首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 49 毫秒
1.
Male Wistar rats aged 30, 75 and 150 days were fed for 14 days ad libitum on diets with an optimum protein content (15% for 30-day-old, 12.5% for 75-day-old and 10% for 150-day-old animals) and a mounting fat content (from 5 to 40%), supplemented by saccharides (from 76 to 41%). Net protein utilization was determined for each of the diets from the body nitrogen and protein intake values. Protein retention values were determined from protein intake on the basis of net protein utilization (NPU). Energy intake was computed from fat and saccharide intake, using energy coefficients. The optimum fat content of the diet, evaluated from the maximum protein retention value per day and the minimum amount of energy needed for the retention of 1 g protein, is 30% at 30 days, 15% at 75 days and 10% at 150 days. Protein retention per kg body weight falls with advancing age--mildly at 75 days compared with 30 days, but markedly at 150 days. From their smaller weight increments and NPU values and also from their lower protein retention, 150-day-old animals are characterized by slower growth and higher protein requirements for maintenance of their organism likewise demonstrated by the growth parameter net protein ratio (NPR). Energy requirements for total protein retention/day per kg body weight diminish with age. In old age a small amount of energy is needed only for the maintenance of body functions. This study contributes to the expression of the interrelationship of energy requirements and protein retention.  相似文献   

2.
It can be hypothesized that the body composition characteristics of different sheep breeds affect their nutritional requirements. However, no study has yet been carried out to determine the nutritional requirements for maintenance of Texel purebred lambs, despite their growing importance in sheep meat production globally. Our objective was therefore to determine the energy and protein requirements for maintenance of Texel lambs. Thirty-four Texel lambs were used, all intact males that were weaned at 50 days old, and confined in individual pens. Two experiments were conducted, as follows. In Experiment 1, a digestibility assay was performed to determine the dietary energy value, in a 3×3 double Latin square design, in which lambs were submitted to three levels of feed restriction (0%, 55% and 70% of ad libitum feed intake). In Experiment 2, the energy and protein requirements for maintenance of Texel lambs from 21 to 40 kg BW were determined using a randomized block design, in which lambs were also submitted to three levels of feed restriction (0%, 55% and 70% of ad libitum feed intake). The requirements for net energy for maintenance (NEm), metabolizable energy for maintenance (MEm), net protein for maintenance (NPm) and metabolizable protein for maintenance (MPm) were determined. The digestibility of dry matter, energy, protein and metabolizability were similar between food restriction levels, averaging 74.4%, 75.5%, 80.3% and 0.636, respectively. The NEm determined for growing Texel lambs was 263 kJ/kg of the metabolic fasting BW (FBW), the MEm was 417 kJ/kg0.75 FBW and the efficiency of use of MEm was 0.63. In addition, the NPm was 1.24 g/day per kg0.75 FBW and the MPm was 2.98 g/day per kg0.75 FBW. The energy requirements of Texel lambs are different from those reported in the literature, possibly due to differences between breeds, diets and environmental effects, whereas the protein requirements are different from literature mainly due to methodological differences; further studies are need to address these aspects that affects the nutritional requirements for raising sheep from different breeds in different environments.  相似文献   

