首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 265 毫秒
1.
Biosynthesis of branched glucan by Pestalotiopsis from media containing D-(1-13C)glucose, D-(2-13C)glucose, D-(4-13C)glucose, D-(6-13C)glucose or a mixture of D-(1-13C)glucose and D-(2-13C)glucose was carried out to elucidate biosynthetic mechanism of branched polysaccharides. 13C NMR spectra of the labeled polysaccharides were determined and assigned. Analysis of 13C NMR spectra of glucitol acetates obtained from hydrolysates of the labeled branched polysaccharides indicated that transfer of labeling from C-1 to C-3 and C-6 carbons, from C-2 to C-1, C-3 and C-5 carbons, and from C-6 to C-1 carbon. From the results the percentages of routes via which the polysaccharide is biosynthesized are estimated. They show that the biosynthesis of the polysaccharide via the Embden-Meyerhof pathway and that from lipids and proteins are more active, and the pentose cycle is less active, than in the biosynthesis of cellulose and curdlan. As for the results, labeling at C-6 carbon in the branched polysaccharide cultured from D-(6-13C)glucose was low, compared to that of cellulose and curdlan.  相似文献   

2.
Recently, a new experimental model of epilepsy was introduced by the authors [Neurochem. Int. 40 (2002) 413]. This model combines pentylenetetrazole (PTZ)-kindling in senescence-accelerated mice P8 (SAMP8), a genetic model of aging. Since imbalance of glutamate and GABA is a major cause of seizures, the study of glial–neuronal interactions is of primary importance. Nuclear magnetic resonance spectroscopy (NMRS) is an excellent tool for metabolic studies. Thus, we examined whether NMRS when combined with administration of [1-13C]glucose and [1,2-13C]acetate might give valuable insights into neurotransmitter metabolism in this new model of epilepsy and aging. The 2- and 8-month-old SAMP8 were kindled with PTZ alone, received PTZ and phenobarbital (PB), or served as controls. In older animals, PTZ-kindling decreased labeling in glutamate C-4 from [1-13C]glucose, whereas, in the younger mice, labeling in glutamine C-4 was decreased both from [1-13C]glucose and [1,2-13C]acetate. It could be concluded that PTZ-kindling affected astrocytes in younger and glutamatergic neurons in older animals. In the presence of PTZ, phenobarbital decreased labeling of most metabolites in all cell types, except GABAergic neurons, from both labeled precursors in the younger animals. However, in older animals only GABAergic neurons were affected by phenobarbital as indicated by an increase in GABA labeling.  相似文献   

3.
Abstract: Metabolism of [1-13C]glucose was monitored in superfused cerebral cortex slice preparations from 1-, 2-, and 5-week-old rats using 1H-observed/13C-edited (1H{13C}) NMR spectroscopy. The rate of label incorporation into glutamate C-4 did not differ among the three age groups: 0.52–0.67% of total 1H NMR-detected glutamate/min. This was rather unexpected, as oxygen uptake proceeded at 1.1 ± 0.1, 1.9 ± 0.1, and 2.0 ± 0.1 µmol/min/g wet weight in brain slices prepared from 1-, 2-, and 5-week-old animals, respectively. Steady-state glutamate C-4 fractional enrichments in the slice preparations were ∼23% in all age groups. In the acid extracts of slices glutamate C-4 enrichments were smaller, however, in 1- and 2-week-old (17.8 ± 1.7 and 16.8 ± 0.8%, respectively) than in 5-week-old rats (22.7 ± 0.7%) after 75 min of incubation with 5 m M [1-13C]glucose. We add a new assignment to the 1H{13C} NMR spectroscopy, as acetate C-2 was detected in slice preparations from 5-week-old animals. In the acid extracts of slice preparations acetate C-2 was labeled by ∼30% in 5-week-old rats but by 15% in both 1- and 2-week-old animals, showing that the turnover rate was increased in 5-week-old animals. In the extracts 3–4% of the C-6 of N -acetyl-aspartate (NAA; CH3 of the acetyl group) contained label as determined by both NMR and mass spectrometry, which indicated that there was no significant labeling to other carbons in NAA. NAA accumulated label from [1-13C]glucose but not from [2-13C]acetate, and the rate of label incorporation increased by threefold on cerebral maturation.  相似文献   

