首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We have calculated the relaxation time of a cruciform structure in superhelical DNA as a function of the superhelix density for palindromic regions of different lengths. The relaxation time has a sharp maximum at the superhelix density which corresponds to the equilibrium transition point between the cruciform structure and the regular double helix. This maximal value is shown to depend dramatically on the length of the palindromic region.  相似文献   

2.
We consider the problem of making allowance for superhelicity in the statistical-mechanical calculations of fluctuational violations of the DNA double helix. A simple model is discussed, making it possible in the calculations to use an approach based on the theory of helix–coil transition in DNA. The proposed algorithms allow calculating the effect of superhelicity on the base-pair fluctuational opening for any given sequence of nucleotides. An algorithm is also proposed allowing for the hairpin and cruciform structures in the palindromic regions of a sequence, as well as the open and helical states. The theory is used to calculate the melting curve for superhelical DNA at temperatures well below the melting point of the linear or nicked forms. The maps of opening probability are calculated for SV40 and ?X174 DNA using their recently published complete nucleotide sequences. The data explain well the experimental results of probing the secondary structure of these DNA by single strand-specific endonucleases.  相似文献   

3.
We have inserted the 509-bp-long fragment of sea urchin P. miliaris histone gene spacer region into plasmid pUC19. The fragment contains the 60-bp-long homopurine-homopyrimidine tract that is known to be hypersensitive to the S1 endonuclease. Using two-dimensional gel electrophoresis we have observed a sharp structural transition in the insert with increasing DNA superhelicity. As in the cases of cruciform and Z form formation, the observed transition partly relaxes the superhelical stress. In contrast with the other two well documented transitions, the observed transition strongly depends on pH. At pH7 and above the transition occurs at negative superhelicities exceeding the physiological range (- sigma greater than 0.08). For pH6 the transition occurs at -sigma = 0.055, whereas for pH4.3 it takes place at -sigma = 0.001. A comprehensive analysis of the obtained data has made it possible to define the nature of the observed transition. We conclude that under superhelical stress or/and at low pH homopurinehomopyrimidine tracts adopt a novel spatial structure called the H form.  相似文献   

4.
This is a study of the kinetics of formation of a cruciform structure from the longest palindromic sequence in plasmid pAO3 DNA. DNA was prepared so as to be free of cruciforms even in topoisomers whose negative superhelicity was great enough to induce cruciform formation. Samples of such DNA were incubated at various temperatures, the incubation time varying over a wide range. Then the state was frozen by chilling. Two-dimensional electrophoretic analysis made it possible to estimate the fraction of molecules that got the cruciform structure during incubation. Precautions were taken for electrophoresis conditions to rule out any spontaneous conformational changes within the palindromic region. The relaxation time at the midpoint of the transition ranged from 30 min at 30 C to 50 hrs at 20 C, both in 0.1SSC. An increase in the negative superhelical density by 0.01 led to a 500-fold reduction of the relaxation time at 30 C but had little effect at 20 C. The probability of cruciform formation has been examined as a function of temperature. It has been shown that the cruciform state is no longer the predominant one at elevated temperatures: the cruciformation probability drops to an insignificant value for all of the topoisomers involved. Data have been obtained suggesting that the cruciform formation at the major palindromic site is not the only structural transition possible in pAO3 DNA.  相似文献   

5.
Abstract

This is a study of the kinetics of formation of a cruciform structure from the longest palindromic sequence in plasmid pA03 DNA. DNA was prepared so as to be free of cruciforms even in topoisomers whose negative superhelicity was great enough to induce cruciform formation. Samples of such DNA were incubated at various temperatures, the incubation time varying over a wide range. Then the state was frozen by chilling. Two-dimensional electrophoretic analysis made it possible to estimate the fraction of molecules that got the cruciform structure during incubation. Precautions were taken for electrophoresis conditions to rule out any spontaneous conformational changes within the palindromic region. The relaxation time at the midpoint of the transition ranged from 30 min at 30 C to 50 hrs at 20 C, both in 0.1SSC. An increase in the negative superhelical density by 0.01 led to a 500-fold reduction of the relaxation time at 30 C but had little effect at 20 C. The probability of cruciform formation has been examined as a function of temperature. It has been shown that the cruciform state is no longer the predominant one at elevated temperatures: the cruciformation probability drops to an insignificant value for all of the topoisomers involved. Data have been obtained suggesting that the cruciform formation at the major palindromic site is not the only structural transition possible in pA03 DNA.  相似文献   

