首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Plasma Membrane H+-ATPase in Maize Roots Induced for NO3- Uptake   总被引:2,自引:0,他引:2       下载免费PDF全文
Plasma membrane H+-ATPase was studied in maize (Zea mays L.) roots induced for NO3- uptake. Membrane vesicles were isolated by means of Suc density gradient from roots exposed for 24 h either to 1.5 mM NO3- or 1.5 mM SO4-. The two populations of vesicles had similar composition as shown by diagnostic inhibitors of membrane-associated ATPases. However, both ATP-dependent intravesicular H+ accumulation and ATP hydrolysis were considerably enhanced (60-100%) in vesicles isolated from NO3--induced roots. Km for Mg:ATP and pH dependency were not influenced by NO3- treatment of the roots. ATP hydrolysis in plasma membrane vesicles for both control and NO3--induced roots was not affected by 10 to 150 mM NO3- or Cl-. On the other hand, kinetics of NO3-- or Cl--stimulated ATP-dependent intravesicular H+ accumulation were modified in plasma membrane vesicles isolated from NO3-- induced roots. Immunoassays carried out with polyclonal antibodies against plasma membrane H+-ATPase revealed an increased steady-state level of the enzyme in plasma membrane vesicles isolated from NO3--induced roots. Results are consistent with the idea of an involvement of plasma membrane H+-ATPase in the overall response of roots to NO3-.  相似文献   

2.
Studies on K+ permeability of rat gastric microsomes   总被引:2,自引:0,他引:2  
A population of gastric membrane vesicles of high K+ permeability and of lower density than endoplasmic tubulovesicles containing (H+-K+)-ATPase was detected in gastric mucosal microsomes from the rat fasted overnight. The K+-transport activity as measured with 86RbCl uptake had a Km for Rb+ of 0.58 +/- 0.11 mM and a Vmax of 13.7 +/- 1.9 nmol/min X mg of protein. The 86Rb uptake was reduced by 40% upon substituting Cl- with SO2-4 and inhibited noncompetitively by ATP and vanadate with a Ki of 3 and 30 microM, respectively; vanadate also inhibited rat gastric (H+-K+)-ATPase but with a Ki of 0.03 microM. Carbachol or histamine stimulation decreased the population of the K+-permeable light membrane vesicles, at the same time increased K+-transport activity in the heavy, presumably apical membranes of gastric parietal cells, and enabled the heavy microsomes to accumulate H+ ions in the presence of ATP and KCl without valinomycin. The secretagogue-induced shift of K+ permeability was blocked by cimetidine, a H2-receptor antagonist. Four characteristics of the K+ permeability as measured with 86RbCl were common in the resting light and the carbachol-stimulated heavy microsomes; (a) Km for +Rb, (b) anion sensitivity (Cl- greater than SO2-4), (c) potency of various divalent cations (Hg2+, Cu2+, Cd2+, and Zn2+) to inhibit Rb+ uptake, and (d) inhibitory effect of ATP, although the nucleotide sensitivity was latent in the stimulated heavy microsomes. The Vmax for 86RbCl uptake was about 10 times greater in the resting light than the stimulated heavy microsomes. These observations led us to propose that secretagogue stimulation induces the insertion of not only the tubulovesicles containing (H+-K+)-ATPase, but also the light membrane vesicles containing KCl transporter into the heavy apical membranes of gastric parietal cells.  相似文献   

3.
Vacuolar membrane vesicles of Saccharomyces cerevisiae accumulate Ca2+ ion in the presence of ATP, not in the presence of ADP or adenyl-5'-yl imidodiphosphate. Calcium transport showed saturation kinetics with a Km value of 0.1 mM and optimal pH of 6.4. Ca2+ ion incorporated in the vesicles was exchangeable and released completely by a protonophore uncoupler, 3,5-di-tert-butyl-4-hydroxybenzilidenemalononitrile (SF6847), or calcium-specific ionophore, A23187. The transport required Mg2+ ion but was inhibited by Cu2+ or Zn2+ ions, inhibitors of H+-ATPase of the vacuolar membrane. The transport activity was sensitive to the H+-ATPase inhibitor N,N'-dicyclohexylcarbodiimide, but not to oligomycin or sodium vanadate. SF6847 or nigericin blocked Ca2+ uptake completely, but valinomycin stimulated it 1.35-fold. These results indicate that an electrochemical potential difference of protons is a driving force for this Ca2+ transport. The ATP-dependent formation of the deltapH in the vesicles and its partial dissipation by CaCl2 were demonstrated by fluorescence quenching of quinacrine. This Ca2+ uptake by vacuolar membrane vesicles is suggested to be catalyzed by a Ca2+/H+ antiport system.  相似文献   