4.
Abstract: The effects of 3-nitropropionic acid (3-NPA), an inhibitor of succinate dehydrogenase, on cerebral metabolism were investigated in mice by NMR spectroscopy. 3-NPA, 180 mg/kg, caused a dramatic buildup of succinate. Succinate was labeled 5.5 times better from [1-13C]glucose than from [2-13C]acetate, showing a predominantly neuronal accumulation. [1-13C]Glucose labeled GABA in the C-2 position only, compatible with inhibition of the tricarboxylic acid (TCA) cycle associated with GABA formation, at the level of succinate dehydrogenase. Aspartate was not labeled by [1-13C]glucose in 3-NPA-intoxicated animals. In contrast, [1-13C]glucose labeled glutamate in the C-2, C-3, and C-4 positions showing uninhibited cycling of label in the TCA cycle associated with the large, neuronal pool of glutamate. The labeling of glutamine, and hence GABA, from [2-13C]acetate showed that the TCA cycle of glial cells was unaffected by 3-NPA and that transfer of glutamine from glia to neurons took place during 3-NPA intoxication. The high 13C enrichment of the C-2 position of glutamine from [1-13C]glucose showed that pyruvate carboxylation was active in glia during 3-NPA intoxication. These findings suggest that 3-NPA in the initial phase of intoxication fairly selectively inhibited the TCA cycle of GABAergic neurons; whereas the TCA cycle of glia remained uninhibited as did the TCA cycle associated with the large neuronal pool of glutamate, which includes glutamatergic neurons. This may help explain why the caudoputamen, which is especially rich in GABAergic neurons, selectively undergoes degeneration both in humans and animals intoxicated with 3-NPA. Further, the present results may be of relevance for the study of basal ganglia disorders such as Huntington's disease.  相似文献   

5.
Abstract: Cerebral formation of lactate via the tricarboxylic acid (TCA) cycle was investigated through the labeling of lactate from [2-13C]acetate and [1-13C]glucose as shown by 13C NMR spectroscopy. In fasted mice that had received [2-13C]acetate intravenously, brain lactate C-2 and C-3 were labeled at 5, 15, and 30 min, reflecting formation of pyruvate and hence lactate from TCA cycle intermediates. In contrast, [1-13C]glucose strongly labeled lactate C-3, reflecting glycolysis, whereas lactate C-2 was weakly labeled only at 15 min. These data show that formation of pyruvate, and hence lactate, from TCA cycle intermediates took place predominantly in the acetate-metabolizing compartment, i.e., glia. The enrichment of total brain lactate from [2-13C]acetate reached ∼1% in both the C-2 and the C-3 position in fasted mice. It was calculated that this could account for 20% of the lactate formed in the glial compartment. In fasted mice, there was no significant difference between the labeling of lactate C-2 and C-3 from [2-13C]acetate, whereas in fed mice, lactate C-3 was more highly labeled than the C-2, reflecting adaptive metabolic changes in glia in response to the nutritional state of the animal. It is hypothesized that conversion of TCA cycle intermediates into pyruvate and lactate may be operative in the glial metabolism of extracellular glutamate and GABA in vivo. Given the vasodilating effect of lactate on cerebral vessels, which are ensheathed by astrocytic processes, conversion of glutamate and GABA into lactate could be one mechanism mediating increases in cerebral blood flow during nervous activity.  相似文献   

6.
A gas chromatographic–combustion isotope ratio mass spectrometric (GC–C-IRMS) method for the determination of [1-13C]valine enrichments in protein hydrolysates is described. Using a quick derivatization method, δ13C values of the N-methoxycarbonyl methyl ester of valine can be determined from baseline separated GC peaks. Evaluation studies with respect to precision, accuracy, linearity, reduction capacity of the CuO combustion furnace and isotope dilution as a result of derivatization, showed that our GC–C-IRMS system allows robust measurement of enrichments of [1-13C]valine in the range 0 to 1.5 MPE (S.D.±0.01 MPE, n=3). Therefore this method is suited to determine fractional synthetic rates (FSRs) of proteins as low as one-tenth of the FSR of human albumin, in studies using a primed, continuous (6 h) infusion with [1-13C]valine plasma enrichments of approximately 15 MPE and an hourly sampling schedule.  相似文献   

