首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Human hepatitis delta virus (HDV) is a natural subviral agent that uses hepatitis B virus as a helper. Experimentally, HDV can be made to replicate in woodchucks, using woodchuck hepatitis B virus as a helper virus. Also, independent of such helper activity, replication of the HDV RNA genome can be achieved in many mammalian cells. In this study we examined whether such replication could also be achieved in avian cells. We used cotransfection strategies and initially found no detectable genome replication in chicken LMH cells relative to the mammalian cell line Huh7, used as a positive control. We also found that, in contrast to transfected Huh7 cells, the avian cell line was readily and efficiently killed by expression of the delta protein. Three strategies were used to reduce such killing: (i) the delta protein was expressed from a separate expression vector, the amount of which was then reduced as much as 33-fold; (ii) the protein was expressed transiently, using a promoter under tetracycline control; and (iii) the transfected cells were treated with Z-VAD-fmk, a broad-spectrum caspase inhibitor, which reduced cell killing. This last result indicated that cell killing occurred via an apoptotic pathway. After application of these three strategies to reduce cell killing, together with a novel procedure to improve the signal-to-noise ratio in Northern analyses, replication of the HDV genome was then detected in LMH cells. However, even after removal of obvious signs of toxicity, the amount was still >50 times lower than in the Huh7 cells. Our findings explain previous unsuccessful attempts to demonstrate replication of the HDV genome in avian cells and establish the precedent that in certain situations HDV replication can be cytotoxic.  相似文献   

2.
3.
Chang J  Taylor JM 《Journal of virology》2003,77(17):9728-9731
In animal cells, small interfering RNAs (siRNA), when exogenously provided, have been reported to be capable of inhibiting replication of several different viruses. In preliminary studies, siRNA species were designed and tested for their ability to act on the protein expressed in Huh7 cells transfected with DNA-directed mRNA constructs containing hepatitis delta virus (HDV) target sequences. The aim was to achieve siRNA specific for each of the three RNAs of HDV replication: (i) the 1,679-nucleotide circular RNA genome, (ii) its exact complement, the antigenome, and (iii) the less abundant polyadenylated mRNA for the small delta protein. Many of the 16 siRNA tested gave >80% inhibition in this assay. Next, these three classes of siRNA were tested for their ability to act during HDV genome replication. It was found that only siRNA targeted against HDV mRNA sequences could interfere with HDV genome replication. In contrast, siRNA targeted against genomic and antigenomic RNA sequences had no detectable effect on the accumulation of these RNAs. Reconstruction experiments with nonreplicating HDV RNA sequences support the interpretation that neither the potential for intramolecular rod-like RNA folding nor the presence of the delta protein conferred resistance to siRNA. In terms of replicating HDV RNAs, it is considered more likely that the genomic and antigenomic RNAs are resistant because their location within the nucleus makes them inaccessible to siRNA-mediated degradation.  相似文献   

4.
J C Wu  P J Chen  M Y Kuo  S D Lee  D S Chen    L P Ting 《Journal of virology》1991,65(3):1099-1104
The hepatitis delta virus (HDV) is a defective virus with a coat composing of the surface antigen of its helper virus, hepatitis B virus (HBV). Replication of HDV in the absence of HBV has been shown in cell cultures by transient transfection of the HDV plasmid. However, the formation and release of HDV virions have not been observed. In this report, a human hepatoma cell line HuH-7 was transiently cotransfected with HDV and HBV plasmids. The production of monomeric and multimeric antigenomic RNAs of HDV in the transfected cells indicated replication of the HDV genome. The major 3.5- and 2.1-kb RNAs of HBV were also expressed. Virions of both HDV and HBV were released from the cotransfected cells, as shown by the detection of monomeric genomic HDV RNA and partially double-stranded HBV DNA in the culture medium. Thus, this is the first report that describes the assembly and the release of HDV viral particles in an in vitro cell culture. The HDV virions released possessed physicochemical properties identical to those of the HDV virions found in infected human serum. Furthermore, expression of both the 3.5- and 2.1-kb RNAs of HBV was shown to be dramatically decreased by the presence of HDV, indicating suppression of the expression of HBV genes by HDV. The amount of HBV virions released was similarly suppressed by HDV. Cotransfection of HBV with an expression plasmid of the HDV delta antigen remarkably reduced the levels of the 3.5- and 2.1-kb HBV RNAs, indicating that suppression of the expression of HBV RNAs by HDV occurs via the action of the delta antigen. This HBV- and HDV-cotransfected human hepatoma cell line should provide an excellent system for the study of the function of the delta antigen and the interaction between HDV and its helper, HBV.  相似文献   

