首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 859 毫秒
1.
The purpose of this study was to compare fatigue-related measures of central and peripheral mechanisms between young and elderly subjects for a task performed with elbow flexor muscles. Ten young and nine elderly subjects performed a sustained submaximal fatigue task at 35% of their maximum voluntary contraction torque. Measures of neuromuscular function, reflecting changes in neuromuscular propagation, voluntary activation, excitation-contraction-relaxation processes, and metabolite buildup, were taken before, during, and after the fatigue task. The main results were the absence of neuromuscular propagation failure in either young or elderly subjects, the presence of central fatigue at the end of the fatigue task in 7 of 9 elderly but only 3 of 10 young subjects, and lesser changes in twitch torque contraction-relaxation variables and electromyographic median frequency in elderly compared with young subjects. The lesser fatigue-related changes in twitch contraction speed and median frequency in elderly compared with young subjects could reflect the increase in type I-to-type II fiber area reported with old age. The presence of significant central fatigue can apparently minimize some of the potential differences present in peripheral fatigue sites.  相似文献   

2.
The purposes of this study were to examine (a) whether the morphological properties of the muscle gastrocnemius medialis (GM) contribute to the known enhanced muscle fatigue resistance during submaximal sustained isometric plantar flexion contraction of old compared to young adults and (b) whether a submaximal fatiguing contraction differently affects the mechanical properties of the GM tendon and aponeurosis of old and young adults. Fourteen old and 12 young male subjects performed maximal voluntary isometric plantar flexions (MVC) on a dynamometer before and after a submaximal fatiguing task (40% MVC). Moments and EMG signals from the gastrocnemius medialis and lateralis, soleus and tibialis anterior muscles were measured. The elongation of the GM tendon and aponeurosis and the morphological properties of its contractile element were examined by means of ultrasonography. The old adults showed lower maximal ankle joint moment, stiffness and fascicle length in both tested conditions. The submaximal fatiguing contraction did not affect the force-strain relationship of the GM tendon and aponeurosis of either young or old adults. The time to task failure was longer for the old adults and was strongly correlated with the fascicle length (r(2)=0.50, P<0.001). This provides evidence on that the lower ratio of the active muscle volume to muscle force for the old adults might be an additional mechanism contributing to the known age related increase in muscle fatigue resistance.  相似文献   

3.
Young women are less fatigable than young men for maximal and submaximal contractions, but the contribution of supraspinal fatigue to the sex difference is not known. This study used cortical stimulation to compare the magnitude of supraspinal fatigue during sustained isometric maximal voluntary contractions (MVCs) performed with the elbow flexor muscles of young men and women. Eight women (25.6 +/- 3.6 yr, mean +/- SD) and 9 men (25.4 +/- 3.8 yr) performed six sustained MVCs (22-s duration each, separated by 10 s). Before the fatiguing contractions, the men were stronger than the women (75.9 +/- 9.2 vs. 42.7 +/- 8.0 N.m; P < 0.05) in control MVCs. Voluntary activation measured with cortical stimulation before fatigue was similar for the men and women during the final control MVC (95.7 +/- 3.0 vs. 93.3 +/- 3.6%; P > 0.05) and at the start of the fatiguing task (P > 0.05). By the end of the six sustained fatiguing MVCs, the men exhibited greater absolute and relative reductions in torque (65 +/- 3% of initial MVC) than the women (52 +/- 9%; P < 0.05). The increments in torque (superimposed twitch) generated by motor cortex stimulation during each 22-s maximal effort increased with fatigue (P < 0.05). Superimposed twitches were similar for men and women throughout the fatiguing task (5.5 +/- 4.1 vs. 7.3 +/- 4.7%; P > 0.05), as well as in the last sustained contraction (7.8 +/- 5.9 vs. 10.5 +/- 5.5%) and in brief recovery MVCs. Voluntary activation determined using an estimated control twitch was similar for the men and women at the start of the sustained maximal contractions (91.4 +/- 7.4 vs. 90.4 +/- 6.8%, n = 13) and end of the sixth contraction (77.2 +/- 13.3% vs. 73.1 +/- 19.6%, n = 10). The increase in the area of the motor-evoked potential and duration of the silent period did not differ for men and women during the fatiguing task. However, estimated resting twitch amplitude and the peak rates of muscle relaxation showed greater relative reductions at the end of the fatiguing task for the men than the women. These results indicate that the sex difference in fatigue of the elbow flexor muscles is not explained by a difference in supraspinal fatigue in men and women but is largely due to a sex difference of mechanisms located within the elbow flexor muscles.  相似文献   