6.
We have studied some of the effects of DNA sequence and negative superhelicity on the rate of cruciform formation. Replacing the sequence AATT at the center of a perfect 68 base-pair palindromic sequence with the sequence CCCGGG decreases the rate of cruciform formation by a factor of at least 100. The logarithm of the rate constant of cruciform formation was found to increase linearly with linking difference. For the 68 base-pair perfect palindrome in a 4400 base-pair plasmid, each additional negative superhelical turn increased the rate of cruciform formation by a factor of 1.6. These results are consistent with a mechanism in which cruciform formation is initiated by the formation of a single-stranded bubble, 10 base-pairs in length, near the center of the palindromic sequence. In addition, we have examined the effect of introducing an asymmetric insertion into the palindromic sequence.  相似文献   

7.
The transition from lineform DNA to cruciform DNA (cruciformation) within the cloned telomere sequences of the Leporipoxvirus Shope fibroma virus (SFV) has been studied. The viral telomere sequences have been cloned in recombination-deficient Escherichia coli as a 322 base-pair, imperfect palindromic insert in pUC13. The inverted repeat configuration is equivalent to the arrangement of the telomere structures observed within viral DNA replicative intermediates. A major cruciform structure in the purified recombinant plasmid has been identified and mapped using, as probes, the enzymes AflII, nuclease S1 and bacteriophage T7 endonuclease I. It was extruded from the central axis of the cloned viral inverted repeat and, by unrestricted branch migration, attained a size commensurate with the superhelical density of the plasmid molecule at native superhelical densities. This major cruciform extrusion event was the only detectable duplex DNA perturbation, induced by negative superhelical torsion, in the insert viral sequences. No significant steady-state pool of extruded cruciform was identified in E. coli. However, the identification of a major deletion variant generated even in the recombination-deficient E. coli strain DB1256 (recA recBC sbcB) suggested that the cruciform may be extruded transiently in vivo. The lineform to cruciform transition has been further characterized in vitro using two-dimensional agarose gel electrophoresis. The transition was marked by a high energy of formation (delta Gf = 44 kcal/mol), and an apparently low activation energy that enabled facile transitions at physiological temperatures provided there was sufficient torsional energy. By comparing cruciformation in a series of related bidirectional central axis deletions of the telomeric insert, it has been concluded that the presence of extrahelical bases in the terminal hairpin structures contributes substantially to the high delta Gf value. Also, viral sequences flanking the extruded cruciform were shown to influence the measured delta Gf value. Several general features of poxvirus telomere structure that would be expected to influence the facility of cruciform extrusion are discussed along with the implications of the observed cruciform transition event on the replicative process of poxviruses in vivo.  相似文献   

8.
This is a theoretical study of the problem of formation of noncanonical structures, cruciforms in palindromic regions and the Z form in purine--pyrimidine sequences, in negatively supercoiled DNA. If two such regions, one palindromic and one purine--pyrimidine, are present in the same DNA molecule of a finite length, then transitions between the regular B form and noncanonical structures in these regions will experience a considerable mutual influence. This takes place because both noncanonical structures compete for the same superhelix energy. A special attention is paid to the case when the probability of the Z form formation nonmonotonously depends on the superhelix density. Such a situation is shown to be possible for some specific interrelation between the DNA length, the length of the palindromic region and the length of the purine--pyrimidine region. The calculations show that in this case the Z form is formed first with the increasing superhelix density, that the cruciform structure is formed whereas the purine--pyrimidine region returns into the B form, and finally, the Z form is formed again. The possibility of experimental observation of such unusual behaviour is discussed.  相似文献   

