首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Nerve growth factor(NGF)-mediated neurite outgrowth of PC12 pheochromocytoma cells was potentiated in medium containing high concentrations of extracellular K+. The binding of iodinated NGF to the cells was also enhanced by raising the concentration of K+ in medium up to 100 mM; the enhancement was saturated at 50 mM K+. Although the mechanism by which NGF-mediated neurite outgrowth is potentiated in high K+ medium remains to be largely unknown, high K+-induced alterations in the NGF binding are suggested to play a role in this phenomenon.  相似文献   

3.
The structure-activity relationship of a neurite outgrowth-promotingsubstance (designated as MC14) from the brown alga, Sargassummacrocarpum, was analysed. Eight synthetic carotenoids and1,4-benzoquinone were used to determine the moiety of the MC14molecule structurally responsible for the nerve growth factor(NGF)-mediated neurite outgrowth-promoting activity on PC12D cells.The bioassays showed that none of these carotenoids exhibitedNGF-potentiating activity. In contrast, 1,4-benzoquinone enhancedsignificantly NGF-mediated neurite outgrowth from PC12D cells, therebeing a 260% increase over the activity of negative control (10 ngmL-1 NGF). The effect of quinone structure on NGF-potentiatingactivity, when examined using 12 naturally occurring quinones,demonstrated that lawsone, alizarin and lapachol significantly enhancedNGF-mediated neurite outgrowth by 329%, 325% and 265%,respectively, of that in the negative control. These results show thatquinone is the structural moiety of MC14 molecule responsible for theneurite outgrowth-promoting activity. In addition, the hydroxyl groupbonded to quinone had a significant effect on neuritogenic activity. Thebearing of a hydroxyl group at the 1'-position of benzoquinone, and thebearing of two hydroxyl groups at the 1' and 2'-positions of anthraquinone,played a crucial role in enhancing the neurite outgrowth-promoting actionof NGF.  相似文献   

4.
Nerve growth factor (NGF) increases expression of nitric oxide synthase (NOS) isozymes leading to enhanced production of nitric oxide (NO). NOS inhibitors attenuate NGF-mediated increases in cholinergic gene expression and neurite outgrowth. Mechanisms underlying this are unknown, but the mitogen-activated protein (MAP) kinase pathway plays an important role in NGF signaling. Like NGF, NO donors activate Ras leading to phosphorylation of MAP kinase. The present study investigated the role of NO in NGF-mediated activation of MAP kinase in PC12 cells. Cells were treated with 50 ng/mL NGF to establish the temporal pattern for rapid and sustained activation phases of MAP kinase kinase (MEK)-1/2 and p42/p44-MAP kinase. Subsequently, cells were pretreated with NOS inhibitors Nomega-nitro-L-arginine methylester and s-methylisothiourea and exposed to NGF for up to 24 h. NGF-induced activation of MEK-1/2 and p42/p44-MAP kinase was not dependent on NO, but sustained phosphorylation of MAP kinase was modulated by NO. This modulation did not occur at the level of Ras-Raf-MEK signaling or require activation of cGMP/PKG pathway. NOS inhibitors did not affect NGF-mediated phosphorylation of MEK. Expression of constitutively active-MEKK1 in cells led to phosphorylation of p42/p44-MAP kinase and robust neurite outgrowth; constitutively active-MKK1 also caused differentiation with neurite extension. NOS inhibitor treatment of cells expressing constitutively active kinases did not affect MAP kinase activation, but neurite outgrowth was attenuated. NOS inhibitors did not alter NGF-mediated nuclear translocation of phospho-MAP kinase, but phosphorylated kinases disappeared more rapidly from NOS inhibitor-treated cells suggesting greater phosphatase activity and termination of sustained activation of MAP kinase.  相似文献   

5.
Hepatocytes isolated from rat fetuses have been shown to contain Systems A, ASC, and N for the Na+-dependent transport of neutral amino acids and the activity of each of these systems is significantly higher in the fetal cells than those of an adult (J. Vadgama and H.N. Christensen, personal communication). In contrast to the hepatocytes isolated from adult or newborn animals, the fetal cells do not respond to insulin, glucagon, or dexamethasone with an increase in System A-mediated transport. The System A activity present in the fetal hepatocytes does undergo adaptive regulation in a manner similar to that seen for adult cells, however, the same is not true for System N. Like the cells isolated from the adult rats, the hepatocytes isolated from fetal liver tissue exhibit an increase in Na+-independent transport with time in culture.  相似文献   