5.
6.
Tamarins (Saguinus species) infected by GB virus B (GBV-B) have recently been proposed as an acceptable surrogate model for hepatitis C virus (HCV) infection. The availability of infectious genomic molecular clones of both viruses will permit chimeric constructs to be tested for viability in animals. Studies in cells with parental and chimeric constructs would also be very useful for both basic research and drug discovery. For this purpose, a convenient host cell type supporting replication of in vitro-transcribed GBV-B RNA should be identified. We constructed a GBV-B subgenomic selectable replicon based on the sequence of a genomic molecular clone proved to sustain infection in tamarins. The corresponding in vitro-transcribed RNA was used to transfect the Huh7 human hepatoma cell line, and intracellular replication of transfected RNA was shown to occur, even though in a small percentage of transfected cells, giving rise to antibiotic-resistant clones. Sequence analysis of GBV-B RNA from some of those clones showed no adaptive mutations with respect to the input sequence, whereas the host cells sustained higher GBV-B RNA replication than the original Huh7 cells. The enhancement of replication depending on host cell was shown to be a feature common to the majority of clones selected. The replication of GBV-B subgenomic RNA was susceptible to inhibition by known inhibitors of HCV to a level similar to that of HCV subgenomic RNA.  相似文献   

7.
8.
9.
As early as 5 days after DNA copies of the hepatitis delta virus (HDV) genome or even in vitro-transcribed HDV RNA sequences were injected into the mouse tail vein using the hydrodynamics-based transfection procedure of F. Liu et al. (Gene Ther. 6:1258-1266, 1999), it was possible to detect in the liver by Northern analyses of RNA, immunoblots of protein, and immunostaining of liver sections what were considered typical features of HDV genome replication. This transfection strategy should have valuable applications for in vivo studies of HDV replication and pathogenesis and may also be useful for studies of other hepatotropic viruses.  相似文献   

10.
Efficient assembly of hepatitis delta virus (HDV) was achieved by cotransfection of Huh7 cells with two plasmids: one to provide expression of the large, middle, and small envelope proteins of hepatitis B virus (HBV), the natural helper of HDV, and another to initiate replication of the HDV RNA genome. HDV released into the media was assayed for HDV RNA and HBV envelope proteins and characterized by rate-zonal sedimentation, immunoaffinity purification, electron microscopy, and the ability to infect primary human hepatocytes. Among the novel findings were that (i) immunostaining for delta antigen 6 days after infection with 300 genome equivalents (GE) per cell showed only 1% of cells as infected, but this was increased to 16% when 5% polyethylene glycol was present during infection; (ii) uninfected cells did not differ from infected cells in terms of albumin accumulation or the presence of E-cadherin at cell junctions; and (iii) sensitive quantitative real-time PCR assays detected HDV replication even when the multiplicity of infection was 0.2 GE/cell. In the future, this HDV assembly and infection system can be further developed to better understand the mechanisms shared by HBV and HDV for attachment and entry into host cells.  相似文献   

11.
12.
13.
Hepatitis delta virus (HDV) genome replication requires the virus-encoded small delta protein (δAg). During replication, nucleotide sequence changes accumulate on the HDV RNA, leading to the translation of δAg species that are nonfunctional or even inhibitory. A replication system was devised where all δAg was conditionally provided from a separate and unchanging source. A line of human embryonic kidney cells was stably transfected with a single copy of cDNA encoding small δAg, with expression under tetracycline (TET) control. Next, HDV genome replication was initiated in these cells by transfection with a mutated RNA unable to express δAg. Thus, replication of this RNA was under control of the TET-inducible δAg. In the absence of TET, there was sufficient δAg to allow a low level of HDV replication that could be maintained for at least 1 year. When TET was added, both δAg and genomic RNA increased dramatically within 2 days. With clones of such cells, designated 293-HDV, the burst of HDV RNA replication interfered with cell cycling. Within 2 days, there was a fivefold enhancement of G1/G0 cells relative to both S and G2/M cells, and by 6 days, there was extensive cell detachment and death. These findings and those of other studies that are under way demonstrate the potential applications of this experimental system.  相似文献   

14.
Hepatitis delta virus (HDV) is a subviral human pathogen that uses specific RNA editing activity of the host to produce two essential forms of the sole viral protein, hepatitis delta antigen (HDAg). Editing at the amber/W site of HDV antigenomic RNA leads to the production of the longer form (HDAg-L), which is required for RNA packaging but which is a potent trans-dominant inhibitor of HDV RNA replication. Editing in infected cells is thought to be catalyzed by one or more of the cellular enzymes known as adenosine deaminases that act on RNA (ADARs). We examined the effects of increased ADAR1 and ADAR2 expression on HDV RNA editing and replication in transfected Huh7 cells. We found that both ADARs dramatically increased RNA editing, which was correlated with strong inhibition of HDV RNA replication. While increased HDAg-L production was the primary mechanism of inhibition, we observed at least two additional means by which ADARs can suppress HDV replication. High-level expression of both ADAR1 and ADAR2 led to extensive hyperediting at non-amber/W sites and subsequent production of HDAg variants that acted as trans-dominant inhibitors of HDV RNA replication. Moreover, we also observed weak inhibition of HDV RNA replication by mutated forms of ADARs defective for deaminase activity. Our results indicate that HDV requires highly regulated and selective editing and that the level of ADAR expression can play an important role: overexpression of ADARs inhibits HDV RNA replication and compromises virus viability.  相似文献   

