首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In this work we describe the ability of living Trypanosoma rangeli to hydrolyze extracellular ATP. In these intact parasites whose viability was assessed before and after the reactions by motility and by Trypan blue dye exclusion, there was a low level of ATP hydrolysis in the absence of any divalent metal (1.53+/-0.12 nmol P(i)/h x 10(7) cells). The ATP hydrolysis was stimulated by MgCl(2) and the Mg-dependent ecto-ATPase activity was 5.24+/-0.64 nmol P(i)/h x 10(7) cells. The Mg-dependent ecto-ATPase activity was linear with cell density and with time for at least 60 min. This stimulatory effect on the ATP hydrolysis was also observed when MgCl(2) was replaced by MnCl(2), but not by CaCl(2), SrCl(2), and ZnCl(2). The apparent K(m) for Mg-ATP2- was 0.53+/-0.11 mM. The optimum pH for the T. rangeli Mg-dependent ecto-ATPase activity lies in the alkaline range. This ecto-ATPase activity was insensitive to inhibitors of other ATPase and phosphatase activities, such as oligomycin, sodium azide, bafilomycin A1, ouabain, furosemide, vanadate, molybdate, sodium fluoride, tartrate, and levamizole. To confirm that this Mg-dependent ATPase was an ecto-ATPase, we used an impermeant inhibitor, DIDS (4, 4'-diisothiocyanostylbene 2'-2'-disulfonic acid) as well as suramin, an antagonist of P2 purinoreceptors and inhibitor of some ecto-ATPases. These two reagents inhibited the Mg(2+)-dependent ATPase activity in a dose-dependent manner. This ecto-ATPase activity was stimulated by carbohydrates involved in the attachment/invasion of salivary glands of Rhodnius prolixus and by lipophorin, an insect lipoprotein circulating in the hemolymph.  相似文献   

2.
The plasma membrane of cells contains enzymes whose active sites face the external medium rather than the cytoplasm. The activities of these enzymes, referred to as ectoenzymes, can be measured using living cells. In this work we describe the ability of living promastigotes of Leishmania amazonensis to hydrolyze extracellular ATP. In these intact parasites whose viability was assessed before and after the reactions by motility and by trypan blue dye exclusion, there was a low level of ATP hydrolysis in the absence of any divalent metal (5.39 +/- 0.71 nmol P(i)/h x 10(7) cells). The ATP hydrolysis was stimulated by MgCl(2) and the Mg-dependent ecto-ATPase activity was 30.75 +/- 2.64 nmol P(i)/h x 10(7) cells. The Mg-dependent ecto-ATPase activity was linear with cell density and with time for at least 60 min. The addition of MgCl(2) to extracellular medium increased the ecto-ATPase activity in a dose-dependent manner. At 5 mM ATP, half-maximal stimulation of ATP hydrolysis was obtained with 1.21 mM MgCl(2). This stimulatory activity was also observed when MgCl(2) was replaced by MnCl(2), but not by CaCl(2) or SrCl(2). The apparent K(m) for Mg-ATP(2-) was 0.98 mM and free Mg(2+) did not increase the ecto-ATPase activity. In the pH range from 6.8 to 8.4, in which the cells were viable, the acid phosphatase activity decreased, while the Mg(2+)-dependent ATPase activity increased. This ecto-ATPase activity was insensitive to inhibitors of other ATPase and phosphatase activities, such as oligomycin, sodium azide, bafilomycin A(1), ouabain, furosemide, vanadate, molybdate, sodium fluoride, tartrate, and levamizole. To confirm that this Mg-dependent ATPase was an ecto-ATPase, we used an impermeant inhibitor, 4,4'-diisothiocyanostylbene 2',2'-disulfonic acid as well as suramin, an antagonist of P(2) purinoreceptors and inhibitor of some ecto-ATPases. These two reagents inhibited the Mg(2+)-dependent ATPase activity in a dose-dependent manner. A comparison between the Mg(2+)-dependent ATPase activity of virulent and avirulent promastigotes showed that avirulent promastigotes were less efficient than the virulent promastigotes in hydrolyzing ATP.  相似文献   