3.
The aim of this study was to investigate protein requirements for the maintenance and growth of blue-breasted quail (Excalfactoria chinensis) from 7 to 21 days of age. A total of 180 quails, 7 days old, were randomly assigned to 36 cages and for 2 weeks were fed diets with a metabolisable energy concentration of 12.13 MJ/kg and a dietary CP concentration of 125, 150, 175, 200, 225 or 250 g/kg. The average BW per cage and the feed intake per cage were recorded daily. The results showed that quails fed 125 g/kg CP could not maintain their BW and had negative feed efficiency. There were linear and quadratic relationships between CP level and response criteria, including BW, weight gain, feed intake, feed efficiency, final body nitrogen mass and body nitrogen accretion (P<0.05). The dietary CP requirements, as calculated using a one-slope quadratic broken-line model, were 211 and 202 g/kg according to weight gain and feed efficiency, respectively. The regression equations, on the basis of metabolic BW, of daily weight gain on daily protein intake according to the model were Y=0.137-2.128(0.113-X) if X<0.113 and Y=0.137 if X>or=0.113 (R2=0.96, P<0.001), which meant that the protein requirement for maintenance was 0.049 times the metabolic BW and that to gain 1 g weight quails needed to ingest an extra 0.47 g protein after the maintenance requirement was satisfied. The regression equations, on the basis of metabolic BW, of daily body nitrogen accretion on daily protein intake according to the model were Y=5.667-76.700(0.119-X) if X<0.119 and Y=5.667 if X>or=0.119 (R2=0.95, P<0.001), which meant that quails had to receive an amount of protein equal to their metabolic BW multiplied by 0.045 to satisfy the requirement for maintenance and then ingest an extra 13 g protein to accrete 1 g body nitrogen. In conclusion, growth or protein accretion rates should be regulated according to dietary CP for specific experimental purposes via apportioning protein requirements for maintenance v. growth.  相似文献   

4.
54 bulls of the German Simmental breed were fed either on a high energy level (maize silage ad libitum and 1.8 kg concentrate) or on a low energy level (maize silage restrictively and 1.0 kg concentrate). In dependence on feeding intensity a mean daily weight gain of 870 or 1210 g was obtained. Animals were slaughtered with a live mass of 200 kg, 350 kg, 500 kg, 575 kg and 650 kg. Empty body was divided into 13 cuts and afterwards separated into lean, bone and adipose tissues and tendons. Major mineral element content was determined in these tissues as well as in the noncarcass parts.

In the lean tissue the mean content (200 kg) of 0.3 g calcium, 10 g phosphorus, 1 g magnesium, 2.3 g sodium and 14.8 g potassium/kg dry matter decreased slightly with rising live mass (200–650 kg). The contents of major mineral elements were much higher in bone tissue. For the fattening period from 200 to 650 kg of live mass mean contents of 151.5 g calcium, 71.3 g phosphorus, 3.2 g magnesium, 5.1 g sodium and 1.1 g potassium per kg DM were analysed. Mineral element content of bone tissue increased with rising live mass as well as animals on low feeding intensity showed a higher mineral content than on high energy level. In all, major mineral element content in fat tissue was very low. In noncarcass parts head and legs calcium and phosphorus had analogous to bone tissue the highest concentration. Hide showed a high content of sodium, whereas organs and digestive tract had a high content of potassium and phosphorus. Total mass of major mineral elements in the different tissues increased above all in the fattening period of 200 to 350 kg. In carcass as well as in empty body, mass of calcium and phosphorus was much higher than magnesium, sodium and potassium. Also animals on low feeding intensity showed a higher mass of major mineral elements in carcass and empty body than animals on high energy feeding intensity. The intensively fed bulls had a mean deposition of 12.7 g calcium, 6.9 g phosphorus, 0.37 g magnesium, 1.2 g sodium and 2.1 potassium per 1000 g of empty body weight gain, whereas restrictively fed bulls deposited in average 15.0 g calcium, 7.8 g phosphorus, 0.4 g magnesium, 1.2 g sodium and 2.4 g potassium per 1000 g of empty body weight gain.  相似文献   