7.
The pentose phosphate pathway operates at an elevated level in rat kidney following induction of diabetes and in the compensatory hypertrophy following unilateral nephrectomy in control and alloxan-diabetic rats, as shown by the yields of 14Co2 from [1-14C]glucose, [6-14C]glucose and 3H2O yields from [2-3H]glucose. The elevated flux through the pentose phosphate pathway is correlated with the increased RNA content and weight of the kidney. The direct utilization of NADPH for reductive synthetic reactions and the potential for indirect utilization via the sorbitol route and the linked transhydrogenase reactions of the glucuronate-xylulose pathway, for NADH and ATP generation, are also discussed.  相似文献   

8.
6-Deoxy-6-fluorocellulose was prepared from cellulose 2,3-diacetate (1) or cellulose 2,3-dibenzoate (2) in various solvents, and was characterized by 19F and 13C NMR measurements. The best product, having ds of 0.95 at C-6 and 0.04 at C-3, was prepared from cellulose 2,3-dibenzoate in nitrobenzene. Other combinations of starting material and solvent gave a lower (≈ 0.8) ds of fluorine at C-6 and higher (≈ 0.12) at C-2 or C-3. Substitution at C-2 was observed when the combination of 1 and 1,4-dioxane, or 2 and chloroform was used. The products substituted at C-2 by fluorine were relatively resistant to acid hydrolysis.  相似文献   

9.
[10D-3H; 3-14C]- and [10L-3H; 3-14C]arachidonic acids were incubated with human polymorphonuclear leukocytes and with human platelets. Leukotriene B4 and 5(S),12(S)-dihydroxy-6trans,8cis,10trans,14-cis-eicosatetraenoic acid (5,12-DHETE) were isolated and the 3H/14C ratios determined. It could be concluded that the 10D (pro-R)-hydrogen is eliminated in the conversion of 5(S)-hydroperoxy-6trans,8cis,11cis,14cis-eicosatetraenoic acid into leukotriene A4 whereas in the conversion of arachidonic acid into 5,12-DHETE the 10L (pro-S)-hydrogen is lost. Incubation of the doubly labeled arachidonic acids with human platelets confirmed and extended previous data on the stereochemistry of the hydrogen removal from C-10 during the conversion into 12(S)-hydroperoxy-5cis,8cis,10trans,14cis-eicosatetraenoic acid, i.e., the 10L (pro-S)-hydrogen is eliminated and the 10D (pro-R)-hydrogen retained.  相似文献   

10.
Biosynthetic studies of the guaianolide-type sesquiterpene lactones 11βH,13-dihydrolactucin-8-O-acetate and 8-desoxylactucin were performed in Agrobacterium rhizogenes—transformed hairy root cultures of blue-flowered lettuce, Lactuca floridana. The 13C NMR spectra of the two guaianolides labelled by incorporation of [1-13C], [2-13C], [1,2-13C2]acetate and [2-13C]mevalolactone showed patterns of enrichment consistent with a previously proposed biogenetic pathway for guaianolide-type sesquiterpene lactones via the acetate-mevalonate-germacradiene route.  相似文献   

11.
A study has been made, using Calliphora stygia at the time of puparium formation, of the incorporation of a number of labelled sterols into β-ecdysone. [1-3H]-Cholesterol and [4-14C]-cholesterol are incorporated to a similar extent (0·01-0·02%). [1-3H]-7-Dehydrocholesterol is better incorporated (0·025%) than cholesterol while [1-3H]-cholesterol sulphate, (22R)-22-hydroxy-[22-3H]-cholesterol, and 25-hydroxy-[26-14C]-cholesterol are not incorporated to a significant extent.  相似文献   