15.
Hepatitis delta virus (HDV) particles were produced in Huh7 human hepatoma cells by transfection with cloned hepatitis B virus (HBV) DNA and HDV cDNA. The particles were characterized by their buoyant density, the presence of encapsidated viral RNA, and their ability to infect primary cultures of chimpanzee hepatocytes. Successful infection was evidenced by the appearance of increasing amounts of intracellular HDV RNA after exposure to particles. Infection was prevented when particles were incubated with antibodies directed against synthetic peptides specific for epitopes of the pre-S1 or pre-S2 domains of the HBV envelope proteins before exposure to hepatocytes. These data demonstrate that HDV particles produced in vitro are infectious and indicate (i) that infectious particles are coated with HBV envelope proteins that contain the pre-S1 and pre-S2 regions, (ii) that epitopes of the pre-S1 and pre-S2 domains of HBV envelope proteins are exposed at the surface of HDV particles, and (iii) that antibodies directed against those epitopes have neutralizing activity against HDV.  相似文献   

16.
The lack of an efficient system to produce hepatitis C virus (HCV) particles has impeded the analysis of the HCV life cycle. Recently, we along with others demonstrated that transfection of Huh7 hepatoma cells with a novel HCV isolate (JFH1) yields infectious viruses. To facilitate studies of HCV replication, we generated JFH1-based bicistronic luciferase reporter virus genomes. We found that RNA replication of the reporter construct was only slightly attenuated and that virus titers produced were only three- to fivefold lower compared to the parental virus, making these reporter viruses an ideal tool for quantitative analyses of HCV infections. To expand the scope of the system, we created two chimeric JFH1 luciferase reporter viruses with structural proteins from the Con1 (genotype 1b) and J6CF (genotype 2a) strains. Using these and the authentic JFH1 reporter viruses, we analyzed the early steps of the HCV life cycle. Our data show that the mode of virus entry is conserved between these isolates and involves CD81 as a key receptor for pH-dependent virus entry. Competition studies and time course experiments suggest that interactions of HCV with cell surface-resident glycosaminoglycans aid in efficient infection of Huh7 cells and that CD81 acts during a postattachment step. The reporter viruses described here should be instrumental for investigating the viral life cycle and for the development of HCV inhibitors.  相似文献   

17.
Rearrangement of membrane structure induced by dengue virus (DENV) is essential for replication, and requires host cellular machinery. Adaptor protein complex (AP)-1 is a host component, which can be recruited to components required for membrane rearrangement. Therefore, dysfunction of AP-1 may affect membrane organization, thereby decreasing replication of virus in infected cells. In the present study, AP-1-dependent traffic inhibitor inhibited DENV protein expression and virion production. We further clarified the role of AP-1A in the life cycle of DENV by RNA interference. AP-1A was not involved in DENV entry into cells. However, it facilitated DENV RNA replication. Viral RNA level was reduced significantly in Huh7 cells transfected with AP-1A small interfering RNA (siRNA) compared with control siRNA. Transfection of naked DENV viral RNA into Huh7 cells transfected with AP-1A siRNA resulted in less viral RNA and virion production than transfection into Huh7 cells transfected with control siRNA. Huh7 cells transfected with AP-1A siRNA showed greater modification of membrane structures and fewer vesicular packets compared with cells transfected with control siRNA. Therefore, AP-1A may partly control DENV-induced rearrangement of membrane structures required for viral replication.  相似文献   

18.
The hepatitis C virus (HCV) production system consists of transfecting the human hepatoma cell line Huh7 with genomic HCV RNA (JFH1). To monitor HCV replication by fluorescence microscopy, we constructed a recombinant HCV clone expressing Azami-Green (mAG), a bright green fluorescent protein, by inserting the mAG gene into the nonstructural protein 5A (NS5A) gene; the resultant clone was designated JFH1-hmAG. The Huh-7.5.1 (a subclone of Huh7) cells transfected with JFH1-hmAG RNA were found to produce cytoplasmic NS5A-mAG, as readily visualized by fluorescence microscopy, and infectious virus, as assayed with the culture supernatant, indicating that JFH1-hmAG is infectious and replication-competent. Furthermore, the replication of this virus was inhibited by interferon alpha in a dose-dependent manner. These results suggest that JFH1-hmAG is useful for studying HCV life cycle and the mechanism of interferon’s anti-HCV action and for screening and testing new anti-HCV drugs.  相似文献   

19.
The RNA genome of human hepatitis delta virus (HDV) is an unusual small circular single-stranded species that can fold on itself to form an unbranched rod-like structure. This RNA is replicated in the nucleus by RNA-directed RNA synthesis coupled with RNA processing events. During processing events a subgenomic, polyadenylated RNA that is complementary to the genome and expressed in the cytoplasm as the small form of the delta antigen, a 195-amino-acid protein essential for genome replication is produced. The strategies of RNA virus genome organization and expression are very diverse; those used by HDV seem unique among animal viruses, although there are some distant similarities with those used by some plant pathogens.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号