5.
To investigate the dynamics of animal intake and production in grassland-based suckler systems, we constructed a model for suckling cows with their calves. The model calculates on a day-to-day basis the selective intake at pasture and the animal production (weight, condition, milk production) in response to energy intake. The model dynamically applies the feed evaluation systems developed by the INRA: the “cattle fill unit” system to predict forage intake, and the “feed unit” system to predict net energy requirements and supply. To predict intake at pasture, we adapted the cattle fill unit system by adding effects of herbage availability and sward structural composition on the amount and quality of intake.At pasture, the grazeable herbage is divided into structural components characterized by their biomass and digestibility. The model predicts the composition of the diet, assuming that the most digestible and abundant components of herbage are preferred. The amount of herbage ingested depends on the animal profile, the digestibility of the diet and the amount of herbage available. Sward depletion by animal intake at pasture has feedback effects on herbage growth and quality, which can be calculated by a vegetation model. Animal production is calculated based on net energy balance, which is the difference between net energy intake and net energy requirements for maintenance (for cow and calf), gestation and lactation (for the cow). The net energy balance determines weight and condition gain or loss, and – after 3 months of lactation – influences milk production the following day. Changes in weight and condition have feedback effects on energy requirements and intake capacity.Sensitivity analysis on the input values highlighted the importance of forage digestibility for the production of cows and calves. Calf growth was also driven over 3 months old by calf live weight, and under 3 months old by the milk production of the cow. The model's response to stocking rate during the grazing down of a paddock was consistent with current knowledge. The model was validated against experimental data for cows fed indoors or at pasture, at different feed allowances. Model predictions were precise for the digestibility of intake and for live weight (error represents 2–3% of the average observed value), satisfactory for dry matter intake, body condition score and milk production at the beginning of lactation (error represents 10% of the average observed value), and very imprecise for milk production after the third month of lactation (error represents 23% of the average observed value), but the latter had small consequences on calf live weight.  相似文献   

6.
7.
An experiment utilizing 12 castrated male pigs within a body weight range of 23 - 147 kg was conducted to ascertain whether the alteration of protein quality by varying the level of lysine intake is influencing total energy retention, heat production and therewith efficiency of energy utilization for growth. The animals were allotted to two treatments of a constant medium (11.5 g/d) or high lysine intake (13.5 g/d) level on the basis of an isonitrogenous diet at an energy intake level of 1.3 MJ ME/kg BW0.75. Representing a tool for determining body composition, at target body weights of 35, 55, 80, 115 and 145 kg measurements of deuterium dilution space were undertaken. Protein and lipid accretion were calculated by difference, assuming accretion to contain 23.8 and 39.0 kJ/g, respectively. The results show a significant effect (p < 0.05) between treatment groups for the values of energy retained in protein, thus ensuring the intended alteration by protein quality. Furthermore total energy retention, heat production (difference between ME intake and energy retention) and therewith energy utilization demonstrate independence from the composition of body weight (BW) gain. These observations confirm earlier results, but however, seem to be in contrast to the supposition of a constant efficiency for protein (kp) and fat (kf) accretion, respectively. This may be attributed to a variable kp, in fact to a smaller kp at minor values for protein accretion due to an increased whole body protein turnover. Lacking evidence from experimental data for advantages in using constant values for kp and kf to determine the accurate energy requirement for growth, a uniform value for the efficiency of total energy retention seems to be more adequate.  相似文献   

8.
Mineral requirements of pregnant dairy goats are still not well defined; therefore, we investigated the net Ca, P, Mg, Na and K requirements for pregnancy and for maintenance during pregnancy in two separate experiments. Experiment 1 was performed to estimate the net Ca, P, Mg, Na and K requirements in goats carrying single or twin fetuses from 50 to 140 days of pregnancy (DOP). The net mineral requirements for pregnancy were determined by measuring mineral deposition in gravid uterus and mammary gland after comparative slaughter. In total, 57 dairy goats of two breeds (Oberhasli or Saanen), in their third or fourth parturition, were randomly assigned to groups based on litter size (single or twin) and day of slaughter (50, 80, 110 and 140 DOP) in a fully factorial design. Net mineral accretion for pregnancy did not differ by goat breed. The total daily Ca, P, Mg, Na and K requirements for pregnancy were greatest in goats carrying twins (P<0.05), and the requirements increased as pregnancy progressed. Experiment 2 was performed to estimate net Ca, P, Mg, Na and K requirements for dairy goat maintenance during pregnancy. In total, 58 dairy goats (Oberhasli and Saanen) carrying twin fetuses were assigned to groups based on slaughter day (80, 110 and 140 DOP) and feed restriction (ad libitum, 20% and 40% feed restriction) in a randomized block design. The net Ca, P and Mg requirements for maintenance did not vary by breed or over the course of pregnancy. The daily net requirements of Ca, P and Mg for maintenance were 60.4, 31.1 and 2.42 mg/kg live BW (LBW), respectively. The daily net Na requirement for maintenance was greater in Saanen goats (11.8 mg/kg LBW) than in Oberhasli goats (8.96 mg/kg LBW; P<0.05). Daily net K requirements increased as pregnancy progressed from 8.73 to 15.4 mg/kg LBW (P<0.01). The findings of this study will guide design of diets with adequate mineral content for pregnant goats throughout their pregnancy.  相似文献   