12.
Biotransformation of [1-13C] labelled hexadecane, hexadecanol and hexadecanoic acid have been investigated using the yeast Torulopsis apicola. The yeast produces a microcrystalline mixture of two glycolipids, the lipophilic moiety of which consists of ω- or (ω-l)-hydroxylated hexadecanoic acid. Biosynthesis of these glycolipids takes place via hydroxylation of hexadecane, oxidation to hexadecanoic acid and ω or (ω-l)-hydroxylation of hexadecanoic acid. Feeding the cell cultures with a mixture of hexadecane and [1-13C] labelled hexadecane derivatives one observes 13C enrichment ratios which indicate that neither of the biohydroxylation or oxidation steps are rate limiting in the formation of the glycolipids, furthermore, two different monooxygenase systems appear to be involved in hydroxylation of hexadecane and hexadecanoic acid.  相似文献   

13.
Abstract: We investigated the activity of the cerebral GABA shunt relative to the overall cerebral tricarboxylic acid (TCA) cycle and the importance of the GABA shunt versus 2-oxoglutarate dehydrogenase for the conversion of 2-oxoglutarate into succinate in GABAergic neurons. Awake mice were dosed with [1-13C]glucose, and brain extracts were analyzed by 13C NMR spectroscopy. The percent enrichments of GABA C-2 and glutamate C-4 were the same: 5.0 ± 1.6 and 5.1 ± 0.2%, respectively (mean ± SD). This, together with previous data, indicates that the flux through the GABA shunt relative to the overall cerebral TCA cycle flux equals the GABA/glutamate pool size ratio, which in the mouse is 17%. It has previously been shown that under the experimental conditions used in this study, the 13C labeling of aspartate from [1-13C]glucose specifically reflects the metabolic activity of GABAergic neurons. In the present study, the reduction in the formation of [13C]aspartate during inhibition of the GABA shunt by γ-vinyl-GABA indicated that not more than half the flux from 2-oxoglutarate to succinate in GABAergic neurons goes via the GABA shunt. Therefore, because fluxes through the GABA shunt and 2-oxoglutarate dehydrogenase in GABAergic neurons are approximately the same, the TCA cycle activity of GABAergic neurons could account for one-third of the overall cerebral TCA cycle activity in the mouse. Treatment with γ-vinyl-GABA, which increased GABA levels dramatically, caused changes in the 13C labeling of glutamate and glutamine, which indicated a reduction in the transfer of glutamate from neurons to glia, implying reduced glutamatergic neurotransmission. In the most severely affected animals these alterations were associated with convulsions.  相似文献   

14.
The aim of the present study was to assess the effect of post ictal administration of the pyrrolopyrimidine lipid peroxidation inhibitor, U-101033E, on infarct volume and neuronal and astrocytic metabolism in rats with transient middle cerebral artery occlusion (MCAO).

Rats were subjected to 120 min of MCAO followed by 140 min of reperfusion and randomly assigned to control (n = 17) or U-101033E treatment (n = 16). Drug infusion started 5 min after MCAO and lasted 220 min with a 15 min interruption during the reperfusion procedure. Sixteen rats underwent diffusion weighted imaging 260 min after ictus, from which the apparent diffusion coefficient (ADC) was determined. Seventeen rats received an iv bolus injection of [1-13C]glucose and [1,2-13C]acetate 245 min after ictus. Tissue extracts from two brain regions representing penumbra and ischemic core were analyzed with 13C NMRS and HPLC.