4.
We have characterized ATP-dependent Ca2+ transport into highly purified plasma membrane fraction isolated from guinea pig ileum smooth muscle. The membrane fraction contained inside-out sealed vesicles and was enriched 30-40-fold in 5'-nucleotidase and phosphodiesterase I activity as compared to post nuclear supernatant. Plasma membrane vesicles showed high rate (76 nmol/mg/min) and high capacity for ATP dependent Ca2+ transport which was inhibited by addition of Ca2+ ionophore A23187. The inhibitors of mitochondrial Ca2+ transport, i.e., sodium azide, oligomycin and ruthenium red did not inhibit ATP-dependent Ca2+ uptake into plasma membrane vesicles. The energy dependent Ca2+ uptake into plasma membranes showed very high specificity for ATP as energy source and other nucleotide triphosphates were ineffective in supporting Ca2+ transport. Phosphate was significantly better as Ca2+ trapping anion to potentiate ATP-dependent Ca2+ uptake into plasma membrane fraction as compared to oxalate. Orthovanadate, an inhibitor of cell membrane (Ca2+-Mg2+)-ATPase activity, completely inhibited ATP-dependent Ca2+ transport and the Ki was approximately 0.6 microM. ATP-dependent Ca2+ transport and formation of alkali labile phosphorylated intermediate of (Ca2+-Mg2+)-ATPase increased with increasing concentrations of free Ca2+ in the incubation mixture and the Km value for Ca2+ was approximately 0.6-0.7 microM for both the reactions.  相似文献   

5.
ATP-dependent Ca2+ uptake was measured in vesicles of rat liver cell basolateral plasma membranes. Nucleotide-dependent uptake was specific for ATP and observed at pH 7.0 and 7.4/7.5 but not at pH 8.0. ATP-dependent Ca2+ transport was only observed in the presence of Mg2+. Kinetic analysis of ATP-dependent transport revealed an apparent Km in the submicromolar region. Addition of calmodulin and trifluoperazine had no effect on ATP-dependent uptake. A Ca2+-dependent, phosphorylated intermediate with the apparent molecular weight of 135,000 could be demonstrated in the basolateral plasma membranes. Phosphorylated intermediates with apparent molecular weights of 200,000 and 110,000 were demonstrated in microsomes and appeared to contaminate 'basolateral' membrane protein phosphorylation. The results suggest that a 135,000 molecular weight protein is a Ca2+-ATPase and the enzymatic expression of the liver cell basolateral membrane Ca2+ pump.  相似文献   

6.
Dinitrophenyl S-glutathione is accumulated by inside-out vesicles made from human erythrocytes in a process totally dependent on ATP and Mg2+. The vesicles were shown to accumulate dinitrophenyl S-glutathione against a concentration gradient. The vesicles were able to concentrate this glutathione derivative even in the absence of membrane potential. This indicated that the ATP-dependent uptake of dinitrophenyl S-glutathione by inside-out vesicles represented an active transport process. Neither extravesicular EGTA nor intravesicular ouabain inhibited the transport process, indicating that neither the Ca2+-ATPase nor the Na+, K+-ATPase were involved. These results indicated that dinitrophenyl S-glutathione uptake by inside-out vesicles probably represented primary active transport. The uptake of dinitrophenyl S-glutathione was a linear function of time (up to 5 h) and vesicle protein. The rate of uptake was optimal between pH 7.0 and 8.0 and at 37 degrees C. The Km values determined for dinitrophenyl S-glutathione and ATP were 0.29 mM and 1 mM, respectively. The transport process was completely inhibited by vanadate and by p-hydroxymercuribenzene sulphonate and inhibited to a lesser extent by N-ethylmaleimide. GTP could efficiently substitute for ATP as an energy source for the transport process, but CTP and UTP were comparatively much less effective.  相似文献   

