in the next lactation is not known. This review provides an update on our current knowledge of the importance of suckling for mammary development and milk yield in swine.  相似文献   

12.
13.
14.
15.
16.
17.
18.
19.
Synthesis of lactoferrin and casein by the bovine mammary gland was determined in an experimental model where lactation was maintained in one mammary half, while involution was induced in the contralateral half. Culture of explants with prolactin had no consistent effect on synthesis of casein or lactoferrin in tissue from either mammary half. Endotoxin and tumor necrosis factor-α generally decreased synthesis of casein and lactoferrin, suggesting that these inflammatory mediators are not directly responsible for increasing lactoferrin synthesis during mammary inflammation or involution. Synthesis of lactoferrin was increased and casein decreased in the involuting mammary half vs. the lactating half. These results suggest that local factors in the mammary gland play a role in the regulation of lactoferrin synthesis during involution.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号