9.
Growth rate of cattle depends on their genetic makeup and nutrient intake. Moreover, increased growth rate may lead to increased amino acid (AA) requirements. Therefore, we evaluated the AA content of the empty body and estimated the net AA and energy requirements of purebred and crossbred beef bulls fed rations of different dietary CP concentrations. We performed a comparative slaughter experiment with 24 Nellore and 24 Angus × Nellore (A × N) bulls (8 months; initial shrunk BW: Nellore = 208.0 ± 12.78 kg; A × N = 221.9 ± 14.16 kg). Eight bulls (four Nellore and four A × N) were designated as the reference group, eight bulls (four Nellore and four A × N) were fed to maintenance level and 32 bulls (16 Nellore and 16 A × N) were fed ad libitum. The 32 bulls fed ad libitum were distributed using a completely randomized design in a 2 × 3 factorial scheme with two genetic groups (Nellore or A × N) and three dietary CP contents (100, 120 or 140 g CP/kg DM), being four groups with five bulls and two groups with six bulls. The experimental period lasted for 224 days. There were no interactions (P ≥ 0.056) between the dietary CP contents and genetic groups for any of the response variables. The dietary CP contents did not affect (P ≥ 0.062) the AA content in the empty body (g/kg empty BW [EBW]), with exception for Tryptophan (P = 0.027, linear effect). The dietary CP contents did not affect (P ≥ 0.051) AA content in the empty body (g/100 g of CP), with exception for Alanine (P = 0.013) that responded quadratically to dietary CP increase. The equations to estimate the net Lysine (Lys) and Methionine (Met) requirements (g/100 g of CP) were: Lys = 5.1 × EBW0.0594 and Met = 1.7 × EBW0.0255. Metabolizable Lys and Met to metabolizable energy (ME) ratios decreased as bulls EBW increased. Also, the metabolizable protein to ME ratio decreased as bulls EBW increased. In conclusion, the present study provides useful information regarding net and metabolizable requirements of AA of purebred and crossbred beef bulls. In the future, after the validation of the equations, these results can be used to calculate the AA requirements for growth of purebred and crossbred beef bulls. Nevertheless, it is important to highlight that the small sample size was one limitation of this present experiment.  相似文献   

10.
A simultaneous model for analysis of net energy intake and growth curves is presented, viewing the animal's responses as a two dimensional outcome. The model is derived from four assumptions: (1) the intake is a quadratic function of metabolic weight; (2) the rate of body energy accretion represents the difference between intake and maintenance; (3) the relationship between body weight and body energy is allometric and (4) animal intrinsic variability affects the outcomes so the intake and growth trajectories are realizations of a stochastic process. Data on cumulated net energy intake and body weight measurements registered from weaning to maturity were available for 13 pigs. The model was fitted separately to 13 datasets. Furthermore, slaughter data obtained from 170 littermates was available for validation of the model. The parameters of the model were estimated by maximum likelihood within a stochastic state space model framework where a transform-both-sides approach was adopted to obtain constant variance. A suitable autocorrelation structure was generated by the stochastic process formulation. The pigs’ capacity for intake and growth were quantified by eight parameters: body weight at maximum rate of intake (149-281 kg); maximum rate of intake (25.7-35.7 MJ/day); metabolic body size exponent (fixed: 0.75); the daily maintenance requirement per kg metabolic body size (0.232-0.303 MJ/(day×kg0.75)); reciprocal scaled energy density ; a dimensional exponent, θ6 (0.730-0.867); coefficient for animal intrinsic variability in intake (0.120-0.248 MJ0.5) and coefficient for animal intrinsic variability in growth (0.029-0.065 kg0.5). Model parameter values for maintenance requirements and body energy gains were in good agreement with those obtained from slaughter data. In conclusion, the model provides biologically relevant parameter values, which cannot be derived by traditional analysis of growth and energy intake data.  相似文献   