7.
The transport activity of the red beet (Beta vulgaris L.) plasma membrane H+-ATPase was examined following reconstitution into a planar bilayer membrane. Fusion of partially purified plasma membrane H+-ATPase with the bilayer membrane was accomplished by perfusion of proteoliposomes against the bilayer under hypoosmotic conditions. Following incorporation into the bilayer, an ATP-dependent current was measured that demonstrated properties consistent with those of the plasma membrane H+-ATPase. Current production was substrate specific for ATP, inhibited by orthovanadate, and insensitive to 200 nM erythrosin B but inhibited by 100 [mu]M erythrosin B. When current production was measured as a function of Mg:ATP concentration, a simple Michaelis-Menten relationship was observed and a Km of 0.62 mM was estimated. Current-voltage analysis of ATP-dependent current in the presence of 0.5 mM ATP, 20 mM ADP, 40 mM orthophosphate, and an opposing 2.5-unit [delta]pH revealed a reversal potential of about -149 mV. Based on the free energy available from ATP hydrolysis, this reversal potential is consistent with an H+/ATP stoichiometry of 1. This study demonstrates the usefulness of a planar bilayer system for investigation of energy coupling to H+ transport by the plasma membrane H+-ATPase.  相似文献   

8.
The hypothesis that the primary Na+-pump, Na+-ATPase, functions in the plasma membrane (PM) of halotolerant microalga Dunaliella maritima was tested using membrane preparations from this organism enriched with the PM vesicles. The pH profile of ATP hydrolysis catalyzed by the PM fractions exhibited a broad optimum between pH 6 and 9. Hydrolysis in the alkaline range was specifically stimulated by Na+ ions. Maximal sodium dependent ATP hydrolysis was observed at pH 7.5-8.0. On the assumption that the ATP-hydrolysis at alkaline pH values is related to a Na+-ATPase activity, we investigated two ATP-dependent processes, sodium uptake by the PM vesicles and generation of electric potential difference (Deltapsi) across the vesicle membrane. PM vesicles from D. maritima were found to be able to accumulate 22Na+ upon ATP addition, with an optimum at pH 7.5-8.0. The ATP-dependent Na+ accumulation was stimulated by the permeant NO3- anion and the protonophore CCCP, and inhibited by orthovanadate. The sodium accumulation was accompanied by pronounced Deltapsi generation across the vesicle membrane. The data obtained indicate that a primary Na+ pump, an electrogenic Na+-ATPase of the P-type, functions in the PM of marine microalga D. maritima.  相似文献   

9.
Incubation of oat root plasma membrane vesicles in the presence of ATP with trypsin or chymotrypsin increased the rate of ATP hydrolysis and ATP-dependent proton pumping by the plasma membrane H(+)-ATPase. Proton pumping was stimulated more than 200%, whereas ATP hydrolytic activity was stimulated about 30%. The Km (ATP) for both proton pumping and ATP hydrolysis was lowered from about 0.3 mM to below 0.1 mM. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis of trypsin-treated plasma membranes revealed a decrease in a 100-kDa band and the appearance of a 93-kDa band. Western blot analysis using antibodies against the H(+)-ATPase showed that both of these bands represented the H(+)-ATPase and suggested that a 7-kDa segment was released. Extensive treatment with carboxypeptidase A also activated the H(+)-ATPase indicating that the 7-kDa segment originated from the C terminus.  相似文献   