3.
In this work we demonstrated that promastigotes of Leishmania amazonensis exhibit an Mg-dependent ecto-ATPase activity, which is stimulated by heat shock. The Mg-dependent ATPase activity of cells grown at 22 and 28 degrees C was 41.0+/-5.2 nmol Pi/h x 10(7)cells and 184.2+/-21.0 nmol Pi/h x 10(7)cells, respectively. When both promastigotes were pre-incubated at 37 degrees C for 2h, the ATPase activity of cells grown at 22 degrees C was increased to 136.4+/-10.6 nmol Pi/h x 10(7) whereas that the ATPase activity of cells grown at 28 degrees C was not modified by the heat shock (189.8+/-10.3 nmol Pi/h x 10(7)cells). It was observed that Km of the enzyme from cells grown at 22 degrees C (Km=980.2+/-88.6 microM) was the same to the enzyme from cells grown at 28 degrees C (Km=901.4+/-91.9 microM). In addition, DIDS (4,4'-diisothiocyanatostilbene 2,2'-disulfonic acid) and suramin, two inhibitors of ecto-ATPases, also inhibited similarly the ATPase activities from promastigotes grown at 22 and 28 degrees C. We also observed that cells grown at 22 degrees C exhibit the same ecto-phosphatase and ecto 3'- and 5'-nucleotidase activities than cells grown at 28 degrees C. Interestingly, cycloheximide, an inhibitor of protein synthesis, suppressed the heat-shock effect on ecto-ATPase activity of cells grown at 22 degrees C were exposed at 37 degrees C for 2h. A comparison between the stimulation of the Mg-dependent ecto-ATPase activity of virulent and avirulent promastigotes by the heat shock showed that avirulent promastigotes had a higher stimulation than virulent promastigotes after heat stress.  相似文献   

4.
In this work, we describe the ability of living hemocytes from an insect (Manduca sexta, Lepidoptera) to hydrolyze extracellular ATP. In these intact cells, there was a low level of ATP hydrolysis in the absence of any divalent metal (8.24 +/- 0.94 nmol of Pi/h x 10(6) cells). The ATP hydrolysis was stimulated by MgCl2 and the Mg2+-dependent ecto-ATPase activity was 15.93 +/- 1.74 nmol of Pi/h x 10(6) cells. Both activities were linear with cell density and with time for at least 90 min. The addition of MgCl2 to extracellular medium increased the ecto-ATPase activity in a dose-dependent manner. At 5 mM ATP, half-maximal stimulation of ATP hydrolysis was obtained with 0.33 mM MgCl2. This stimulatory activity was not observed when Ca2+ replaced Mg2+. The apparent Km values for ATP-4 and Mg-ATP2- were 0.059 and 0.097 mM, respectively. The Mg2+-independent ATPase activity was unaffected by pH in the range between 6.6 and 7.4, in which the cells were viable. However, the Mg2+-dependent ATPase activity was enhanced by an increase of pH. These ecto-ATPase activities were insensitive to inhibitors of other ATPase and phosphatase activities, such as oligomycin, sodium azide, bafilomycin A1, ouabain, furosemide, vanadate, sodium fluoride, tartrate, and levamizole. To confirm the observed hydrolytic activities as those of an ecto-ATPase, we used an impermeant inhibitor, DIDS (4,4'-diisothiocyanostilbene-2,2'-disulfonic acid), as well as suramin, an antagonist of P2-purinoreceptors and inhibitor of some ecto-ATPases. These two reagents inhibited the Mg2+-independent and the Mg2+-dependent ATPase activities to different extents. Interestingly, lipopolysaccharide, a component of cell walls of gram-negative bacteria that increase hemocyte aggregation and phagocytosis, increased the Mg2+-dependent ecto-ATPase activity in a dose-dependent manner but did not modify the Mg2+-independent ecto-ATPase activity.  相似文献   

5.
This work describes the ability of living Trichomonas vaginalis to hydrolyze extracellular ATP (164.0 +/- 13.9 nmol Pi/h x 10(7) cells). This ecto-enzyme was stimulated by ZnCl2, CaCl2 and MgCl2, was insensitive to several ATPase and phosphatase inhibitors and was able to hydrolyze several nucleotides besides ATP. The activity was linear with cell density and with time for at least 60 min. The optimum pH for the T. vaginalis ecto-ATPase lies in the alkaline range. D-galactose, known to be involved in adhesion of T. vaginalis to host cells, stimulated this enzyme by more than 90%. A comparison between two strains of T. vaginalis showed that the ecto-ATPase activity of a fresh isolate was twice as much as that of a strain axenically maintained in culture, through daily passages, for several years. The results suggest a possible role for this ecto-ATPase in adhesion of T. vaginalis to host cells and in its pathogenicity.  相似文献   