6.
NGF can regulate nitric oxide synthase (NOS) expression and nitric oxide (NO) can modulate NGF-mediated neurotrophic responses. To investigate the role of NO in NGF-activated expression of cholinergic phenotype, PC12 cells were treated with either the nonselective NOS inhibitor L-NAME (N (omega)-nitro-L-arginine methylester) or the inducible NOS selective inhibitor MIU (s-methylisothiourea), and the effect on NGF-stimulated ChAT mRNA levels and ChAT specific activity was determined. NGF increased steady-state levels of mRNA and protein for both inducible and constitutive isozymes of NOS in PC12 cells, and led to enhanced NOS activity and NO production. MIU and, to a lesser extent, L-NAME blocked neurite outgrowth in nerve growth factor (NGF)-treated PC12 cells. Both L-NAME and MIU attenuated NGF-mediated increases in choline transferase (ChAT)-specific activity and prevented the increase in expression of ChAT mRNA normally produced by NGF treatment of PC12 cells. The present study indicates that NO may be involved in the modulation of signal transduction pathways by which NGF leads to increased ChAT gene expression in PC12 cells.  相似文献   

7.
Nerve growth factor (NGF) induces neurite outgrowth and differentiation in a process that involves NGF binding to its receptor TrkA and endocytosis of the NGF-TrkA complex into signaling endosomes. Here, we find that biogenesis of signaling endosomes requires inactivation of Rab5 to block early endosome fusion. Expression of dominant-negative Rab5 mutants enhanced NGF-mediated neurite outgrowth, whereas a constitutively active Rab5 mutant or Rabex-5 inhibited this process. Consistently, inactivation of Rab5 sustained TrkA activation on the endosomes. Furthermore, NGF treatment rapidly decreased cellular level of active Rab5-GTP, as shown by pull-down assays. This Rab5 down-regulation was mediated by RabGAP5, which was shown to associate with TrkA by coimmunoprecipitation assays. Importantly, RNA interference of RabGAP5 as well as a RabGAP5 truncation mutant containing the TrkA-binding domain blocked NGF-mediated neurite outgrowth, indicating a requirement for RabGAP5 in this process. Thus, NGF signaling down-regulates Rab5 activity via RabGAP5 to facilitate neurite outgrowth and differentiation.  相似文献   

8.
9.
Fibroblast growth factors (FGFs), like nerve growth factor (NGF), induce morphological differentiation of PC12 cells. This activity of FGF is regulated by glycosaminoglycans. To further understand the mechanisms of FGF and glycosaminoglycan actions in PC12 cells, we studied the regulation of protein phosphorylation and ornithine decarboxylase (ODC) activity by FGF in the presence and absence of heparin. As with NGF, aFGF and bFGF increased the incorporation of radioactive phosphate into the protein tyrosine hydroxylase (TH). The increase in TH phosphorylation was localized to the tryptic peptide, T3. Both T3 and T1 phosphorylations occur in response to NGF, but there was no evidence that aFGF or bFGF stimulated the phosphorylation of the T1 peptide. This result suggests differential regulation of second messenger systems by NGF and FGF in PC12 cells. Heparin, at a concentration that potentiated aFGF-induced neurite outgrowth 100-fold (100 micrograms/ml), did not alter the ability of aFGF to increase S6 phosphorylation or ODC activity. One milligram per milliliter of heparin, a concentration that inhibited bFGF-induced neurite outgrowth, also inhibited bFGF-induced increases in S6 phosphorylation and ODC activity. These observations suggest (i) that acidic and basic FGF activate a protein kinase, possibly protein kinase C, resulting in the phosphorylation of peptide T3 of TH; (ii) that the FGFs and NGF share some but not all second messenger systems; (iii) that heparin potentiates aFGF actions and inhibits bFGF actions in PC12 cells via distinct mechanisms; (iv) that heparin does not potentiate the neurite outgrowth promoting activity of aFGF by enhancing binding to its PC12 cell surface receptor; and (v) that heparin may coordinately regulate several activities of bFGF (induction of protein phosphorylation, ODC and neurite outgrowth) via a common mechanism, most likely by inhibiting the productive binding of bFGF to its PC12 cell surface receptor.  相似文献   