10.
In basolateral membrane vesicles (BLMV) isolated from rat parotid glands, the initial rate of ATP-dependent Ca2+ transport, in the presence of KCl, was approx. 2-fold higher than that obtained with mannitol, sucrose or N-methyl-D-glucamine (NMDG)-gluconate. Only NH4+, Rb+, or Br- could effectively substitute for K+ or Cl-, respectively. This KCl activation was concentration dependent, with maximal response by 50 mM KCl. An inwardly directed KCl gradient up to 50 mM KCl had no effect on Ca2+ transport, while equilibration of the vesicles with KCl (greater than 100 mM) increased transport 15-20%. In presence of Cl-, 86Rb+ uptake was 2.5-fold greater than in the presence of gluconate. 0.5 mM furosemide inhibited 86Rb+ flux by approx. 60% in a Cl- medium and by approx. 20% in a gluconate medium. Furosemide also inhibited KCl activation of Ca2+ transport with half maximal inhibition either at 0.4 mM or 0.05 mM, depending on whether 45Ca2+ transport was measured with KCl (150 mM) equilibrium or KCl (150 mM) gradient. In a mannitol containing assay medium, potassium gluconate loaded vesicles had a higher (approx. 25%) rate of Ca2+ transport than mannitol loaded vesicles. Addition of valinomycin (5 microM) to potassium gluconate loaded vesicles further stimulated (approx. 30%) the Ca2+ transport rate. These results suggest that during ATP dependent Ca2+ transport in parotid BLMV, K+ can be recycled by the concerted activities of a K+ and Cl- coupled flux and a K+ conductance.  相似文献   

11.
ATP-dependent Cl- uptake by plasma membrane vesicles from the rat brain   总被引:1,自引:0,他引:1  
Uptake of Cl- by plasma membrane vesicles from the rat brain was stimulated by ATP at 37 degrees C, but not by beta, gamma-methylene ATP or at 0 degrees C. The addition of Triton X-100 or sucrose to the incubation medium diminished the ATP-stimulated Cl- uptake, suggesting that Cl- was transported across the membranes into the intravesicular space. This ATP-stimulated Cl- uptake was not affected by 1 mM ouabain. 1 microM oligomycin, 0.1 mM gamma-aminobutyric acid or 0.1 mM picrotoxin. Thus, non-mitochondrial ATP-driven Cl- transport through a system other than Na, K-ATPase or Cl- channels occurs in neuronal plasma membrane vesicles.  相似文献   

12.
The present study was designed to investigate Cl- transport across rat ileal basolateral membranes. Basolateral membrane vesicles were prepared by a well-validated technique. The purity of the basolateral membrane vesicles was verified by marker enzyme studies and by studies of d-glucose and calcium uptake. Cl- uptake was studied by a rapid filtration technique. Neither an outwardly directed pH gradient, nor a HCO3- gradient, or their combination could elicit any stimulation of Cl- transport when compared with no gradient. 4,4-Diisothiocyanostilbene-2,2-disulfonic acid at 5 mM concentration did not inhibit Cl- uptake under gradient condition. Similarly, the presence of the combination of outwardly directed Na+ and HCO3- gradients did not stimulate Cl- uptake compared with the combination of K+ and HCO3- gradients or no HCO3- gradient. This is in contrast to our results in the brush border membranes, where an outwardly directed pH gradient caused an increase in Cl- uptake. Cl- uptake was stimulated in the presence of combined Na+ and K+ gradient. Bumetanide at 0.1 mM concentration inhibited the initial rate of Cl- uptake in the presence of combined Na+ and K+ gradients. Kinetic studies of bumetanide-sensitive Cl- uptake showed a Vmax of 5.6 +/- 0.7 nmol/mg protein/5 sec and a Km of 30 +/- 8.7 mM. Cl- uptake was stimulated by an inside positive membrane potential induced by the ionophore valinomycin in the setting of inwardly directed K+ gradient compared with voltage clamp condition. These studies demonstrate two processes for Cl- transport across the rat ileal basolateral membrane: one is driven by an electrogenic diffusive process and the second is a bumetanide-sensitive Na+/K+/2 Cl- process. Cl- uptake is not enhanced by pH gradient, HCO3- gradient, their combination, or outwardly directed HCO3- and Na+ gradients.  相似文献   

13.
Energy coupling of L-glutamate transport in brain synaptic vesicles has been studied. ATP-dependent acidification of the bovine brain synaptic vesicles was shown to require CI-, to be accelerated by valinomycin and to be abolished by ammonium sulfate, nigericin or CCCP plus valinomycin, and K+. On the other hand, ATP-driven formation of a membrane potential (positive inside) was found to be stimulated by ammonium sulfate, not to be affected by nigericin and to be abolished by CCCP plus valinomycin and K+. Like formation of a membrane potential, ATP-dependent L-[3H]glutamate uptake into vesicles was stimulated by ammonium sulfate, not affected by nigericin and abolished by CCCP plus valinomycin and K+. The L-[3H]glutamate uptake differed in specificity from the transport system in synaptic plasma membranes. Both ATP-dependent H+ pump activity and L-glutamate uptake were inhibited by bafilomycin and cold treatment (common properties of vacuolar H(+)-ATPase). ATP-dependent acidification in the presence of L-glutamate was also observed, suggesting that L-glutamate uptake lowered the membrane potential to drive further entry of H+. These results were consistent with the notion that the vacuolar H(+)-ATPase of synpatic vesicles formed a membrane potential to drive L-glutamate uptake. ATPase activity of the vesicles was not affected by the addition of Cl-, glutamate or nigericin, indicating that an electrochemical H+ gradient had no effect on the ATPase activity.  相似文献   