4.
5.
During voluntary contractions, the skeletal muscle of healthy older adults often fatigues less than that of young adults, a result that has been explained by relatively greater reliance on muscle oxidative metabolism in the elderly. Our aim was to investigate whether this age-related fatigue resistance was eliminated when oxidative metabolism was minimized via ischemia induced by cuff (220 mmHg). We hypothesized that 1) older men (n = 12) would fatigue less than young men (n = 12) during free-flow (FF) contractions; 2) both groups would fatigue similarly during ischemia; and 3) reperfusion would reestablish the fatigue resistance of the old. Subjects performed 6 min of intermittent, maximal voluntary isometric contractions of the ankle dorsiflexors under FF and ischemia-reperfusion (IR) conditions. Ischemia was maintained for the first 3 min of contractions, followed by rapid cuff deflation and reperfusion for 3 additional minutes of contractions. Central activation, peripheral activation, and muscle contractile properties were measured at 3 and 6 min of contractions. Older men fatigued less than young men during FF (P 相似文献   

6.
It has been suggested that the effects of old age on the ability to resist fatigue may be task dependent. To test one aspect of this hypothesis, we compared the neuromuscular responses of nine young (26 +/- 4 yr, mean +/- SD) and nine older (72 +/- 4 yr) healthy, relatively sedentary men to intermittent isometric (3 min, 5 s contract/5 s rest) and dynamic (90 at 90 degrees /s) maximum voluntary contractions (MVC) of the ankle dorsiflexor muscles. To assess the mechanisms of fatigue (defined as the ratio of postexercise MVC to preexercise MVC), we also measured isometric central activation ratios (CAR), tetanic torque, contractile properties, and compound muscle action potentials before and immediately after exercise. Because dynamic contractions are more neurally complex and metabolically demanding than isometric contractions, we expected an age-related fatigue resistance observed during isometric exercise to be absent during dynamic exercise. In contrast, older men (O) fatigued less than young (Y) during both isometric (O = 0.77 +/- 0.07, Y = 0.66 +/- 0.02, mean +/- SE; P < 0.01) and dynamic (O = 0.45 +/- 0.07, Y = 0.27 +/- 0.02; P = 0.04) contractions (ratio of postexercise to preexercise MVC), with no evidence of peripheral activation failure in either group. We observed no obvious limitations in central activation in either group, as assessed using isometric CAR methods, after both isometric and dynamic contractions. Preexercise half-time of tetanic torque relaxation, which was longer in O compared with Y, was linearly associated with fatigue resistance during both protocols (r = 0.62 and 0.66, P < or = 0.004, n = 18). These results suggest that relative fatigue resistance is enhanced in older adults during both isometric and isokinetic contractions and that age-related changes in fatigue may be due largely to differences within the muscle itself.  相似文献   

7.
The aim of the present study was to examine whether or not the compliance of the gastrocnemius medialis (GM) tendon and aponeurosis is influenced by submaximal fatiguing efforts. Fourteen elderly male subjects performed isometric maximal voluntary plantarflexion contractions (MVC) on a dynamometer before and after two fatiguing protocols. The protocols consisted of: (1) submaximal concentric isokinetic contractions (70% isokinetic MVC) at 60 degrees /s and (2) a sustained isometric contraction (40% isometric MVC) until failure to hold the defined moment. Ultrasonography was used to determine the elongation and strain of the GM tendon and aponeurosis. To account for the axis misalignment between ankle and dynamometer, the kinematics of the leg were captured at 120 Hz. The maximum moment decreased from 85.9+/-17.9 Nm prior fatigue to 79.2+/-19 Nm after isokinetic fatigue and to 69.9+/-16.4 Nm after isometric fatigue. The maximal strain of the GM tendon and aponeurosis before fatigue, after isokinetic and after isometric fatigue were 4.9+/-1.1%, 4.4+/-1.1% and 4.3+/-1.1% respectively. Neither the strain nor the elongation showed significant differences before and after each fatiguing task at any 100 N step of the calculated tendon force. This implies that the compliance was not altered after either the isokinetic or the isometric fatiguing task. Therefore it was concluded that the strains during the performed submaximal fatiguing tasks, were too small to provoke any structural changes in tendon and aponeurosis.  相似文献   

