首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 440 毫秒
1.
Somatic embryogenesis of Cyclamen persicum in liquid medium   总被引:1,自引:0,他引:1  
A method is described for the production of somatic embryos of Cyclamen persicum Mill. in liquid medium. Five steps are involved; initiation of embryogenic cell lines, proliferation of pro-embryogenic masses (PEMs) on auxin-containing medium, development of somatic embryos on hormone-free medium with high osmolarity, germination and subsequent plantlet formation. Cell lines were initiated by culturing the explant, the seedling tuber, directly in liquid medium. Three parameters were important for obtaining embryogenic cell lines; explant density, hormone concentrations and subculture regime. The rate of uptake of the hormones 2,4-dichlorophenoxyacetic acid (2,4-D) and kinetin influenced the formation of PEMs. Highly embryogenic cell lines were obtained only when PEMs had formed within 5–7 weeks. PEMs were proliferated for at least 24 months and could be isolated from each subculture for the production of somatic embryos. A high sucrose content (175 m M ) in the development medium without hormones ensured efficient embryo development from PEMs. A subsequent subculture in low sucrose concentration (58 m M ) induced the formation of a tuber, thus promoting germination. Arabinogalactan-proteins (AGPs) from carrot seeds and AGPs bound by the monoclonal antibody ZUM 18 increased the number of PEMs in a culture, showing that the activity of AGPs is not species specific.  相似文献   

2.
The presence of totipotent and non-totipotent cells in embryogenic carrot cell suspension cultures was examined by cloning of cell microclusters. Forty clones were isolated and the distribution of their embryogenic potential was studied. Nonembryogenic, weakly and highly embryogenic cell lines were selected. After one year of subculture a second cloning round showed that the highly embryogenic and the non-embryogenic cell lines were homogenous and stable. A measurement of ploidy levels of clones by flow cytometry showed that the embryogenic clones were all diploid whereas the non-embryogenic were diploid or tetraploid. Hence, for our strain, there was a strict relationship between the tetraploid state and the inability to produce somatic embryos.Abbreviations 2,4-D 2,4-dichlorophenoxyacetic acid - PCV packed cell volume - MS Murashige and Skoog medium - MES 2(N-morpholino) ethanesulfonic acid - a.u. arbitrary units  相似文献   

3.
Heterosis often occurs in offspring derived from a cross between inbred or divergent parents and can be observed as the superior performance of these hybrids for a wide variety of characters. Heterosis was compared in maize lines at two ploidy levels, diploid and tetraploid, to gain a better understanding of the interaction of heterosis and ploidy level. Employing genetically identical diploid and tetraploid maize derived from four different inbred lines, we investigated heterosis for 11 morphological traits, including several plant height measures, as well as flowering time for both silks and anthers. We find that the heterotic response of a certain hybrid differs between diploid and tetraploid lines, and that the response at one ploidy cannot serve as a predictor for the other. Also, progressive heterosis was found for several of the characters in the tetraploid double-cross hybrid, which can have four different alleles at one locus, compared to the double-cross diploid hybrids, which can only possess two alleles per locus. Overall, the results indicate that the heterotic response of tetraploid maize lines differs significantly from that of the diploid. Electronic supplementary material The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

4.
Cucumber (Cucumis sativus L.) cytokinin-independent embryogenic cell suspension cultures were derived and maintained for more than 3.5 years without losing the embryogenic potential. The preparation and the characteristics of the cucumber embryogenic cell suspension possess many similarities to that of carrot. The cultures were induced from hypocotyl explants of in vitro grown cucumber plants in liquid MS media containing 2,4-dichlorophenoxyacetic acid as the sole growth regulator during 6 weeks and they contained a heterogeneous array of several different types of single cells and cell clusters (PEMs). The established cell suspensions were subcultured in 1-week interval, while the inoculation density was optimized to 2.0 × 105 cells ml−1 using cell viability as a marker. Somatic embryos were obtained after the transfer of the proembryogenic masses to a hormone-free semisolid MS medium with a frequency of 388 ± 57 somatic embryos per 1 ml of packed cell volume of the established cucumber embryogenic culture within 7 days. The frequency of normal somatic embryos with two cotyledons was found to be 78%. Such embryos possessed the potential of spontaneous maturation and the embryo conversion rates were 87%. The yield of normally growing plants was much higher compared with that previously described for cucumber systems. Somatic embryo-derived plants were successfully transferred to the greenhouse where they flowered and fruited.  相似文献   