11.
Pubertal Angus bulls (n=10, 503 days of age and weighing 366 kg) and Senepol bulls (n=10, 457 days of age and weighing 381 kg) were stratified by age and weight into 2 dietary treatments formulated to provide equal amounts of crude protein and 75% (below) or 150% (above) of the maintenance requirements for metabolizable energy. Measurements to assess body growth and libido were collected at 28-day intervals for 112 days (June through September). Twice during each 28-day interval, the bulls were subjected to breeding soundness examinations. At the end of the experiment, gonadotropin releasing hormone (GnRH) - induced secretion of luteinizing hormone (LH) and testosterone (T) in the serum were determined. At the end of the experiment, bulls fed the above maintenance diet (P<0.0001) were 91 kg heavier, had 1.7 mm more backfat thickness and 12.6 cm(2) larger ribeye area than bulls on a below maintenance diet. Diet affected (P<0.003) the average daily change in scrotal circumference, but not the libido score (P>0.1) or semen quality. In general, Angus bulls had superior initial semen quality (P<0.06); however, during summer, semen quality tended to decrease in Angus but not in Senepol bulls. The final rectal temperature was 0.5 degrees C lower (P<0.003) in Senepol than in Angus bulls. Basal T concentrations and area under the GnRH-induced T curve were greater (P<0.07) for bulls fed the above rather than the below maintenance diet. Angus bulls had a higher (P<0.03) maximal LH response to GnRH and larger area under the GnRH-induced LH curve than Senepol bulls.  相似文献   

12.
There is evidence indicating that using the current UK energy feeding system to ration the present sheep flocks may underestimate their nutrient requirements. The objective of the present study was to address this issue by developing updated maintenance energy requirements for the current sheep flocks and evaluating if these requirements were influenced by a range of dietary and animal factors. Data (n = 131) used were collated from five experiments with sheep (5 to 18 months old and 29.0 to 69.8 kg BW) undertaken at the Agri-Food and Biosciences Institute of the UK from 2013 to 2017. The trials were designed to evaluate the effects of dietary type, genotype, physiological stage and sex on nutrient utilization and energetic efficiencies. Energy intake and output data were measured in individual calorimeter chambers. Energy balance (Eg) was calculated as the difference between gross energy intake and a sum of fecal energy, urine energy, methane energy and heat production. Data were analysed using the restricted maximum likelihood analysis to develop the linear relationship between Eg or heat production and metabolizable energy (ME) intake, with the effects of a range of dietary and animal factors removed. The net energy (NEm) and ME (MEm) requirements for maintenance derived from the linear relationship between Eg and ME intake were 0.358 and 0.486 MJ/kg BW0.75, respectively, which are 40% to 53% higher than those recommended in energy feeding systems currently used to ration sheep in the USA and the UK. Further analysis of the current dataset revealed that concentrate supplement, sire type or physiological stage had no significant effect on the derived NEm values. However, female lambs had a significantly higher NEm (0.352 v. 0.306 or 0.288 MJ/kg BW0.75) or MEm (0.507 v. 0.441 or 0.415 MJ/kg BW0.75) than those for male or castrated lambs. The present results indicate that using present energy feeding systems in the UK developed over 40 years ago to ration the current sheep flocks could underestimate maintenance energy requirements. There is an urgent need to update these systems to reflect the higher metabolic rates of the current sheep flocks.  相似文献   