6.
In this work, we describe the ability of living cells of Entamoeba histolytica to hydrolyze extracellular ATP. In these intact parasites, whose viability was determined by motility and by the eosin method, ATP hydrolysis was low in the absence of any divalent metal (78 nmol P(i)/h/10(5) cells). Interestingly, in the presence of 5 mM MgCl(2) an ecto-ATPase activity of 300 nmol P(i)/h/10(5) cells was observed. The addition of MgCl(2) to the extracellular medium increased the ecto-ATPase activity in a dose-dependent manner. At 5 mM ATP, half-maximal stimulation of ATP hydrolysis was obtained with 1.23 mM MgCl(2). Both activities were linear with cell density and with time for at least 1 h. The ecto-ATPase activity was also stimulated by MnCl(2) and CaCl(2) but not by SrCl(2), ZnCl(2), or FeCl(3). In fact, FeCl(3) inhibited both Mg(2+)-dependent and Mg(2+)-independent ecto-ATPase activities. The Mg(2+)-independent ATPase activity was unaffected by pH in the range between 6.4 and 8. 4, in which the cells were viable. However, the Mg(2+)-dependent ATPase activity was enhanced concomitantly with the increase in pH. In order to discard the possibility that the ATP hydrolysis observed was due to phosphatase or 5'-nucleotidase activities, several inhibitors for these enzymes were tested. Sodium orthovanadate, sodium fluoride, levamizole, and ammonium molybdate had no effect on the ATPase activities. In the absence of Mg(2+) (basal activity), the apparent K(m) for ATP(4-) was 0.053 +/- 0.008 mM, whereas at saturating MgCl(2) concentrations, the corresponding apparent K(m) for Mg-ATP(2-) for Mg(2+)-dependent ecto-ATPase activity (difference between total and basal ecto-ATPase activity) was 0.503 mM +/- 0.062. Both ecto-ATPase activities were highly specific for ATP and were also able to hydrolyze ADP less efficiently. To identify the observed hydrolytic activities as those of an ecto-ATPase, we used suramin, a competitive antagonist of P(2) purinoreceptors and an inhibitor of some ecto-ATPases, as well as the impermeant agent 4'-4'-diisothiocyanostylbenzene-2'-2'-disulfonic acid. These two reagents inhibited the Mg(2+)-independent and the Mg(2+)-dependent ATPase activities to different extents, and the inhibition by both agents was prevented by ATP. A comparison among the ecto-ATPase activities of three amoeba species showed that the noninvasive E. histolytica and the free-living E. moshkovskii were less efficient than the pathogenic E. histolytica in hydrolyzing ATP. As E. histolytica is known to have a galactose-specific lectin on its surface, which is related to the pathogenesis of amebiasis, galactose was tested for an effect on ecto-ATPase activities. It stimulated the Mg(2+)-dependent ecto-ATPase but not the Mg(2+)-independent ATPase activity.  相似文献   

7.
Cryptococcus neoformans is the causative agent of pulmonary cryptococcosis and cryptococcal meningoencephalitis, which are major clinical manifestations in immunosuppressed patients. In the present study, a surface ATPase (ecto-ATPase) was identified in C. neoformans yeast cells. Intact yeasts hydrolyzed adenosine-5'-triphosphate (ATP) at a rate of 29.36+/-3.36nmol Pi/hx10(8) cells. In the presence of 5 mM MgCl(2), this activity was enhanced around 70 times, and an apparent K(m) for Mg-ATP corresponding to 0.61mM was determined. Inhibitors of phosphatases, mitochondrial Mg(2+)-ATPases, V-ATPases, Na(+)-ATPases or P-ATPases had no effect on the cryptococcal ATPase, but extracellular impermeant compounds reduced enzyme activity in living cells. ATP was the best substrate for the cryptococcal ecto-enzyme, but it also efficiently hydrolyzed inosine 5'-triphosphate (ITP), cytidine 5'-triphosphate (CTP), guanosine 5'-triphosphate (GTP) and uridine-5'-triphosphate (UTP). In the presence of ATP, C. neoformans became less susceptible to the antifungal action of fluconazole. Our results are indicative of the occurrence of a C. neoformans ecto-ATPase that may have a role in fungal physiology.  相似文献   