5.
In a previous study of mouse tetraploid<-->diploid chimaeric blastocysts, tetraploid cells were found to be more abundant in the trophectoderm than the inner cell mass (ICM) and more abundant in the mural trophectoderm than the polar trophectoderm. This non-random allocation of tetraploid cells to different regions of the chimaeric blastocyst may contribute to the restricted tissue distribution seen in post-implantation stage tetraploid<-->diploid chimaeras. However, the tetraploid and diploid embryos that were aggregated together differed in several respects: the tetraploid embryos had fewer cells and these cells were bigger and differed in ploidy. Each of these factors might underlie a non-random allocation of tetraploid cells to the chimaeric blastocyst. A combination of micromanipulation and electrofusion was used to produce two series of chimaeras that distinguished between the effects of cell size and ploidy on the allocation of cells to different tissues in chimaeric blastocysts. When aggregated cells differed in cell size but not ploidy, the derivatives of the larger cell contributed significantly more to the mural trophectoderm and polar trophectoderm than the ICM. When aggregated cells differed in ploidy but not cell size, the tetraploid cells contributed significantly more to the mural trophectoderm than the ICM. In both experiments the contributions to the polar trophectoderm tended to be intermediate between those of the mural trophectoderm and ICM. These experiments show that both the larger size and increased ploidy of tetraploid cells could have contributed to the non-random cell distribution that was observed in a previous study of tetraploid<-->diploid chimaeric blastocysts.  相似文献   

6.
Photosynthetically-active protoplasts isolated from isogenic sets of diploid-tetraploid and tetraploid-octoploid alfalfa (Medicago sativa L.) leaves were used to investigate the consequences of polyploidization on several aspects related to photosynthesis at the cellular level. Protoplasts from the tetraploid population contained twice the amount of DNA, ribulose-1,5-bisphosphate carboxylase (RuBPCase), chlorophyll (Chl), and chloroplasts per cell compared to protoplasts from the diploid population. Although protoplasts from the octoploid population contained nearly twice the number of chloroplasts and amount of Chl per cell as tetraploid protoplasts, the amount of DNA and RuBPCase per octoploid cell was only 50% higher than in protoplasts from the tetraploid population. The rate of CO2-dependent O2 evolution in protoplasts nearly doubled with an increase in ploidy from the diploid to tetraploid level, but increased only 67% with an increase in ploidy from the tetraploid to octoploid level. Whereas leaves and protoplasts had similar increases in RuBPCase, DNA, and Chl with increase in ploidy level, it was concluded that increased cell volume rather than increased cell number per leaf is responsible for the increase in leaf size with ploidy.  相似文献   

7.
An approach combining morphological profiling and flow cytometric analysis was used to assess genetic stability during the several steps of somatic embryogenesis in Pinus pinaster. Embryogenic cell lines of P. pinaster were established from immature zygotic embryos excised from seeds obtained from open-pollinated trees. During the maturation stage, phenotype of somatic embryos was characterized as being either normal or abnormal. Based upon the prevalent morphological traits, different types of abnormal embryos underwent further classification and quantification. Nuclear DNA content of maritime pine using the zygotic embryos was estimated to be 57.04 pg/2C, using propidium iodide flow cytometry. According to the same methodology, no significant differences (P ≤ 0.01) in DNA ploidy were detected among the most frequently observed abnormal phenotypes, embryogenic cell lines, zygotic and normal somatic embryos, and somatic embryogenesis-derived plantlets. Although the differences in DNA ploidy level do not exclude the occurrence of a low level of aneuploidy, the results obtained point to the absence of major changes in ploidy level during the somatic embryogenesis process of this economically important species. Therefore, our primary goal of true-to-typeness was assured at this level.  相似文献   

8.
A protocol avoiding the feeder-layer cell system was optimized for Agrobacterium-mediated transformation of tomato cotyledonary explants. Over 500 transgenic plants from five tomato cultivars were regenerated in 15 independent experiments. Depending on both genotype and procedure, transformation frequencies ranged from 1.8% to 11.3%. The optimal transformation rate was obtained by inoculating explants with a bacterial suspension in exponential growth ( D(600) = 10(2)-10(3) cells/ml) and transferring cotyledon explants to fresh selective regeneration medium every 3 weeks. The ploidy level of both tomato genotypes used as explant source and primary transformants, was studied by flow cytometry. The inbred lines and cultivars were diploid but a polysomatic pattern in the cotyledon explant was confirmed. The rate of tetraploid transgenic plants ranged from 24.5% to 80% and depended on both the genotype and the transformation procedure. Surprisingly, the percentages of transformed plants with higher ploidy levels were not related to the proportion of 4C and 8C nuclei in the cotyledonary tissue. For some genotypes the optimisation of the transformation rate resulted in an increase of tetraploid transgenic plants. Results obtained in this work indicate the convenience of checking the ploidy level of the primary transformants before performing basic studies or introducing tomato transgenic material in a breeding program.  相似文献   