13.
Based on energy deposition and energy intake the utilization of energy for fat and protein deposition and the mean energy utilization for growth as well as the energy requirement for maintenance were estimated in this study. Fifty-four male and 54 female lambs were fed at three feeding levels and slaughtered at various body weights (BW): 18, 30, 45, and 55 kg. Based on the method of the comparative slaughter technique the total body of each animal was analysed. From the data of empty-body gain, fat, protein and energy deposition in the different fattening periods was calculated. The utilization of metabolizable energy for growth and maintenance was estimated by a multiple linear regression model. In this regression model, a utilization of energy for fat deposition of 71% and for protein deposition of 30% was determined (R2 = 0.869). The requirement for maintenance was 520 kJ x kg BW(-0.75) x d(-1). A slightly higher requirement for maintenance was determined for female lambs. The study indicated that the used regression model can be recommended to estimate the utilization of energy and the requirement for maintenance in growing lambs.  相似文献   

14.
Efficiency of energy utilisation and voluntary feed intake in ruminants   总被引:1,自引:0,他引:1  
Energy requirements of animals are most readily expressed in terms of net energy (NE), while the energy yield of feed is, at least initially, expressed in terms of metabolisable energy (ME). Energy evaluation systems 'translate' NE requirements into ME requirements (ME systems) or assign NE values to feeds (NE systems). Efficiency of ME utilisation is higher for maintenance than for production and the NE yield of a feed varies, therefore, with ME intake. In addition, energetic efficiency for maintenance and production is thought to be different for lactating and non-lactating animals and to be affected by diet quality. As a result, there are currently many national energy evaluation systems that are complex, differ in their approach and are, as a result, difficult to compare. As ruminants in most production systems are fed ad libitum, this is also the most appropriate intake level at which to estimate energetic efficiency. Analyses of older as well as more recent data suggest that ad libitum feeding (i) abolishes the effects of diet quality on energetic efficiency (almost) completely, (ii) abolishes the differences between lactating and non-lactating animals (almost) entirely and (iii) results in overall energetic efficiencies that are always close to 0.6. The paper argues that there is now sufficient information to develop an international energy evaluation system for ad libitum fed ruminants. Such a system should (i) unify ME and NE systems, (ii) avoid the systematic bias and large errors that can be associated with current systems (iii) be simpler than current systems and (iv) have as a starting point a constant efficiency of ME utilisation, with a value of around 0.6. The remarkably constant efficiency of ME utilisation in ad libitum fed ruminants could be the result of energetic efficiency as well as feed intake regulation being affected by the same variables or of a direct role of energetic efficiency in feed intake regulation. Models to predict intake on the basis of the latter hypothesis are already available for non-reproducing ruminants but remain to be developed for reproducing animals.  相似文献   

15.
Plasma metabolites and hormones, and the biochemical characteristics of four fatty tissues (FT) were studied in two groups of six normal (N) or six double-muscled (DM) Belgian Blue young growing bulls fed the same net energy amount at the same live weight and slaughtered at 10 months of age. Average daily gain and feed efficiency did not significantly differ between the two groups. However, the DM bulls exhibited a higher proportion of muscles (+22%, P < 0.01) and a reduced proportion of fat (-49%, P < 0.01) mainly in the subcutaneous FT (-80%, P < 0.05). Triiodothyronine, insulin and glucose plasma concentrations tended to be lower in DM bulls (-24%, P < 0.02; -27%, P = 0.14; -7%, P = 0.06, respectively) and were positively related to the higher fat development in N bulls. From the results of total protein. DNA, lipid and TG contents of FT, it appeared that a reduction in fat storage per fat cell (hypotrophy) or a reduction in total fat cell number (hypoplasia) could explain, in DM bulls, two-thirds and one-third of the reduction of perirenal and subcutaneous FT weights, respectively, as compared to N bulls. In contrast, either hypotrophy or hypoplasia was the main cause of omental or intermuscular FT weight reduction in DM animals.  相似文献   