8.
An ATP-hydrolysing activity on the external surface of intact synaptosomes from chicken forebrain has been investigated. The observed ATPase activity was not due to leakage of the intracellular ATPase activities, of artefacts resulting from breakage of the nerve endings during the incubation and isolation periods, or to possible contamination by other subcellular particles. Disruption of the synaptosomes resulted in an approximately 2.5-fold increase of the basal, Mg2+-dependent ATPase activity, suggesting that the plasma membrane was acting as permeability barrier to the substrate. ATP hydrolysis was maximal (0.8 mumol Pi/min/mg protein) at pH 8.2 in a medium containing either Mg2+ or Ca2+ ions. Ouabain (0.2 mM) and oligomycin (2 micrograms/mg protein) had no appreciable effect on this ATPase activity. Kinetic studies of the enzyme revealed an apparent Km value of ATP of approximately 4 x 10(-5) M. These data are consistent with the view that the observed ATP hydrolysis was being catalysed by an ectoenzyme, i.e., an enzyme in the plasma membrane of the nerve endings with its active site facing the external medium. The rapid hydrolysis of the released ATP is a suspected function for this ecto-ATPase.  相似文献   

9.
African sleeping sickness is caused by Trypanosoma brucei. This extracellular parasite lacks de novo purine biosynthesis, and it is therefore dependent on exogenous purines such as adenosine that is taken up from the blood and other body fluids by high affinity transporters. The general belief is that adenosine needs to be cleaved to adenine inside the parasites in order to be used for purine nucleotide synthesis. We have found that T. brucei also can salvage this nucleoside by adenosine kinase (AK), which has a higher affinity to adenosine than the cleavage-dependent pathway. The recombinant T. brucei AK (TbAK) preferably used ATP or GTP to phosphorylate both natural and synthetic nucleosides in the following order of catalytic efficiencies: adenosine > cordycepin > deoxyadenosine > adenine arabinoside (Ara-A) > inosine > fludarabine (F-Ara-A). TbAK differed from the AK of the related intracellular parasite Leishmania donovani by having a high affinity to adenosine (K m = 0.04-0.08 microm depending on [phosphate]) and by being negatively regulated by adenosine (K i = 8-14 microm). These properties make the enzyme functionally related to the mammalian AKs, although a phylogenetic analysis grouped it together with the L. donovani enzyme. The combination of a high affinity AK and efficient adenosine transporters yields a strong salvage system in T. brucei, a potential Achilles' heel making the parasites more sensitive than mammalian cells to adenosine analogs such as Ara-A. Studies of wild-type and AK knockdown trypanosomes showed that Ara-A inhibited parasite proliferation and survival in an AK-dependent manner by affecting nucleotide levels and by inhibiting nucleic acid biosynthesis.  相似文献   

10.
We have studied the effect of 3,5,3'-triiodothyronine (T3) on the respiration of adult rat hepatocytes in primary monolayer culture prepared from hypothyroid rat liver. After addition of T3 to the culture medium at a concentration of 2 x 10(-7) M, oxygen consumption of the cultured cells increased detectably at 24 h and was maximal at 72--96 h, relative to control cultures (38.0 +/- 1.8 vs. 25.0 +/- 1.5 microliter/h.mg protein). The thyroid-responsive enzymes, Na+ + K+-activated adenosine triphosphatase (NaK-ATPase) and alpha-glycerophosphate dehydrogenase (GPD), each exhibited increased activity in response to T3, in parallel with the change in oxygen consumption, whereas the activity of Mg-dependent ATPase was unaffected. These responses to T3 were dose dependent over similar concentration ranges, the half-maximal response for each occurring at ca 8 x 10(-10) M. In thyroid-treated cells, the observed increase in respiration was almost completely (90%) inhibited after addition of ouabain (10(-3) M) to the culture medium. It was found also that a 4-h exposure of the cultured hepatocytes to T3 was sufficient to elicit a significant thermogenic response, measured at a time (48 h later) when T3 was no longer present in the medium. The response to T3 occurred in fully defined culture medium and was independent of the presence or absence of hypothyroid rat serum, corticosterone, or insulin, and cellular ATP was unaffected by T3 in concentrations up to 2 x 10(-7) M. The findings document that adult rat hepatocytes in primary monolayer culture respond directly to thyroid hormone; the increases in respiration and NaK-ATPase activity elicited by T3 were cotemporal and apparently coordinate.  相似文献   