14.
When gastric microsomes were purified from resting and stimulated rabbit mucosae, they were found to be generally similar in (H+ + K+)-ATPase activity, peptide composition in single-dimension sodium dodecyl sulfate-gel electrophoresis, and in size. In the stimulated vesicles, optimal proton transport activity was found at pH 7.4, 20-50 mM KCl, and 1 mM ATP-Mg. However, in the case of resting vesicles, the presence of valinomycin and an inward Cl-gradient was also necessary for Mg-ATP-dependent proton transport. Measurement of K+ and Cl-diffusion potentials using 3,3-dipropylthiadicarboxocyanine iodide as a potential sensitive dye showed that both resting and stimulated vesicles developed K+ gradient-dependent potentials in the presence of an impermeant anion, but that Cl- gradient-dependent potentials were observed only in the stimulated preparation. 86Rb+ self-exchange was found in both types of vesicles, but Cl- self-exchange was confined to vesicles derived from stimulated mucosae. Putative inhibitors of anion conductance such as furosemide and anthracene 9-carboxylic acid blocked proton transport, Cl- conductance, 36Cl- uptake, and Cl- exchange. The inhibition of proton transport was overcome by valinomycin. ATPase activity in the presence of nigericin, an H+:K+ exchanger, was unaffected by these inhibitors. K+ conductance, Rb+ uptake, and Rb+ exchange were insensitive to these inhibitors. Thus, activation of acid secretion by the stimulated parietal cell appears to involve at least the appearance of a discrete Cl- conductance in the pump-associated membrane.  相似文献   

15.
Changes in the charge of sarcoplasmic reticulum (SR) vesicles are studied using lipophilic ions, which are adsorbed by the membrane phase. Upon addition of MgATP, phenyldicarbaundecaborane (PCB-) and tetraphenylboron (TPB-) are taken up by the SR vesicles, while tetraphenylphosphonium (TPP+) is released into the water phase. The PCB- uptake occurs as well under conditions when SR membrane is shunted by high Cl- concentration. MgATP induces minor additional binding of PCB- in the presence of oxalate and it is followed by release of the lipophilic anion from the vesicles. EGTA partly reverses the ATP effect, and calcium ionophore A23187 plus EGTA reverses it completely. Vesicles that were preliminarily loaded by Ca2+ demonstrated higher passive and lower ATP-dependent PCB- binding. Activation of isolated Ca2+-ATPase in the presence of 0.1 mM EGTA results in PCB- release into the medium and additional TPP+ binding to the enzyme. We suggest that the redistribution of the lipophilic ions between the water phase and SR membrane reflects charge changes in Ca2+-binding sites inside both SR vesicles and Ca2+-ATPase molecules in the course of Ca2+ translocation.  相似文献   