9.
The dependence of the initial rate of introduction of the first single-chain scission (initial nicking rate) into covalently closed circular phage PM2 DNA by the single strand-specific nuclease from Alteromonas espejiana BAL 31 upon the superhelix density (sigma) of the DNA has been examined. The initial nicking rate decreases with decreasing numbers of negative superhelical turns (decreasing values of -sigma), which behavior is characteristic of other single strand-specific nucleases as reported earlier. In contrast to earlier work, the initial nicking rates of closed circular DNAs by the action of the Alteromonas nuclease have been shown to be readily measurable at values of -sigma as low as 0.02. However, even at the elevated concentrations of enzyme and extended digestion periods required to cause nicking at an appreciable rate at near-zero values of sigma, closed circular DNA containing very few superhelical turns (form IO DNA) is not cleaved at a detectable rate. When this DNA is rendered positively supercoiled by ethidium bromide (EtdBr), it is not affected by the nuclease until very high positive values of sigma are attained, at which low rates of cleavage can be detected at elevated enzyme concentrations. The effects of EtdBr on the enzyme activity have been tested and are entirely insufficient to allow the interpretation of zero nicking rates as the result of inhibition of the nuclease activity by the dye. Positively supercoiled DNA is concluded not to contain regions having significant single-stranded character until values of sigma are reached which are very much higher than the values of -sigma for which negatively supercoiled DNAs behave as if they contain unpaired or weakly paired bases.  相似文献   

10.
We have used scanning force microscopy (SFM) to study the conformation of a 1868 base pair plasmid (p1868) in its open circular form and at a superhelical density of sigma= -0.034. The samples were deposited on a mica surface in the presence of MgCl2. DNA images were obtained both in air and in aqueous solutions, and the dimensions of the DNA superhelix were analysed. Evaluation of the whole plasmid yielded average superhelix dimensions of 27 +/- 9 nm (outer superhelix diameter D), 107 +/- 51 nm (superhelix pitch P), and 54 +/-8 degrees (superhelix pitch angle alpha). We also analysed compact superhelical regions within the plasmid separately, and determined values of D = 9.2 +/- 3.3 nm, P = 42 +/- 13 nm and alpha= 63 +/- 20 degrees for samples scanned in air or rehydrated in water. These results indicate relatively large conformation changes between superhelical and more open regions of the plasmid. In addition to the analysis of the DNA superhelix dimensions, we have followed the deposition process of open circular p1868 to mica in real time. These experiments show that it is possible to image DNA samples by SFM without prior drying, and that the surface bound DNA molecules retain some ability to change their position on the surface.  相似文献   

11.
Structural changes in positively and negatively supercoiled DNA   总被引:1,自引:0,他引:1  
The effect of superhelical constraint on the structure of covalently closed circular DNA (cccDNA; pBR322) with positive and negative writhe (superturn) has been investigated as a function of decreasing and increasing specific linking difference (mean superhelical density sigma). At low and moderate negative superhelical densities sigma, the overall average structure is maintained in an unwound B-form slightly modified. The overwound cccDNAs with positive writhe differ from those with negative writhe by an absence of cruciform structure. At high negative densities of supercoiling different changes involving the reversal of twist handedness are shown to lead to the formation of DNA segments in a conformation identical to the left-handed component of form V DNA.  相似文献   