9.
Triploid suspensions generally grew more vigorously in modified MS medium with 2,4-D than those of diploids. The embryogenic potential of 26-month-old auxin-dependent suspension cultures depended on the line. Neither triploid nor diploid BOR (Borszczagowski line) were able to produce somatic embryos. Similarly, 12–20-month-old cytokinin-dependent suspensions from the same triploid line were not capable of regeneration. Only aggregates from 26-month-old auxin-dependent suspension of triploid line 603 differentiated into somatic embryos. In contrast, 18-month-old diploid and triploid liquid cultures of meristematic clumps (LMC) of BOR retained their regeneration potential. The ploidy level of triploid and diploid auxin-dependent suspension cultures was stable during the first 8 months. However, the ploidy level of triploids remained stable over 26 months of culture, whereas 66.7% of diploid cultures underwent chromosome doubling. No ploidy changes were observed among plants regenerated from 18-month-old LMC. Our data suggest that loss of embryogenic potential in suspension culture was independent of ploidy level.  相似文献   

10.
We have isolated and characterised diploid and tetraploid clones from the normally heterologous Spodoptera frugiperda (Sf-9)cell line by dilution cloning technique. Tetraploid clones were found to have cell sizes in excess of 35% larger than that of the diploid clones. In contrast, the maximum cell numbers achieved in batch cultures of diploid clones were on average 185% higher than the tetraploid cell numbers. Growth rates and metabolic quotients during the exponential phase were similar for both clones. Tetraploid cells infected with wild-type and recombinant green fluorescent protein (GFP) baculovirus, resulted in more polyhedra or GFP product per cell. Importantly, the difference between the clones either completely diminished or reduced to 50% when the yield was assessed in terms of the amount of polyhedra or GFP per mL of medium, respectively. These results indicate that the existing heterogeneity in insect cell populations with respect to ploidy level, are correlated to cell growth and product yield.  相似文献   

11.
We analyzed embryonic stem cell lines for their capacity to produce aggregation chimeras with diploid or developmentally compromised tetraploid embryos. Descendants of embryonic stem cells which contributed to midgestation fetuses at high levels were capable of supporting fetal development also with tetraploid partners. Different numbers of embryonic stem cells were introduced into diploid and tetraploid morulae as well as into blastocysts by microinjection. There were no differences in the frequency of embryonic stem cell-containing fetuses when comparing aggregation or injection into morulae versus blastocysts. However, the distribution pattern of embryonic stem cell derivatives in chimeric fetuses suggested that pre-compaction embryos are more suitable for generating fetuses with high embryonic stem cell contribution. Injection of embryonic stem cells into tetraploid embryos showed that completely embryonic stem cell-derived fetuses can also be produced by this technique. Totally embryonic stem cell derived fetuses were observed in each group, when embryonic stem cells were injected into diploid embryos. However, the rate of chimeras and chimerism was lower when 1 or 3 embryonic stem cells were used versus 8 or 15 cells. This suggests that the number of embryonic stem cells introduced might play a role in the colonization ability.  相似文献   

12.
Lin BY 《Genetics》1984,107(1):103-115
Maize kernels inheriting the indeterminate gametophyte mutant (ig) on the female side had endosperms that ranged in ploidy level from diploid (2x) to nonaploid (9x). In crosses with diploid males, only kernels of the triploid endosperm class developed normally. Kernels of the tetraploid endosperm class were half-sized but with well-developed embryos that regularly germinated. Kernels of endosperm composition other than triploid or tetraploid were abortive.-Endosperm ploidy level resulting from mating ig/ig x tetraploid Ig similarly was variable. Most endosperms started to degenerate soon after pollination and remained in an arrested state. Hexaploid endosperm was exceptional; it developed normally during the sequence of stages studied and accounted for plump kernels on mature ears. Since such kernels have diploid maternal tissues (pericarp) but triploid embryos, the present finding favors the view that endosperm failure or success in such circumstances is governed by conditions within the endosperm itself.-Whereas tetraploid endosperm consisting of three maternal genomes and one paternal genome is slightly reduced in size but supports viable seed development, that endosperm having two maternal and two paternal chromosome sets was highly defective and conditioned abortion. Thus, development of maize endosperm evidently is affected by the parental source of its sets of chromosomes.  相似文献   