16.
Amino acids are major nutrient regulators of muscle protein turnover. After protein ingestion, hyperaminoacidemia stimulates increased rates of skeletal muscle protein synthesis, suppresses muscle protein breakdown, and promotes net muscle protein accretion for several hours. These acute observations form the basis for strategized protein intake to promote lean mass accretion, or prevent lean mass loss over the long term. However, factors such as protein dose, protein source, and timing of intake are important in mediating the anabolic effects of amino acids on skeletal muscle and must be considered within the context of evaluating the reported efficacy of long-term studies investigating protein supplementation as part of a dietary strategy to promote lean mass accretion and/or prevent lean mass loss. Current research suggests that dietary protein supplementation can augment resistance exercise-mediated gains in skeletal muscle mass and strength and can preserve skeletal muscle mass during periods of diet-induced energy restriction. Perhaps less appreciated, protein supplementation can augment resistance training-mediated gains in skeletal muscle mass even in individuals habitually consuming ‘adequate’ (i.e., >0.8 g kg?1 day?1) protein. Additionally, overfeeding energy with moderate to high-protein intake (15–25 % protein or 1.8–3.0 g kg?1 day?1) is associated with lean, but not fat mass accretion, when compared to overfeeding energy with low protein intake (5 % protein or ~0.68 g kg?1 day?1). Amino acids represent primary nutrient regulators of skeletal muscle anabolism, capable of enhancing lean mass accretion with resistance exercise and attenuating the loss of lean mass during periods of energy deficit, although factors such as protein dose, protein source, and timing of intake are likely important in mediating these effects.  相似文献   

17.
Environmental factors play an important role in the seasonal adaptation of body mass and thermogenesis in small, wild mammals. To determine the contributions of photoperiod and cold on seasonal changes in energy metabolism and body mass, the resting metabolic rates (RMR), nonshivering thermogenesis (NST), energy intake and gut morphology of the tree shrews were determined in winter and summer and in laboratory acclimated animals. Body mass, RMR and NST increased in winter, and these changes were mimicked by exposing animals to short-day photoperiod or cold in the animal house. Energy intake and digested energy also increased significantly in winter, and also during exposure of housed animals to both short-day photoperiod and cold. The lengths and weights of small intestine increased in winter. These results indicated that Tupaia belangeri overcomes winter thermoregulatory challenges by increasing energy intake and thermogenesis, and adjusted gut morphology to balance the total energy requirements. Short-day photoperiod and cold can serve as environmental cues during seasonal acclimatization.  相似文献   

18.
Sixteen purebred Iberian (IB) sows were used in two consecutive trials to determine the efficiency of conversion of sow's milk into piglet body weight (BW) gain and the relationship between milk protein and body protein retention and between milk energy yield and body energy retention in the nursing IB piglet. In each trial, four sows were selected in order to evaluate their milk production, litter growth and nutrient balance measurements, together with four additional sows for milk sampling. Litter size was equalized to six piglets. Daily milk yield (MY) was determined weekly by the weigh-suckle-weigh technique over a 34-day lactation period. Piglets were weighed individually at birth and then weekly from day 5 of lactation. Milk samples were collected on days 5, 12, 19, 26 and 34 post partum. The comparative slaughter procedure was used to determine piglet nutrient and energy retention. One piglet from each litter was slaughtered at birth and four on the morning of day 35. Total MY was on average 5.175 ± 0.157 kg/day. The average chemical composition (g/kg) of the milk was 179 ± 4 dry matter, 53.4 ± 1.0 CP, 58.5 ± 3.8 fat, 10.4 ± 0.3 ash and 56.9 ± 2.3 lactose. Milk gross energy (GE) was 4.626 ± 0.145 MJ/kg. Milk intake per piglet tended to increase in trial 2 (832 v. 893 g/day; P = 0.066). Piglet BW gain contained (g/kg) 172.1 ± 1.3 protein, 151.5 ± 3.5 fat, 41.4 ± 0.6 ash and 635 ± 3 water and 10.127 ± 0.126 MJ GE/kg. Throughout the 34-day nursing period, the piglets grew at an average rate of 168 ± 3 g/day. The ratio of daily piglet BW gain to daily MY was 0.195 ± 0.002 g/g and the gain per MJ milk GE intake was 41.9 ± 0.5 g/MJ. The overall efficiency of protein accretion (g CP gain/g CP milk intake) was low and declined in trial 2 (0.619 v. 0.571; P = 0.016). Nutrient and energy deposition between birth and weaning were 27.4 ± 0.5 g/day protein, 24.2 ± 0.8 g/day fat and 1615 ± 40 kJ/day energy. Piglet energy requirements for maintenance were 404 kJ metabolizable energy (ME)/kg BW0.75. ME was used for growth with a net efficiency of 0.584. These results suggest that poor efficiency in the use of sow's milk nutrients rather than a shortage in milk nutrient supply might explain the low growth rate of the suckling IB piglet.  相似文献   