16.
Multivesicular bodies (MVB), prelysosomal organelles in the endocytic pathway, were prepared from estrogen-treated rat livers and examined for the presence of ATP-dependent proton transport. Vesicle acidification, assessed by acridine orange fluorescence quenching, was ATP dependent (ATP much greater than GTP, UTP), was enriched 25-fold over homogenate, was abolished by pretreatment with protonophores or a nonionic detergent, exhibited a pH optimum of 7.5, was inhibited by N-ethylmaleimide (NEM) (IC50 approximately 5 microM) and N,N'-dicyclohexylcarbodiimide (IC50 approximately 5 microM), and was resistant to inhibition by vanadate, ouabain, and oligomycin. Acidification exhibited no specific cation requirement; however, maximal rates of acidification depended upon the presence of Cl- (Km approximately 20 mM). Other anions were less effective in supporting acidification (Cl- greater than Br- greater than much greater than gluconate, NO-3, SO2-4, and mannitol), and indeed NO-3 inhibited acidification even in the presence of 150 mM Cl-. The proton transport mechanism appeared to be electrogenic based on: (a) enhancement of acidification by valinomycin in the presence of K gluconate, and (b) ATP-dependent fluorescence quenching of bis(3-phenyl-5-oxoisoxasol-4-yl)pentamethine oxonol, a membrane potential-sensitive anionic dye. Furthermore, the magnitude of the pH and electrical gradients generated by the proton transport mechanism appeared to vary inversely in the presence and absence of Cl-. Finally, MVB exhibited ATPase activity that was resistant to ouabain and oligomycin, but was inhibited 32.3% by 1 mM NEM, 33.7% by 200 microM dicyclohexylcarbodiimide, and 18.7% by KNO3. In isolated MVB, therefore, the NEM-sensitive ATPase activity may represent the enzymatic equivalent of a proton pump. These studies identify and characterize an ATP-dependent electrogenic proton transport process in rat liver MVB which shares many of the properties of the proton pump described in clathrin-coated vesicles, endosomes, lysosomes, Golgi, and endoplasmic reticulum from liver and other tissues. Acidification of MVB differed somewhat from that of rat liver clathrin-coated vesicles in response to Br- and NO-3, suggesting that membrane properties of these two organelles might differ.  相似文献   

17.
The effects of K+, Na+ and ATP on the gastric (H+ + K+)-ATPase were investigated at various pH. The enzyme was phosphorylated by ATP with a pseudo-first-order rate constant of 3650 min-1 at pH 7.4. This rate constant increased to a maximal value of about 7900 min-1 when pH was decreased to 6.0. Alkalinization decreased the rate constant. At pH 8.0 it was 1290 min-1. Additions of 5 mM K+ or Na+, did not change the rate constant at acidic pH, while at neutral or alkaline pH a decrease was observed. Dephosphorylation of phosphoenzyme in lyophilized vesicles was dependent on K+, but not on Na+. Alkaline pH increased the rate of dephosphorylation. K+ stimulated the ATPase and p-nitrophenylphosphatase activities. At high concentrations K+ was inhibitory. Below pH 7.0 Na+ had little or no effect on the ATPase and p-nitrophenylphosphatase, while at alkaline pH, Na+ inhibited both activities. The effect of extravesicular pH on transport of H+ was investigated. At pH 6.5 the apparent Km for ATP was 2.7 microM and increased little when K+ was added extravesicularly. At pH 7.5, millimolar concentrations of K+ increased the apparent Km for ATP. Extravesicular K+ and Na+ inhibited the transport of H+. The inhibition was strongest at alkaline pH and only slight at neutral or acidic pH, suggesting a competition between the alkali metal ions and hydrogen ions at a common binding site on the cytoplasmic side of the membrane. Two H+-producing reactions as possible candidates as physiological regulators of (H+ + K+)-ATPase were investigated. Firstly, the hydrolysis of ATP per se, and secondly, the hydration of CO2 and the subsequent formation of H+ and HCO3-. The amount of hydrogen ions formed in the ATPase reaction was highest at alkaline pH. The H+/ATP ratio was about 1 at pH 8.0. When CO2 was added to the reaction medium there was no change in the rate of hydrogen ion transport at pH 7.0, but at pH 8.0 the rate increased 4-times upon the addition of 0.4 mM CO2. The results indicate a possible co-operation in the production of acid between the H+ + K+-ATPase and a carbonic anhydrase associated with the vesicular membrane.  相似文献   

18.
Effects of various solutes on acidification inside the vacuolar membrane vesicles of the yeast Saccharomyces cerevisiae were examined. ATP-dependent acidification was stimulated by the presence of chloride salts. There was essentially no difference in the stimulatory effects of NaCl, KCl, LiCl, and choline chloride. The membrane potential across the vacuolar membrane was reduced by the presence of Cl- salts. Transport of 36Cl- is driven by the protonmotive force across the vacuolar membrane. Kinetic analyses have revealed that the stimulatory effect of Cl- on internal acidification depends on two distinct components. One shows linear dependency on chloride concentration and is inhibited by 4,4'-diisothiocyano-2,2'-stilbenedisulphonic acid (DIDS). The other exhibits saturable kinetics with an apparent Km for chloride of 15-20 mM. We conclude that the vacuolar membrane of yeast is equipped with Cl- transport systems contributing to the formation of a chemical gradient of protons across the vacuolar membrane by shunting the membrane potential generated by proton translocation.  相似文献   