10.
Summary Normal postnatal rat chromaffin cells and rat pheochromocytoma cells are known to show extensive Nerve Growth Factor (NGF)-induced process outgrowth in culture, and this outgrowth from the postnatal chromaffin cells is abolished by the corticosteroid dexamethasone. To determine whether adult rat chromaffin cells respond to NGF and dexamethasone, dissociated adrenal medullary cells from 3-month-old rats were cultured for 30 days in the presence or absence of these agents. Such cultures contained typical chromaffin cells, chromaffin cells with processes, and neurons. Fewer than 2 % of normal adult chromaffin cells formed processes under any of the conditions studied, and statistically significant changes in this proportion were not detectable in the presence of NGF or dexamethasone. Adrenal medullary neurons, however, were observed only in the presence of NGF, in cultures with or without dexamethasone, and thus appear to be previously unreported NGF targets which require NGF for survival or process outgrowth. Dexamethasone markedly increased total catecholamine content, total content of epinephrine, and tyrosine hydroxylase activity in cultures with or without NGF. In contrast, postnatal rat chromaffin and rat pheochromocytoma cells which have been studied in culture do not produce epinephrine under any of these conditions. It is concluded that rat adrenal chromaffin cells undergo age-related changes in both structural and functional plasticity. The in vitro characteristics of rat pheochromocytoma cells more closely resemble those of postnatal than of adult rat chromaffin cells, but may not entirely reflect the properties of the majority of chromaffin cells in either age group.  相似文献   

11.
Oxidative stress has been implicated in the pathogenesis of a wide variety of neuronal diseases, including ischemic neuronal injury, Alzheimer’s disease, and Parkinson’s disease. Thioredoxin reduces exposed protein disulfides and couples with peroxiredoxin to scavenge reactive oxygen species. Nerve growth factor (NGF) has profound effects on neurons, including promotion of survival and differentiation via multiple signaling pathways. As for the NGF-induced neurite outgrowth, the CREB-cAMP responsive element (CRE) pathway is important to the activation of immediate-early genes such as c-fos. Thioredoxin is upregulated by NGF through ERK and the CREB-CRE pathway in PC12 cells. Thioredoxin is necessary for NGF signaling through CRE leading to c-fos expression and also plays a critical role in the NGF-mediated neurite outgrowth in PC12 cells. Therefore, thioredoxin appears to be a neurotrophic cofactor that augments the effect of NGF on neuronal differentiation and regeneration. NGF acts also as a neuronal survival factor. Previous reports showed that thioredoxin exerts a cytoprotective effect in the nervous system. The cytoprotective effect is mediated by enhancing the action of NGF, via the regulation of antiapoptotic signaling, or through its antioxidative stress activity.  相似文献   

12.
Medium conditioned by primary cultures of fetal or neonatal rat skeletal muscle, fibroblasts, or lung cells dramatically increases the neuritic outgrowth from spinal cord explants. After 7 days in vitro, the outgrowth of neurites from 15- to 16-day fetal rat spinal cord slices grown in conditioned medium (CM) covers a 3- to 4-fold greater area than that from slices grown in fresh, nonconditioned (control) medium. Moreover, the pattern of neuritic outgrowth is markedly different in CM-treated slices. In control slices, the neurites form a tangled, dense network of neurites which usually extend only a small distance from the slice edge, while in CM-treated slices, the neurites form a more open network, with the majority of neurites extending radially for long distances (up to several millimeters) from the slice edge. The effect of CM on neuritic outgrowth is not due to a detoxification or modification of the serum in the medium, because increased neuritic outgrowth was observed in slices grown in medium conditioned in the presence or absence of 10% fetal calf serum. The outgrowth-enhancing factor(s) in CM has a high molecular weight, since all outgrowth-enhancing activity is retained by membrane filters with a nominal molecular weight cutoff of 105 daltons. This factor(s) is stable at 58°C for 30 min, and does not appear to be βNGF or fibronectin.  相似文献   