11.
Low concentrations of free Ca2+ stimulated the hydrolysis of ATP by plasma membrane vesicles purified from guinea pig neutrophils and incubated in 100 mM HEPES/triethanolamine, pH 7.25. In the absence of exogenous magnesium, apparent values obtained were 320 nM (EC50 for free Ca2+), 17.7 nmol of Pi/mg X min (Vmax), and 26 microM (Km for total ATP). Studies using trans- 1,2-diaminocyclohexane- N,N,N',N',-tetraacetic acid as a chelator showed this activity was dependent on 13 microM magnesium, endogenous to the medium plus membranes. Without added Mg2+, Ca2+ stimulated the hydrolysis of several other nucleotides: ATP congruent to GTP congruent to CTP congruent to ITP greater than UTP, but Ca2+-stimulated ATPase was not coupled to uptake of Ca2+, even in the presence of 5 mM oxalate. When 1 mM MgCl2 was added, the vesicles demonstrated oxalate and ATP-dependent calcium uptake at approximately 8 nmol of Ca2+/mg X min (based on total membrane protein). Ca2+ uptake increased to a maximum of approximately 17-20 nmol of Ca2+/mg X min when KCl replaced HEPES/triethanolamine in the buffer. In the presence of both KCl and MgCl2, Ca2+ stimulated the hydrolysis of ATP selectively over other nucleotides. Apparent values obtained for the Ca2+-stimulated ATPase were 440 nM (EC50 for free Ca2+), 17.5 nmol Pi/mg X min (Vmax) and 100 microM (Km for total ATP). Similar values were found for Ca2+ uptake which was coupled efficiently to Ca2+-stimulated ATPase with a molar ratio of 2.1 +/- 0.1. Exogenous calmodulin had no effect on the Vmax or EC50 for free Ca2+ of the Ca2+-stimulated ATPase, either in the presence or absence of added Mg2+, with or without an ethylene glycol bis(beta-aminoethyl ether)-N,N,N',N',-tetraacetic acid pretreatment of the vesicles. The data demonstrate that calcium stimulates ATP hydrolysis by neutrophil plasma membranes that is coupled optimally to transport of Ca2+ in the presence of concentrations of K+ and Mg2+ that appear to mimic intracellular levels.  相似文献   

12.
The growth of transformed mouse fibroblasts (3T6 cells) in medium containing 5% fetal bovine serum was inhibited after treatment with concentrations greater than 50 microM ATP, ADP, or AMP. Adenosine, the common catabolite of the nucleotides, had no effect on cell growth at concentrations below 1 mM. However, the following results indicate that the toxicity of ATP, ADP, and AMP is mediated by serum- and cell-associated hydrolysis of the nucleotides to adenosine. 1) ADP and AMP, but not ATP, were toxic to 3T6 cells grown in serum-free medium or medium in which phosphohydrolase activity of serum was inactivated. Under these conditions, the cells exhibited cell-associated ADPase and 5'-nucleotidase activity, but little ecto-ATPase activity. 2) Inhibition of adenosine transport in 3T6 cells by dipyridamole or S-(p-nitrobenzyl)-6-thioinosine prevented the toxicity of ATP in serum-containing medium and of ADP and AMP in serum-free medium. 3) A 16-24-h exposure to 125 microM AMP or ATP was needed to inhibit cell growth under conditions where serum- and cell-associated hydrolysis of the nucleotides generated adenosine in the medium continuously over the same time period. In contrast, 125 microM adenosine was completely degraded to inosine and hypoxanthine within 8-10 h. Furthermore, multiple doses of adenosine added to the cells at regular intervals over a 16-h period were significantly more toxic than an equivalent amount of adenosine added in one dose. Treatment of 3T6 cells with AMP elevated intracellular ATP and ADP levels and reduced intracellular UTP levels, effects which were inhibited by extracellular uridine. Uridine also prevented growth inhibition by ATP, ADP, and AMP. These and other results indicate that serum- and cell-associated hydrolysis of adenine nucleotides to adenosine suppresses growth by adenosine-dependent pyrimidine starvation.  相似文献   