13.
Morphogenesis and maturation of somatic embryos, ploidy, and genotyping of cell lines (CL) of embryogenic cultures of Larix sibirica Ledeb. in vitro were investigated during 2–6 years. It was revealed that from 2000 to 11103 globular somatic embryos were formed in proliferating CL. However, the ability of somatic embryos to the maturation and germination decreased. Cytogenetic study of embryonal-suspensor masses (ESM) of Larix sibirica demonstrated that cells of long-term cultivated cultures remained diploid. According to microsatellite analysis, proliferating CL of Siberian larch were characterized by weak allelic variability, and cell line 6 and cloned seedlings of this line were genetically stable and corresponded to the donor tree. Embryogenic cell lines composed the collection bank, which will be successfully used for plantation forest growing.  相似文献   

14.
Analysis of control diploid and polyploid amphibia indicated that cell and nuclear volumes were closely related to their ploidy, so that an increase in ploidy was generally associated with an increase in cell size. This relationship is also believed to occur in mammalian polyploids. However, since the latter are only rarely encountered spontaneously, or only occasionally following experimental manipulation, no detailed morphometric studies have been carried out to date to confirm whether such a relationship exists. In this study, the cellular and nuclear volume of primitive red blood cells was analyzed in carefully developmentally matched control diploid mouse embryos and tetraploid embryos produced by the technique of electrofusion. All of the cells and/or nuclei studied had a characteristic spherical shape which greatly simplified the morphometric analysis. A defined and predictable relationship between ploidy and cellular and/or nuclear volume was observed in the red blood cells between 8.25 and 14.5 days of gestation. During this period the primitive red blood cells are gradually replaced by the definitive erythrocytes. The ratio of control values to tetraploid values was found to be close to the theoretical value of 1:2 when comparable cells and/or their nuclei were analyzed in carefully developmentally matched material.  相似文献   

15.
16.
Here, we describe a new protocol for the induction of direct somatic embryogenesis of Agave fourcroydes through thin cell layer (TCL) culture technology. The protocol was optimized for the main factors known to affect the process, including the type of explant (stem or leaf tissue), type and concentration of exogenous growth regulators (α-naphthalene acetic acid [NAA], 2,4-diclorophenoxyacetic acid [2,4-D], 4-amino-3,5,6-trichloro-2-pyridinecarboxylic acid [picloram], and 3,6-dichloro-2-methoxybenzoic acid [dicamba]), and the influence of plant genotype. Thin tissue segments cut transversally (tTCLs) from stems of in vitro-cultured plants gave the best embryogenic response when cultured with 2.26 μM dicamba (92.22 embryos/explant) or 2.07 μM picloram (81.72 embryos/explant). It was interesting to observe that the embryogenic capacity of these tissues was affected by the presence of 6-benzylaminopurine (BA) in the culture medium in which the explant donor plantlets were maintained. Thirteen clonal lines (each derived from a different parental plant), compared for their embryogenic competence under the same culture conditions, produced very different embryogenic responses that varied from very high (117 embryos/explant) to null. The histological analysis revealed that the amount of meristematic tissue present in the tTCLs varied according to the region of the stem (apical, middle, or basal) from which they originated. The cells of the vascular procambium became competent and developed into cell lines that formed embryos, either by a unicellular or a multicellular pathway. Mature embryos germinated in half-strength Murashige and Skoog medium without growth regulators and 85% of regenerated plants was successfully acclimatized in a greenhouse.  相似文献   

17.
Summary The number of chromosomes in cells of callus, somatic embryos and regenerated plantlets during somatic embryogenesis were examined in two cultivars of melon (Cucumis melo L.). Somatic embryos were diploid (50.0%/32.1%), tetraploid (38.5%/57.5%) and octoploid (11.5%/10.4%) whereas in callus cells diploidy (41.9%/43.3%), tetraploidy (27.9%/25.8%), octoploidy (11.6%/15.5%) and a low frequency of other types of ploidy and aneuploidy were observed. Mixoploid somatic embryos were not observed. These results suggest that the somatic embryos were selectively differentiated from diploid, tetraploid and octoploid cells, and that endopolyploidization of cultured cells occurred before the start of cell division leading to somatic embryogenesis. The ratio of diploid to tetraploid (1.30/0.55) in somatic embryos was less than that in callus cells (1.50/1.68) while ratios of diploid to octoploid (4.35/3.09) and tetraploid to octoploid (3.35/5.52) in somatic embryos were greater than those in callus cells (3.61/2.80 and 2.40/1.67). Therefore, it appears that the ability of callus cell to differentiate into somatic embryos increases in the following order: octoploid < diploid < tetraploid. Regenerated plantlets were diploid (65.5%/55.1%) and tetraploid (34.5%/44.9%). No octoploid plantlets were observed. The ratio of diploid to tetraploid in regenerated plantlets (1.72/1.23) was greater than that in somatic embryos. Therefore, it appears that the ability of somatic embryos to develop into plantlets increases in the following order: octoploid < tetraploid < diploid.  相似文献   