8.
Percutaneous electrical nerve stimulation is a non-invasive method commonly used to evaluate neuromuscular function from brain to muscle (supra-spinal, spinal and peripheral levels). The present protocol describes how this method can be used to stimulate the posterior tibial nerve that activates plantar flexor muscles. Percutaneous electrical nerve stimulation consists of inducing an electrical stimulus to a motor nerve to evoke a muscular response. Direct (M-wave) and/or indirect (H-reflex) electrophysiological responses can be recorded at rest using surface electromyography. Mechanical (twitch torque) responses can be quantified with a force/torque ergometer. M-wave and twitch torque reflect neuromuscular transmission and excitation-contraction coupling, whereas H-reflex provides an index of spinal excitability. EMG activity and mechanical (superimposed twitch) responses can also be recorded during maximal voluntary contractions to evaluate voluntary activation level. Percutaneous nerve stimulation provides an assessment of neuromuscular function in humans, and is highly beneficial especially for studies evaluating neuromuscular plasticity following acute (fatigue) or chronic (training/detraining) exercise.  相似文献   

9.
This study aimed to investigate central and peripheral contributions to fatigue during repeated maximal voluntary isometric plantar flexions (MVCs). Changes in joint torque, level of activation (LOA), resting twitch amplitude (RT), electromyographic signals (EMG), and presynaptic inhibition of Ia afferents were investigated during 9 bouts of 10 MVCs. MVCs lasted for 2 s and were separated by 1 s. The interval between bouts was 10 s. Electrical stimulation was applied to the tibial nerve; at rest to evoke RTs, M waves, and two (1.5-s interval) H reflexes; with the soleus EMG at 30% of that during MVC to evoke M waves and two H reflexes; and during MVCs to measure LOA. Over the nine bouts, LOA decreased by 12.6% and RT by 16.2%. EMG root mean square during MVCs remained unchanged for the soleus and tibialis anterior muscles, but it decreased for medial gastrocnemius. Peripheral fatigue (decrease in RT) was positively correlated to LOA, whereas central fatigue (decrease in LOA) was not. Depression of both H reflexes suggests that presynaptic inhibition after the first bout was partly induced by homosynaptic postactivation depression of the Ia terminal. The H-reflex-to-M-wave ratio increased with fatigue in both passive and active states, with no change in the ratio of the second H reflex to the first, thereby indicating a decrease of presynaptic inhibition during fatigue. The results indicate that both central and peripheral mechanisms contributed to the fatigue observed during repeated MVCs and that the development of peripheral fatigue was influenced by the level of voluntary activation and initial plantar flexor torque.  相似文献   

10.
The purpose of this study was to evaluate the neuromuscular adaptation that occurred with aging, by comparing young and aged subjects with respect to changes in surface EMG from the tibialis anterior muscle during fatiguing contractions. EMG variables such as the averaged rectified value (ARV), median frequency (MDF), and muscle fiber conduction velocity (MFCV) were calculated during maximal (MVC, 3 sec) and submaximal (60% MVC, 60 sec) isometric contractions. Muscular force, ARV, MDF, and MFCV during MVC were significantly greater in the young than in the elderly (p < 0.05). EMG amplitude increased and the waveform slowed in all subjects during submaximal contractions, indicating the development of local muscle fatigue. As fatigue progressed, the ARV increased and the MDF and MFCV decreased significantly (p < 0.01). The fatigue-induced changes in the MDF and MFCV were significantly smaller in aged than in young subjects (p < 0.05), a trend also seen in the ARV change, which means that the elderly cannot be fatigued as much as the young with contractions of the same relative intensity. These results as a whole suggest that the aged subjects hold an adaptive motor strategy to cope with age-related neuromuscular deteriorations, due to the decline of motor unit activation and selective atrophy of fast twitch muscle fibers.  相似文献   