13.
African trypanosomes of the Trypanosoma brucei group are agents of disease in man and animals. They present unique biochemical characteristics such as the need for preformed purines and have extensive salvage mechanisms for nucleoside recovery. In this regard we have shown that trypanosomes have a dedicated transporter for S-adenosylmethionine (AdoMet), a key metabolite in transmethylation reactions and polyamine synthesis. In this study we compared the apparent kinetics of AdoMet transport, cytosolic AdoMet pool formation, and utilization of AdoMet in protein methylation reactions using two isolates: Trypanosoma brucei brucei, a veterinary parasite, and Trypanosoma brucei rhodesiense, a human pathogen that is highly refractory and has greatly reduced susceptibility to standard trypanocidal agents active against T. b. brucei. The apparent Km values for [methyl-3H]AdoMet transport, derived by Hanes-Woolf analysis, for T. b. brucei was 4.2 and 10 mM for T. b. rhodesiense, and the Vmax values were 124 and 400 micromol/liter/min, respectively. Both strains formed substantial cytosolic pools of AdoMet, 1600 nmol/10(9) T. b. brucei and 3500 nmol/10(9) T. b. rhodesiense after 10 min incubation with 25 mM exogenous AdoMet. Data obtained from washed trichloroacetic acid precipitates of cells incubated with [methyl-3H]AdoMet indicated that the rate of protein methylation in T. b. brucei was fourfold greater than in T. b. rhodesiense. These results demonstrate that the unique rapid uptake and utilization of AdoMet by African trypanosomes is an important consideration in the design and development of new agents of potential use in chemotherapy.  相似文献   

14.
Addition of ATP or ATP analog to the incubation media is shown to result in cell death in experiments with different cultured cell lines as evidenced by the results of several independent assays, both in the absence or presence of extracellular Ca2+. Cytolytic T-lymphocyte (CTL) clone itself was not only resistant to cytolytic effects of ATP, but was able to "rescue" antigen-nonbearing 51Cr-labeled cells from lytic effects of extracellular ATP (but not from lytic effects of adenosine 5'-thiotriphosphate) when present during assay. To test whether the resistance of CTL to ATP is due to a high activity of ecto-ATPase, four independent assays of ATPase activity were utilized to demonstrate the presence and relatively high activity of the ecto-ATPase(s) on CTL surface. Studies of substrate specificity of CTL ecto-ATPase suggest that there is more than one nucleoside 5'-triphosphatase on the surface of CTL. The enzyme(s) activity is Ca2+- and Mg2+-dependent and in this respect is similar to recently described hepatic cells ecto-ATPase. We tested effects of known ATP-binding site-specific reagents fluorescein 5'-isothiocyanate (FITC) and 5'-fluorosulfonylbenzoyladenosine (FSBA) to find covalent modification procedures to be used in studies of functional role of ecto-ATPase. FSBA, but not FITC, inhibits lymphocyte ecto-ATPase but addition of ATP together with FSBA protects ecto-ATPase activity. Inactivation of CTL ecto-ATPase by pretreatment with FSBA makes CTL susceptible to lytic effects of extracellular ATP, as was hypothesized for the functional role of this enzyme in CTL.  相似文献   