U-101033E did not affect the volume of ischemic tissue estimated from the ADC maps. In the penumbra, U-101033E specifically decreased mitochondrial pyruvate metabolism via both pyruvate dehydrogenase and pyruvate carboxylase pathways. Thus, U-101033E impaired both neuronal and astrocytic mitochondrial pyruvate metabolism. At the same time anaerobic glucose usage was increased, leading to increased lactate labeling and content. Also alanine labeling was increased. The data do not support lactate as an important substrate for neuronal mitochondria in ischemia–reperfusion. A similar pattern of reduced mitochondrial pyruvate metabolism and increased cytosolic pyruvate metabolism was found in the irreversibly damaged ischemic core. The present study highlights the importance of other outcome measures than ischemic tissue volume for evaluation of drug efficacy in animal models, which in turn could increase the likelihood of success in clinical trials.  相似文献   


15.
Abstract: Cerebral metabolism of d [1-13C]glucose was studied with localized 13C NMR spectroscopy during intravenous infusion of enriched [1-13C]glucose in four healthy subjects. The use of three-dimensional localization resulted in the complete elimination of triacylglycerol resonance that originated in scalp and subcutaneous fat. The sensitivity and resolution were sufficient to allow 4 min of time-resolved observation of label incorporation into the C3 and C4 resonances of glutamate and C4 of glutamine, as well as C3 of aspartate with lower time resolution. [4-13C]Glutamate labeled rapidly reaching close to maximum labeling at 60 min. The label flow into [3-13C]glutamate clearly lagged behind that of [4-13C]glutamate and peaked at t = 110–140 min. Multiplets due to homonuclear 13C-13C coupling between the C3 and C4 peaks of the glutamate molecule were observed in vivo. Isotopomer analysis of spectra acquired between 120 and 180 min yielded a 13C isotopic fraction at C4 glutamate of 27 ± 2% (n = 4), which was slightly less than one-half the enrichment of the C1 position of plasma glucose (63 ± 1%), p < 0.05. By comparison with an external standard the total amount of [4-13C]glutamate was directly quantified to be 2.4 ± 0.1 µmol/ml-brain. Together with the isotopomer data this gave a calculated brain glutamate concentration of 9.1 ± 0.7 µmol/ml, which agrees with previous estimates of total brain glutamate concentrations. The agreement suggests that essentially all of the brain glutamate is derived from glucose in healthy human brain.  相似文献   

16.
Abstract: Primary cultures of cerebral cortical astrocytes were incubated with [U-13C]glutamate (0.5 m M ) in modified Dulbecco's medium for 2 h. Perchloric acid (PCA) extracts of the cells as well as redissolved lyophilized media were subjected to NMR spectroscopy to identify 13C-labeled metabolites. NMR spectra of the PCA extracts exhibited distinct multiplets for glutamate, aspartate, glutamine, and malate. The culture medium showed peaks for a multitude of compounds released from the astrocytes, among which lactate, glutamine, alanine, and citrate were readily identifiable. For the first time incorporation of label into lactate from glutamate was clearly demonstrated by doublet formation in the C-3 position and two doublets in the C-2 position of lactate. This labeling pattern can only occur by incorporation from glutamate, because natural abundance will only produce singlets in proton-decoupled 13C spectra. Glutamine, released into the medium, was labeled uniformly to a large extent, but the C-3 position not only showed the expected apparent triplet but also a doublet due to 13C incorporation into the C-4 position of glutamine. The doublet accounted for 11% of the total label in the glutamine synthesized and released within the incubation period. The corresponding labeling pattern of [13C]glutamate in the PCA extracts showed that 19% of the glutamate contained 12C. Labeling of lactate, citrate, malate, and aspartate as well as incorporation of 12C into uniformly labeled glutamate and glutamine could only arise via the tricarboxylic acid cycle. The relative amount of glutamate metabolized via this route is at least 70% as calculated from the areas of the C-3 resonances of these compounds. Only a maximum of 30% was converted to glutamine directly.  相似文献   

17.
NMR analyses of polysaccharide derivatives containing amine groups   总被引:4,自引:0,他引:4  
Amylose, amylopectin, hydroxyethylcellulose, methylcellulose, and cellulose were reacted with diethylaminoethyl chloride HCl salt and 3-chloro-2-hydroxy-propyltrimethylammonium chloride under aqueous alkaline conditions in order to introduce tertiary amine and quaternary ammonium groups into polysaccharides. Degrees of substitution were obtained from 1H- or 13C-NMR spectra of hydrolyzates, and distributions of diethylaminoethyl groups in polysaccharides were measured by 13C-NMR. Since amylose, amylopectin, and hydroxyethylcellulose were soluble in the reaction media, these three polysaccharides had higher reactivity for etherifications than cellulose. Methyl-cellulose, which has hydrophobic methyl groups, had as much reactivity as cellulose. Primary hydroxyl groups, C-6, of polysaccharides had the highest reactivity for diethylaminoethylation.  相似文献   