12.
M Shure  J Vinograd 《Cell》1976,8(2):215-226
By a method of overlapping the results obtained after agarose gel electrophoresis under two different sets of conditions, it has become possible to determine the number of superhelical turns in a given DNA by counting the bands present after partially relaxing the DNA (Keller and Wendel, 1974) with highly purified nicking-closing (N-C) enzyme from LA9 mouse cell nuclei. Because native supercoiled DNA is heterogeneous with respect to superhelix density, an average number of superhelical turns was determined. Virion SV40 DNA contains 26 +/- 0.5 superhelical turns, and native Minicol DNA contains 19 +/- 0.5 superhelical turns. The above are values at 0.2 M NaCl and at 37 degrees C, the condition under which the enzymatic relaxations were performed. The superhelix densities determined by the band counting method have been compared with superhelix densities determined by buoyant equilibrium in PDl-CsCl gradients. The Gray, Upholt, and Vinograd (1971) calculation procedure has been used for evaluating the superhelix densities by the latter method with the new statement, however, that relaxed DNA has zero superhelical turns. Comparison of the superhelix densities obtained by both methods permits a calculation of an unwinding angle for ethidium. The mean value from experiments with SV40 DNA is 23 +/- 3 degree. The average number of superhelical turns in SV40, 26, combined with the value, 21, obtained by both Griffith (1975) and Germond et al. (1975) for the average number of nucleosomes per SV40 genome, yields an average of 1.25 superhelical turns per 1/21 of the SV40 genome. If the regions of internucleosomal DNA are fully relaxed, 1.25 correesponds to the average number of superhelical turns with a nucleosome. When analyzed under identical conditions, the limit product generated by ligating a nicked circular substrate in the presence of 0.001 M Mg2+ at 37 degrees C (ligation conditions) is slightly more positively supercoiled than the limit product obtained when the N-C reaction is performed in 0.2 M NaCl at 37 degrees C. The difference in superhelix density as measured in gels between the two sets of limit products for both Minicol and SV40 DNAs is 0.0059 +/- 0.0005. This result indicates that the DNA duplex is overwound in the ligation solvent relative to its state in 0.2 M NaCl.  相似文献   

13.
14.
We have detected cruciform formation of (dA-dT)n inserts in Escherichia coli cells by analyzing the superhelical density of isolated plasmid DNA samples and by probing intracellular DNA with chloroacetaldehyde. The plasmids we used were pUC19 containing inserts of (dA-dT)n. The cruciforms appeared after cells underwent different stresses: inhibition of protein synthesis, anaerbiosis, and osmotic shock. At the same time, all these stimuli led to an increase in superhelical density of the control pUC19 plasmid DNA. Therefore, we suggest that the increase in plasmid superhelicity in response to different environmental stimuli entails the appearance of cruciform structures. The use of the (dA-dT)n units of various lengths made it possible to estimate the superhelical density of the plasmid DNA in vivo.  相似文献   

15.
Light-scattering studies on supercoil unwinding   总被引:5,自引:2,他引:3       下载免费PDF全文
It has been shown previously that supercoiled [unk]X174 bacteriophage intracellular DNA (mol.wt. 3.2x10(6)) with superhelix density, sigma=-0.025 (-12 superhelical turns) at 25 degrees C is best represented as a Y shape. In this work two techniques have been used to unwind the supercoil and study the changes in tertiary structure which result from changes in the secondary structure. The molecular weights from all experiments were in the range 3.2x10(6)+/-0.12x10(6). In experiments involving temperature change little change in the Y shape was observed between sigma=-0.027 (-13 superhelical turns, 14.9 degrees C) and sigma=-0.021 (-10 superhelical turns, 53.4 degrees C) as evidenced by the root-mean-square radius and the particle-scattering factor P(theta). However, at sigma=-0.0176 (-8 superhelical turns, 74.5 degrees C) the root-mean-square radius fell to between 60 and 70nm from 90nm indicating a large structural change, as did alterations in the P(theta) function. In experiments with the intercalating dye proflavine from values of bound proflavine of 0-0.06mol of dye/mol equiv. of nucleotide which correspond to values of sigma from -0.025 to -0.0004 (-12 to 0 superhelical turns) a similar transition was found when the superhelix density was changed by the same amount, and the molecule was shown to go through a further structural change as the unwinding of the duplex proceeded. At sigma=-0.018 (-9 superhelical turns) the structure was compatible with a toroid, and at sigma=-0.0004 it was compatible with a circle but at no point in the sequence of structure transitions was the structure compatible with the conventional straight interwound model normally visualized as the shape of supercoiled DNA.  相似文献   