15.
The granular ATP released from chromaffin cells during the secretory response can be hydrolyzed by ectonucleotidases that are present in the plasma membrane of these cells. The ecto-ATPase activity showed a Km for ATP of 250 +/- 18 microM and a VMAX value of 167 +/- 25 nmol/10(6) cells x min (1.67 mumol/mg protein x min) for cultured chromaffin cells, while the ecto-ADPase activity showed a Km value for ADP of 375 +/- 40 microM and a VMAX of 125 +/- 20 nmol/10(6) cells x min (1.25 mumol/mg protein x min). The ecto 5'-nucleotidase activity of cultured chromaffin cells was more specific for the purine nucleotides, AMP and IMP, than for the pirimidine nucleotides, CMP and TMP. The Km for AMP was 55 +/- 5 microM and the VMAX value was 4.3 +/- 0.8 nmol/10(6) cells x min (43 nmol/mg protein x min). The nonhydrolyzable analogs of ADP and ATP, alpha, beta-methylene-adenosine 5'-diphosphate and adenylyl-(beta, gamma-methylene)-diphosphonate were good inhibitors of ecto 5'-nucleotidase activity, the KI values being 73.3 +/- 3.5 nM and 193 +/- 29 nM, respectively. The phosphatidylinositol-specific phospholipase C released the ecto-5'-nucleotidase from the chromaffin cells in culture, thus suggesting an anchorage through phosphatidylinositol to plasma membranes. The presence of ectonucleotidases in chromaffin cells may permit the recycling of the extracellular ATP exocytotically released from these neural cells.  相似文献   

16.
Extracellular ATP stimulates transmembrane ion fluxes in the mouse macrophage cell line J774. In the presence of Mg2+, nonhydrolyzable ATP analogs and other purine and pyrimidine nucleotides do not elicit this response, suggesting the presence of a specific receptor for ATP on the macrophage plasma membrane. One candidate for such a receptor is the ecto-ATPase expressed on these cells. We, therefore, investigated the role of this enzyme in ATP-induced 86Rb+ efflux in J774 cells. The ecto-ATPase had a broad nucleotide specificity and did not hydrolyze extracellular ATP in the absence of divalent cations. 86Rb+ efflux was not blocked by inhibition of the ecto-ATPase and did not require Ca2+ or Mg2+. In fact, ATP-stimulated 86Rb+ efflux was inhibited by Mg2+ and correlated with the availability of ATP4- in the medium. In the absence of divalent cations, the slowly hydrolyzable ATP analogs adenosine 5'-(beta, gamma-imido)triphosphate (AMP-PNP) and adenosine 5'-O-(3-thio)triphosphate (ATP-gamma-S) also stimulated 86Rb+ efflux, albeit at higher concentrations than that required for ATP4-. Exposure of J774 cells to 10 mM ATP for 45 min caused death of 95% of cells. By this means we selected variant J774 cells that did not exhibit 86Rb+ efflux in the presence of extracellular ATP but retained ecto-ATPase activity. These results show that the ecto-ATPase of J774 cells does not mediate the effects of ATP on these cells; that ATP4- and not MgATP2- promotes 86Rb+ efflux from these cells; and that hydrolysis of ATP is not required to effect this change in membrane permeability. These findings suggest that J774 cells possess a plasma membrane receptor which binds ATP4-, AMP-PNP, and ATP-gamma-S, and that the ecto-ATPase limits the effects of ATP on these cells by hydrolyzing Mg-ATP2-.  相似文献   

17.
We have studied the apparent kinetic parameters of the ecto-nucleotide triphosphatase from CLL B lymphocytes and compared them to blood and tonsillar B and T cells. The Vmax of the ecto-ATPase activity in CLL B lymphocytes, was 65 +/- 10 fmol Pi/cell per 30 min compared to 37 +/- 2.1 in blood B lymphocytes, and 8.5 +/- 1.7 in blood T lymphocytes. The ATPase of membranes prepared from CLL, tonsillar B and T, and blood T lymphocytes had a relationship among the cell types similar to that seen in intact cells. However, no difference in the km for ATP, .17 mM, or the km for magnesium, .15 mM was found in the ecto-ATPase of CLL lymphocytes as compared to blood or tonsillar B cells. The ectoenzyme of CLL cells hydrolyzed GTP, ITP, CTP, and UTP as well as ATP. Further, ATP added to an enzyme assay containing an alternative nucleotide did not result in increased phosphate release. Nucleotide acceptance of blood B and T lymphocytes was very similar to that of CLL B cells. ATP inhibited phosphate release when present in excess of magnesium in both CLL and blood B lymphocytes. These data indicate that there is greater ectonucleotide triphosphatase activity in tonsillar and blood B lymphocytes, including CLL, as compared either to blood or tonsillar T lymphocytes. However, CLL cells showed no qualitative difference from blood or tonsillar B cells in ectonucleotidase activity. Thus, the higher activity in CLL cells is "B cell-like" and might reflect, also, their maturation stage or monoclonal origin.  相似文献   