18.
The chromosome number of cells in the shoot primordium aggregates and produced plants of melon [Cucumis melo L. 'Prince' (2n=2x=24)] was examined. Shoot primordium aggregates were induced from shoot-tips cultured in liquid medium and shaken at low speed (2 rpm). They were maintained by subculturing small pieces (5mm<) every 4 weeks. Shoot primordium aggregates just after induction contained about 97 diploid and 3 tetraploid cells, which was similar to those maintained in shoot primordium cultures for 6 years. This indicates that the ploidy level was maintained stably. On the other hand, plants produced from the shoot primordium aggregates just after induction were either diploid, tetraploid or mixoploid with both diploid and tetraploid cells. These ploidies were again observed among plants produced from shoot primordium cultures that were 2, 3 or 4 years old. A majority of produced plants were diploid while the total frequency of tetraploids and mixoploids was less than 8 of plants produced from all ages. Therefore, the frequency of somaclonal variation with respect to ploidy among plants produced from shoot primordium aggregates is likely to be stable at a low level over the long term.  相似文献   

19.
In this study, the effects of ploidy level and culture medium were studied on the production of tropane alkaloids. We have successfully produced stable tetraploid hairy root lines of Hyoscyamus muticus and their ploidy stability was confirmed 30?months after transformation. Tetraploidy affected the growth rate and alkaloid accumulation in plants and transformed root cultures of Egyptian henbane. Although tetraploid plants could produce 200% higher scopolamine than their diploid counterparts, this result was not observed for corresponding induced hairy root cultures. Culture conditions did not only play an important role for biomass production, but also significantly affected tropane alkaloid accumulation in hairy root cultures. In spite of its lower biomass production, tetraploid clone could produce more scopolamine than the diploid counterpart under similar growth conditions. The highest yields of scopolamine (13.87?mg?l?1) and hyoscyamine (107.7?mg 1?1) were obtained when diploid clones were grown on medium consisting of either Murashige and Skoog with 60?g/l sucrose or Gamborg??s B5 with 40?g/l sucrose, respectively. Although the hyoscyamine is the main alkaloid in the H. muticus plants, manipulation of ploidy level and culture conditions successfully changed the scopolamine/hyoscyamine ratio towards scopolamine. The fact that hyoscyamine is converted to scopolamine is very important due to the higher market value of scopolamine.  相似文献   

20.
Embryonic stem (ES) cells are capable of differentiating into all embryonic and adult cell types following mouse chimera production. Although injection of diploid ES cells into tetraploid blastocysts suggests that tetraploid cells have a selective disadvantage in the developing embryo, tetraploid hybrid cells, formed by cell fusion between ES cells and somatic cells, have been reported to contribute to mouse chimeras. In addition, other examples of apparent stem cell plasticity have recently been shown to be the result of cell fusion. Here we investigate whether ES cells contribute to mouse chimeras through a cell fusion mechanism. Fluorescence in situ hybridization (FISH) analysis for X and Y chromosomes was performed on dissociated tissues from embryonic, neonatal, and adult wild-type, and chimeric mice to follow the ploidy distributions of cells from various tissues. FISH analysis showed that the ploidy distributions in dissociated tissues, notably the tetraploid cell number, did not differ between chimeric and wild-type tissues. To address the possibility that early cell fusion events are hidden by subsequent reductive divisions or other changes in cell ploidy, we injected Z/EG (lacZ/EGFP) ES cells into ACTB-cre blastocysts. Recombination can only occur as the result of cell fusion, and the recombined allele should persist through any subsequent changes in cell ploidy. We did not detect evidence of fusion in embryonic chimeras either by direct fluorescence microscopy for GFP or by PCR amplification of the recombined Z/EG locus on genomic DNA from ACTB-cre::Z/EG chimeric embryos. Our results argue strongly against cell fusion as a mechanism by which ES cells contribute to chimeras.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号