16.
17.
The effect of supercoil and temperature on the topology of phi X174 replicative form (RF) DNA was studied using single-strand specific endonucleases S1 and Bal31 as probes for cruciform extrusion and other structural perturbations of the B-helix. Both enzymes were found to recognize specifically and reproducibly over 30 sites, most of which were cleaved by both enzymes independent of the superhelicity of the genome. A negative superhelical density exceeding 0.06 stabilized a transition in the DNA conformation that generated several new cleavage sites for Bal31. The underlying structures appeared to be only transiently stable and were lost from in vitro supercoiled DNA during brief incubation at 65 degrees C. They were generally absent from in vivo supercoiled RF DNA of equal superhelicity as a consequence of the extraction and storage procedure. Mapping of the cleavage sites suggested that they were preferentially located near the beginnings and ends of genes and that the structural basis for at least some of them was the extrusion of relatively small palindromes into the cruciform state. Insertion of a short synthetic palindromic sequence into the phi X174 genome generated a supercoil-dependent, temperature-sensitive secondary structure that was cleaved in the Bal31 but not the S1 reaction, further supporting the hypothesis that even small cruciforms with stem size of 7 or less base pairs may be transiently stable. Subjecting supercoiled RF DNA to the typical S1 reaction conditions induced a topological shift that diminished all but one of the supercoil-induced Bal31 recognition sites and promoted the formation of one major new site.  相似文献   

18.
DNA folding in the nucleosome   总被引:19,自引:0,他引:19  
Digestion of chromatin with a number of nucleases shows that the DNA is regularly folded in the nucleosome. Particularly cleavage by pancreatic DNase (DNase I) in the 140 base-pair nucleosome has been examined. This nuclease nicks the DNA every ten bases on each strand as demonstrated by labeling the 5′-ends of the 140 base-pair nucleosome. Cleavage sites on opposite strands are staggered by two bases. This proves that the DNA is arranged on the outside of the histone core in a regular way. The probability distribution of nicking might indicate a 2-fold symmetry of the 140 base-pair nucleosome. In particular it is shown that the predominant band of 80 bases is derived from several regions within the 140 base-pairs and suggested to reflect the pitch of the DNA superhelix surrounding the histone core of the nucleosome. Its possible significance with respect to chromatin structure is discussed.  相似文献   

19.
Although there is a wealth of structural and theoretical data relating to palindromic sequences in genomes, the mechanisms of extrusion of cruciform structures during various biological processes in the presence of intercalating agents are still poorly understood. The current study addresses the effects of temperature and intercalator on cruciform extrusion from plasmids and also considers the effects of divalent metal ions on cruciform extrusion. It presents evidence that the cytotoxic effects of certain DNA binding drugs in vivo occur over concentration ranges corresponding to those that modulate cruciform extrusion in vitro. The results confirm earlier studies showing an inverse relationship between the effects of negative superhelicity and temperature on cruciform extrusion. By extrapolation, divalent metal ions facilitate cruciform extrusion by increasing superhelicity. The results allow the concentrations that preclude cruciform extrusion in DNA to be determined, and these are potentially informative about the relationships among temperature, DNA helical winding, cruciform formation, and intercalation. Overall, we provide new and interesting insights into the potential role of cruciform structures in biology and, by implication, cancer therapy.  相似文献   

20.
The relative stability of the cruciform state at the large inverted repeat of plasmid pVH51 is measured. At physiological superhelical densities, the cruciform state is present in a high percentage of the plasmid molecules. Investigation of the relationship between negative superhelical density and cruciform prevalence reveals a sharp transition from an undetectable level to a relatively stable state. This transition occurs over the negative superhelical density range of 0.046 to 0.066. Estimates of the free energy contribution to cruciform formation resulting from loss of negative superhelical turns suggest that about 22 kcal/mol are required to generate the cruciform structure at this site in pVH51.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号