18.
Extracellular nucleotide degradation was studied in intact human B and T lymphocyte subpopulations and in lymphoblastoid cell lines. Cells of B lymphocyte lineage showed high nucleotide degrading activity, whereas T lymphocytes were unable to degrade extracellular nucleotides. The external surface of B cells contained active sites of ecto-triphosphonucleotidase (ecto-ATPase), ecto-diphosphonucleotidase (ecto-ADPase), and ecto-monophosphonucleotidase (ecto-AMPase). The expression of all three ectoenzyme activities seemed closely associated with B cell development. ATPase and ADPase activities increase continuously during B cell maturation, ecto-AMPase activity, on the other hand, reaches maximal activity in late pre-B cells. These results combined with our previous studies of intracellular ATP catabolism (Barankiewicz, J., and Cohen, A. (1984) J. Biol. Chem. 259, 15178-15181) provide evidence that extracellular ATP catabolism may represent exclusive source for adenosine in lymphocytes. It is suggested that adenosine may serve as a means of communication between B and T cells in lymphoid organs, B lymphocytes being the sole producers of adenosine and T lymphocytes being the recipients of this signal.  相似文献   

19.
In this work, we characterized an ecto-ATPase activity in intact mycelial forms of Fonsecaea pedrosoi, the primary causative agent of chromoblastomycosis. In the presence of 1 mM EDTA, fungal cells hydrolyzed adenosine-5′-triphosphate (ATP) at a rate of 84.6 ± 11.3 nmol Pi h−1 mg−1 mycelial dry weight. The ecto-ATPase activity was increased at about five times (498.3 ± 27.6 nmol Pi h−1 mg−1) in the presence of 5 mM MgCl2, with values of V max and apparent K m for Mg-ATP2−corresponding to 541.9 ± 48.6 nmol Pi h−1 mg−1 cellular dry weight and 1.9 ± 0.2 mM, respectively. The Mg2+-stimulated ecto-ATPase activity was insensitive to inhibitors of intracellular ATPases such as vanadate (P-ATPases), bafilomycin A1 (V-ATPases), and oligomycin (F-ATPases). Inhibitors of acid phosphatases (molybdate, vanadate, and fluoride) or alkaline phosphatases (levamizole) had no effect on the ecto-ATPase activity. The surface of the Mg2+-stimulated ATPase in F. pedrosoi was confirmed by assays in which 4,4′-diisothiocyanostylbene-2,2′-disulfonic acid (DIDS), a membrane impermeant inhibitor, and suramin, an inhibitor of ecto-ATPase and antagonist of P2 purinoreceptors. Based on the differential expression of ecto-ATPases in the different morphological stages of F. pedrosoi, the putative role of this enzyme in fungal biology is discussed.  相似文献   

20.
Characterization of human erythrocyte cytoskeletal ATPase   总被引:2,自引:0,他引:2  
Human erythrocyte cytoskeletal ATPase was extracted with 0.2 mM ATP (pH 8.0) from Triton X-100 treated ghosts. The ATPase fraction contained mainly spectrin, actin, and band 4.1. When the ATPase fraction was applied to a Sepharose 4B column, 90% of the ATPase activity was recovered in a spectrin, actin, and band 4.1 complex fraction and none was detected in the spectrin fraction. A specific activity of the complex ATPase was 60-120 nmol/(mg protein X h). No ATPase activity was detected in the presence of EDTA. The presence of magnesium in the incubation medium was essential for the ATPase activity. The activity was activated by KCl and was almost completely inhibited by 10(-5) M free calcium in the presence of 0.2 mM MgCl2. The Ki for Ca2+ was 7 X 10(-7) M. Phalloidin and DNase 1, which affect actin, inhibited this K,Mg-ATPase activity by 95%, but cytochalasin B did not inhibit it. N-Ethylmaleimide activated the ATPase 1.6-fold. The order of affinity for nucleotides was ATP greater than ITP greater than CTP, ADP, AMP-PNP, GTP. A specific ATPase activity of purified actin was 50 nmol/(mg X h). These results suggest that the cytoskeletal ATPase is actin ATPase and the actin ATPase is activated by spectrin and band 4.1.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号