19.
The objective was to reduce the incidence of liver abscesses (LAs) in young bulls by reducing the starch content of the concentrate and increasing the straw intake by adding molasses without reducing performance. Eighty-five Danish Friesian bulls (146 ± 2.6 kg live weight (LW)) were allocated to four treatment groups in a 2 × 2 factorial design and were ad libitum fed either a high (H) (43%) or a low (L) (25%) starch concentrate, and either chopped barley straw (S) or a mixture (Sm) of chopped barley straw and sugar-beet molasses (75:25). The bulls were slaughtered at 440 (±4.2) kg LW (11.3 months of age) on average. The concentrate dry-matter intake (DMI) was 7.5% higher (P < 0.001), the roughage DMI was 12% higher (P < 0.01), whereas the total net energy intake was 7% lower (P < 0.001) for the L compared with the H concentrate. By adding molasses to the straw, roughage DMI increased from 0.50 to 0.96 kg/day (P < 0.001). Average daily gain (ADG) was not affected by treatment. Feed conversion efficiency (FCE) for dry matter (FCEDM) was decreased (P < 0.001), whereas FCE for net energy (FCENE) was increased with the L concentrate (P < 0.01), suggesting a lower utilisation of the cell wall fraction with the H starch concentrate. There were no major effects of treatment on carcass characteristics. The higher roughage intake with Sm prevented rumen wall damage, but did not reduce the number of animals with LAs. The L concentrate did not affect the rumen wall but reduced the level of LA (2 v. 9 animals, P < 0.02). There was a higher level of respiratory diseases in animals fed the H concentrate (P < 0.05). The experiment showed that it was possible to maintain performance and reduce LA by using a lower starch content of the concentrate.  相似文献   

20.
A group of Bokoloji bulls (n=36), consisting of 18 young bulls (12 to 18 mo old) and 18 old bulls (24 to 30 mo old) were used to study the effects of feed restriction and realimentation on reproductive function. The bulls were placed either on a low (L). medium (M) or high (H) plane of nutrition during the 3 treatment periods. At the low and medium feeding levels, the animals received approximately 25 and 45%, respectively, of the intake of the bulls on the high plane diet. All the bulls were fed a low (L) plane of nutrition for 90 d in the first treatment period. The 3 treatments were designated as LL, LM and LH for the mid-period, and as LLH, LMH and LHH for the final period, according to the prescribed level of feeding. Body measurements and scrotal circumference were taken for all bulls before slaughter. A total of 18 bulls was slaughtered at the end of the mid-period, while the remaining 18 bulls were slaughtered at the end of the final period. Testicular weights as well as gonadal and epididymal sperm reserves were determined. At the end of the mid period, the bulls on a high plane of nutrition had significantly (P<0.05) higher live weights and chest girths than bulls on the medium and low planes of nutrition. Gonadal sperm/spermatid reserves of 5.2 x 10(9) and epididymal sperm reserves of 2.4 x 10(9) in bulls on the high plane of nutrition were significantly (P<0.05) higher than the sperm reserves for the bulls on either the low or the medium plane of nutrition. At the end of the final period, ho significant differences existed among the LHH, LMH and LLH treatments in liveweight, chest girth, scrotal circumference and sperm reserves (P>0.05). It is concluded that bulls which have undergone feed restriction for 90 d are capable of regaining their body growth and reproductive function if such bulls are placed on an adequate plane of nutrition.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号