19.
The purified (Ca2+-Mg2+)-ATPase from rat liver plasma membranes (Lotersztajn, S., Hanoune, J., and Pecker, F. (1981) J. Biol. Chem. 256, 11209-11215) was incorporated into soybean phospholipid vesicles, together with its activator. In the presence of millimolar concentrations of Mg2+, the reconstituted proteoliposomes displayed a rapid, saturable, ATP-dependent Ca2+ uptake. Half-maximal Ca2+ uptake activity was observed at 13 +/- 3 nM free Ca2+, and the apparent Km for ATP was 16 +/- 6 microM. Ca2+ accumulated into proteoliposomes (2.8 +/- 0.2 nmol of Ca2+/mg of protein/90 s) was totally released upon addition of the Ca2+ ionophore A-23187. Ca2+ uptake into vesicles reconstituted with enzyme alone was stimulated 2-2.5-fold by the (Ca2+-Mg2+)-ATPase activator, added exogenously. The (Ca2+-Mg2+)-ATPase activity of the reconstituted vesicles, measured using the same assay conditions as for ATP-dependent Ca2+ uptake activity (e.g. in the presence of millimolar concentrations of Mg2+), was maximally activated by 20 nM free Ca2+, half-maximal activation occurring at 13 nM free Ca2+. The stoichiometry of Ca2+ transport versus ATP hydrolysis approximated 0.3. These results provide a direct demonstration that the high affinity (Ca2+-Mg2+)-ATPase identified in liver plasma membranes is responsible for Ca2+ transport.  相似文献   

20.
Glutamate, the major excitatory neurotransmitter in the mammalian central nervous system, is transported into bovine synaptic vesicles in a manner that is ATP dependent and requires a vesicular electrochemical proton gradient. We studied the electrical and chemical elements of this driving force and evaluated the effects of chloride on transport. Increasing concentrations of Cl- were found to increase the steady-state ATP-dependent vesicular pH gradient (delta pH) and were found to concomitantly decrease the vesicular membrane potential (delta psi). Low millimolar chloride concentrations, which cause 3-6-fold stimulation of vesicular glutamate uptake, caused small but measurable increases in delta pH and decreases in delta psi, when compared to control vesicles in the absence of chloride. Nigericin in potassium buffers was used to alter the relative proportions of delta pH and delta psi. Compared to controls, at all chloride concentrations tested, nigericin virtually abolished delta pH and increased the vesicle interior positive delta psi. Concomitantly, nigericin increased ATP-dependent glutamate uptake in 0-1 mM chloride but decreased glutamate uptake in 4 mM (45%), 20 mM (80%), and 140 mM (75%) Cl- (where delta pH in the absence of nigericin was large). These findings suggest that either delta psi, delta pH, or a combination can drive glutamate uptake, but to different degrees. In the presence of 4 mM Cl-, where uptake is optimal, both delta psi and delta pH contribute to the driving force for uptake. When the extravesicular pH was increased from 7.4 to 8.0, more Cl- was required to stimulate vesicular glutamate uptake. In the absence of Cl-, as extravesicular pH was lowered to 6.8, uptake was over 3-fold greater than it was at pH 7.4. As extravesicular pH was reduced from 8.0 toward 6.8, less Cl- was required for maximal stimulation. Decreasing the extravesicular pH from 8.0 to 6.8 in the absence of Cl- significantly increased glutamate uptake activity, even though proton-pumping ATPase activity actually decreased about 45% under identical conditions. In the absence of chloride, nigericin increased glutamate uptake at all the pH values tested except pH 8.0. Glutamate uptake at pH 6.8 in the presence of nigericin was over 6-fold greater than uptake at pH 7.4 in the absence of nigericin. We conclude from these experiments that optimal ATP-dependent glutamate uptake requires a large delta psi and a small delta pH.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号