18.
The oxidation of [1-14C]linoleate in isolated microsomes from pea leaves was found to be stimulated by NADPH addition. The formation of one of the main metabolites, 12-hydroxy-9(Z)-dodecenoic acid is particularly NADPH-dependent. The predominant products in the absence of NADPH were hydroperoxides and in the presence of NADPH, 12-hydroxy-9(Z)-dodecenoic acid. Exogenous [1-14C]-13-hydroperoxy-9(Z), 11(E)-octadecadieoic acid and [1-14C]-12-oxo-9(Z)-dodecenoic acidwere the efficient precursors of 12-hydroxy9(Z)-dodecenoic acid. It was concluded that 12-hydroxy-9(Z)-dodecenoic acid is formed by NADPH-dependent enzymatic reduction of 12oxo-9(Z)-dodecenoic acid. The observed inhibition of linoleate oxidation in isolated microsomes by CO and metryapone suggests the involvement of cytochrome P-450 in the reaction. The relative contribution of lipoxygenase and monooxygenase activity to linoleate oxidation in microsomes is discussed.  相似文献   

19.
Chemically fully sulfated polysaccharides including xylan (-->4Xylbeta-(1-->4)Xylbeta1-->), amylose (-->4Glcalpha-(1-->4)Glcalpha1-->), cellulose (-->4Glcbeta-(1-->4)Glcbeta1-->), curdlan (-->3Glcbeta-(1-->3)Glcbeta1-->) and galactan (-->3Galbeta-(1-->3)Galbeta1-->), which have been isolated from Korean clam, were prepared, and their anticoagulant activity was investigated. The results strongly suggest that the activity might not be depending on anomeric configuration (alpha or beta) or monosaccharide species but on the glycosidic linkage, either (1-->3) or (1-->4). 1H NMR studies of these modified polysaccharides show that the neighboring sulfate groups at the C-2 and C-3 positions might have caused the conformational changes of each monosaccharide from 4C(1) to 1C(4). Furthermore, the effect of 6-sulfate residues on the anticoagulant activity was investigated using a specific desulfated reaction for the chemically fully sulfated polysaccharides. The 6-sulfate group is very important in determining anticoagulant activity of (1-->3)-linked polysaccharides, whereas the activity is not affected by presence or absence of the 6-sulfate group in (1-->4)-linked polysaccharides.  相似文献   

20.
Xyloglucans (XG) with different mobilities were identified in the primary cell walls of mung beans (Vigna radiata L.) by solid-state 13C-NMR spectroscopy. To improve the signal:noise ratios compared with unlabelled controls, Glc labelled at either C-1 or C-4 with 13C-isotope was incorporated into the cell-wall polysaccharides of mung bean hypocotyls. Using cell walls from seedlings labelled with d-[1-13C]glucose and, by exploiting the differences in rotating-frame and spin-spin proton relaxation, a small signal was detected which was assigned to Xyl of XGs with rigid glucan backbones. After labelling seedlings with d-[4-13C]glucose and using a novel combination of spin-echo spectroscopy with proton spin relaxation-editing, signals were detected that had 13C-spin relaxations and chemical shifts which were assigned to partly-rigid XGs surrounded by mobile non-cellulosic polysaccharides. Although quantification of these two mobility types of XG was difficult, the results indicated that the partly-rigid XGs were predominant in the cell walls. The results lend support to the postulated new cell-wall models in which only a small proportion of the total surface area of the cellulose microfibrils has XG adsorbed on to it. In these new models, the partly-rigid XGs form cross-links between adjacent cellulose microfibrils and/or between cellulose microfibrils and other non-cellulosic polysaccharides, such as pectic polysaccharides.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号