11.
This study investigated the acute effect of active recovery (AR) following fatigue induced by 80 three-second maximal voluntary isometric plantar flexion contractions (MVICs) in 12 young men. AR consisted of a total of 180 voluntary isometric ramp contractions of the plantar flexors (0.75-s contraction/relaxation) targeting 10% of MVIC torque. MVIC torque, voluntary activation and root mean square values of electromyographic signals for the triceps surae normalized by each peak-to-peak amplitude of compound motor action potential were determined before, and immediately, 10, 20 and 30 min after the fatiguing task. Evoked torques were similarly assessed except for immediately after it. The AR and passive recovery were randomly performed on two days by each participant between 5 min and 10 min after the fatiguing task. For all the parameters other than MVIC torque, there was no significant difference between the conditions at any time point. MVIC torque decreased significantly immediately after the fatiguing task regardless of condition (P < 0.05), and the corresponding decrease in MVIC torque recovered 30 min after the fatiguing task only in AR (P < 0.05). These results suggest an acute positive effect of AR on recovery of neuromuscular function and/or contractile properties after fatigue.  相似文献   

12.
During sustained maximal voluntary contractions (MVCs), most fatigue occurs within the muscle, but some occurs because voluntary activation of the muscle declines (central fatigue), and some of this reflects suboptimal output from the motor cortex (supraspinal fatigue). This study examines whether supraspinal fatigue occurs during a sustained submaximal contraction of 5% MVC. Eight subjects sustained an isometric elbow flexion of 5% MVC for 70 min. Brief MVCs were performed every 3 min, with stimulation of the motor point, motor cortex, and brachial plexus. Perceived effort and pain, elbow flexion torque, and surface EMGs from biceps and brachioradialis were recorded. During the sustained 5% contraction, perceived effort increased from 0.5 to 3.9 (out of 10), and elbow flexor EMG increased steadily by approximately 60-80%. Torque during brief MVCs fell to 72% of control values, while both the resting twitch and EMG declined progressively. Thus the sustained weak contraction caused fatigue, some of which was due to peripheral mechanisms. Voluntary activation measured by motor point and motor cortex stimulation methods fell to 90% and 80%, respectively. Thus some of the fatigue was central. Calculations based on the fall in voluntary activation measured with cortical stimulation indicate that about two-thirds of the fatigue was due to supraspinal mechanisms. Therefore, sustained performance of a very low-force contraction produces a progressive inability to drive the motor cortex optimally during brief MVCs. The effect of central fatigue on performance of the weak contraction is less clear, but it may contribute to the increase in perceived effort.  相似文献   

13.
Influence of aging on sex differences in muscle fatigability.   总被引:1,自引:0,他引:1  
The purpose of this study was to compare time to task failure for a sustained isometric contraction performed at a submaximal intensity with elbow flexor muscles by young and old men and women. Twenty-seven young (14 men and 13 women, 18-35 yr) and 18 old (10 men and 8 women, 65-80 yr) adults sustained an isometric contraction at 20% of maximal voluntary contraction torque until target torque could no longer be achieved for > or = 5 s. Young adults were stronger than old adults (66.8 +/- 17.9 vs. 47.7 +/- 18.1 N x m, P < 0.05), and men were stronger than women (69.8 +/- 17.9 vs. 47.1 +/- 15.3 N x m, P < 0.05), with no interaction between age and sex (P > 0.05). Time to task failure was longer for old than for young adults (22.8 +/- 9.1 vs. 14.4 +/- 7.6 min, P < 0.05) and for young women than for young men (18.3 +/- 8.0 vs. 10.8 +/- 5.2, P < 0.05), but there was no difference between old women and men (21.3 +/- 10.7 and 24.1 +/- 8.0 min, respectively, P > 0.05) or between young women and old adults (P > 0.05). Mean arterial pressure, heart rate, average electromyographic (EMG) activity, and torque fluctuations of elbow flexor muscles increased during the fatiguing contraction (P < 0.05) for all subjects. Rates of increase in mean arterial pressure, heart rate, and torque fluctuations were greater for young men and old adults, with no differences between old men and women (P > 0.05). Similarly, the rate of increase in EMG activity was greater for young men than for the other three groups. EMG bursts were less frequent for old adults (P < 0.05) at the end of the fatiguing contraction, and this was accompanied by reduced fluctuations in torque. Consequently, time to task failure was related to target torque for young, but not old, adults, and differences in task duration were accompanied by parallel changes in the pressor response.  相似文献   

14.
Previous studies have suggested that older adults may be more resistant to muscular fatigue than young adults. We sought to determine whether motor unit firing rate might be a factor that determines the response to fatiguing exercise in young and older subjects. Motor unit recordings and muscular forces were obtained from the tibialis anterior (TA) muscle of 11 young and 8 older individuals. Maximal voluntary force was first measured during maximal-effort dorsiflexion contractions. Each subject then performed a series of 15 maximal isometric contractions, with each contraction lasting 30 s. A 10-s rest period separated the fatiguing contractions. As a result of the fatiguing exercise, both subject groups demonstrated a significant loss in maximal force. The force decline was less in the older adults (20.4%) than in the young adults (33.8%). As expected, prior to muscle fatigue, maximal firing rates in the TA muscle were greater in the young (28.1 ± 5.8 imp/s) than in the older adults (22.3 ± 4.8 imp/s). The decrease in motor unit firing rate with fatigue was also greater in the young adults (34.9%), than in the older adults (22.0%). These results suggest that the greater fatigue-resistance exhibited by older individuals might be explained by the fact that the decline in motor unit firing rate during fatigue is greater in young persons than it is in older adults.  相似文献   

15.
The influence of repetitive dynamic fatiguing contractions on the neuromuscular characteristics of the human triceps surae was investigated in 10 subjects. The load was 50% of the torque produced during a maximal voluntary contraction, and the exercise ended when the ankle range of motion declined to 50% of control. The maximal torque of the triceps surae and the electromyographic (EMG) activities of the soleus and medial gastrocnemius were studied in response to voluntary and electrically induced contractions before and after the fatiguing task and after 5 min of recovery. Reflex activities were also tested by recording the Hoffmann reflex (H reflex) and tendon reflex (T reflex) in the soleus muscle. The results indicated that whereas the maximal voluntary contraction torque, tested in isometric conditions, was reduced to a greater extent (P < 0.05) at 20 degrees of plantar flexion (-33%) compared with the neutral position (-23%) of the ankle joint, the EMG activity of both muscles was not significantly reduced after fatigue. Muscle activation, tested by the interpolated-twitch method or the ratio of the voluntary EMG to the amplitude of the muscle action potential (M-wave), as well as the neuromuscular transmission and sarcolemmal excitation, tested by the M-wave amplitude, did not change significantly after the fatiguing exercise. Although the H and T reflexes declined slightly (10-13%; P < 0.05) after fatigue, these adjustments did not appear to have a direct deleterious effect on muscle activation. In contrast, alterations in the mechanical twitch time course and postactivation potentiation indicated that intracellular Ca(2+)-controlled excitation-contraction coupling processes most likely played a major role in the force decrease after dynamic fatiguing contractions performed for short duration.  相似文献   

16.
This study aimed to investigate mechanisms of neuromuscular fatigue during maximal concentric and isometric leg extensions inducing similar torque decrements. Nine physically active men performed two separate fatiguing sessions maintained until similar torque decreases were obtained. The first session, only conducted under isokinetic concentric conditions (CON), consisted of three series of 30 maximal voluntary concentric knee extensions (60 degrees/s). The second session, exclusively isometric (ISO), mimicked the torque decreases registered during the CON session while performing three long-lasting ISO contractions. Maximal voluntary torque, activation level (twitch interpolation technique), electromyographic activity (root mean square and median frequency) of the vastus lateralis muscle, and electrically evoked doublet-twitch mechanical properties were measured before and at the end of each of the three series. After the three series, similar torque decrements were obtained for both fatiguing procedures. The total fatiguing contraction durations were not different among procedures. With equivalent voluntary torque decrements, the doublet-twitch amplitude reduction was significantly greater (P<0.01) during the two first series of the CON procedure compared with ISO. No difference was observed for the third series. Although no difference was recorded with fatigue for median frequency changes between CON and ISO, activation levels and root mean square values demonstrated greater reductions (P<0.05) for all three series during the ISO procedure compared with CON. Performing CON or ISO fatiguing exercises demonstrated different fatigue origins. With CON exercises, peripheral fatigue developed first, followed by central fatigue, whereas with ISO exercises the fatigue pattern was inverted.  相似文献   

17.
Magnetic and electrical stimulation at different levels of the neuraxis show that supraspinal and spinal factors limit force production in maximal isometric efforts ("central fatigue"). In sustained maximal contractions, motoneurons become less responsive to synaptic input and descending drive becomes suboptimal. Exercise-induced activity in group III and IV muscle afferents acts supraspinally to limit motor cortical output but does not alter motor cortical responses to transcranial magnetic stimulation. "Central" and "peripheral" fatigue develop more slowly during submaximal exercise. In sustained submaximal contractions, central fatigue occurs in brief maximal efforts even with a weak ongoing contraction (<15% maximum). The presence of central fatigue when much of the available motor pathway is not engaged suggests that afferent inputs contribute to reduce voluntary activation. Small-diameter muscle afferents are likely to be activated by local activity even in sustained weak contractions. During such contractions, it is difficult to measure central fatigue, which is best demonstrated in maximal efforts. To show central fatigue in submaximal contractions, changes in motor unit firing and force output need to be characterized simultaneously. Increasing central drive recruits new motor units, but the way this occurs is likely to depend on properties of the motoneurons and the inputs they receive in the task. It is unclear whether such factors impair force production for a set level of descending drive and thus represent central fatigue. The best indication that central fatigue is important during submaximal tasks is the disproportionate increase in subjects' perceived effort when maintaining a low target force.  相似文献   

18.
Voluntary muscle activation varies with age and muscle group.   总被引:3,自引:0,他引:3  
The consistency and the number of attempts required to achieve maximal voluntary muscle activation have not been documented and compared between young and old adults. Furthermore, few studies have contrasted activation between functional pairs of muscle groups, and no study has tested upper limb muscles. The purpose of this study was to measure and compare voluntary muscle activation of the elbow flexors and extensors in young and old men over two separate test sessions. With the method of twitch interpolation to measure activation, six young (24 +/- 1 yr) and six old (83 +/- 4 yr) men performed five maximal voluntary contractions (MVC) during each session for each muscle group. Elbow flexion and extension MVC was less (43 and 47%, respectively) in the old men, yet the best maximal voluntary muscle activation was similar between age groups. However, when all 10 attempts at MVC were compared, the mean activation scores were slightly less (approximately 5%) in the elbow extensors but were approximately 11% less (P < 0.001) in the elbow flexors of old men, compared with young men. During the second session, there was a significant improvement of 13% (P < 0.005) in mean elbow flexor activation in the old men. There were no session differences for either muscle group for the young men. The results indicate that, for aged men, elbow flexor maximal activation is achieved less frequently compared with elbow extensors, and thus mean activation for elbow flexors is less than for elbow extensors. However, if sufficient attempts are provided, the best effort for the old men is not different from that of the young men for either muscle group.  相似文献   

19.
20.
Nine healthy men (22-45 yr) completed 100 repetitive maximal isometric contractions of the ankle plantar flexor muscles in two knee positions of full extension (K0) and flexion at 90 degrees (K90), positions that varied the contribution of the gastrocnemii. Electromyographic activity was recorded from the medial and lateral gastrocnemii and soleus muscles by using surface electrodes. Plantar flexion torque in K0 was greater and decreased more rapidly than in K90. The electromyographic amplitude decreased over time, and there were no significant differences between muscles and knee joint positions. The level of voluntary effort, assessed by a supramaximal electrical stimulation during every 10th contraction, decreased from 96 to 70% (P < 0.05) with no difference between K0 and K90. It was suggested that a decrease in plantar flexion torque was attributable to both central and peripheral fatigue and that greater fatigability in K0 than in K90 would result from a greater contribution and hence more pronounced fatigue of the gastrocnemius muscle. Further support for this possibility was provided from changes in twitch torque.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号