13.
Nerve Growth Factor (NGF)-mediated fiber outgrowth in pheochromocytoma PC12 cells is a slow process, developing over a period of several days. However, if these cells are pre-exposed to NGF for 7-10 days, renewed NGF treatment of the subcultured cells elicits fiber outgrowth within 24 h, comparable to the rate of response of physiological target cells to NGF. The present experiments demonstrated that this effect, previously termed "priming", was accompanied by a 60% increase in the volume of the PC12 cells, and that the dose-response curves for NGF-mediated induction of fiber outgrowth and for the increase in cell volume were very similar. Furthermore, the rates of NGF-mediated fiber outgrowth and of cell volume increase were both much slower in conventional PC12 cells (slow-reacting) compared to a newly-selected, fast-responding (FR)subclone of PC12 cells. These results suggested a possible causal relationship between the increase in cell volume and the induction of fiber outgrowth. However, when the cells were pre-exposed for 7 days to dibutyryl-cAMP (db-cAMP), the increase in cell volume was 3-fold higher than that effected by NGF. Nevertheless, db-cAMP had only a very limited ability to "prime" the cells for a subsequent response to NGF. Thus, the induction of cell volume increase and the increased availability of structural elements is not sufficient to explain the "priming" effect of NGF. The effects of db-cAMP are discussed in the context of a possible role of cAMP as a second messenger in the action of NGF.  相似文献   

14.
Abstract— After previous studies had shown that nerve growth factor produces a very similar change in the enzyme pattern of adrenergic neurons as does an increased activity of the preganglionic cholinergic nerves, the present experiments revealed that the nerve growth factor-mediated selective induction of TH and DBH is enhanced by glucocorticoids in a way similar to that mediated by acetylcholine via nicotinic receptors. Corticosterone (5 μM) produced not only an increase in the maximal response to NGF but shifted the concentration response curve of TH to NGF to the left. The potentiation effect was shown to be specific for glucocorticoids, since other steroid hormones like testosterone, β-estradiol and progesterone had no effect. Moreover, the glucocorticoid effect could be antagonized by cortexolone, suggesting an effect via glucocorticoid receptors. In addition to the potentiation of the nerve growth factor-mediated enzyme induction, glucocorticoids reduced the exposure time to NGF, necessary to initiate maximal TH induction, from 4 h to 10 min. The glucocorticoid potentiation of NGF-mediated specific enzyme induction is discussed in relation to the site and mechanism of action of NGF.  相似文献   

15.
Abstract: Nerve growth factor (NGF) and dibutyryl cyclic AMP (dbcAMP) have synergistic effects on the neurite outgrowth of rat pheochromocytoma PC12 cells. The sites of interaction between NGF and dbcAMP have been studied extensively; however, the role of Ca2+ in differentiation induced by the two agents remains unclear. To understand whether intracellular Ca2+ is involved in the differentiation induced by the two agents, PC12 cells were treated with NGF, dbcAMP, or NGF plus dbcAMP for 2 days, and then effects on neurite outgrowth, ATP-induced Ca2+ influx, and Ca2+ mobilization from intracellular Ca2+ pools were examined. NGF or dbcAMP alone enhanced neurite outgrowth and Ca2+ accumulation by nonmitochondrial Ca2+ pools or the thapsigargin (TG)-sensitive Ca2+ pool. The dbcAMP acted synergistically with NGF to increase neurite outgrowth and to enlarge the TG-sensitive Ca2+ pool. The synergistic effect occurred within the first hour of treatment with dbcAMP plus NGF. On the other hand, dbcAMP abolished NGF's ability to enhance ATP-induced influx of extracellular Ca2+. Therefore, NGF and dbcAMP induced different effects on Ca2+ signaling pathways through two different but interacting pathways. In PC12 cells pretreated with TG to deplete the TG-sensitive Ca2+ pool, the dbcAMP- or dbcAMP plus NGF-mediated neurite outgrowth was significantly inhibited, whereas NGF-mediated neurite outgrowth was not affected by TG pretreatment. Our results suggest that the intracellular nonmitochondrial Ca2+ pools were changed in the differentiation process and were necessary for the synergistic effect of NGF and dbcAMP.  相似文献   

16.
17.
Bone marrow cells from normal adult mice were introduced by microinjection via the placenta into W/Wv genetically anemic fetuses of 11 days' gestation. After birth, erythrocytes were fractionated by fluorescence-activated cell sorting on the basis of antibody binding to a fetal-specific antigen (Ft). Lysates of Ft-positive, i.e., fetal, erythrocytes did not detectably contain hemoglobin of the donor type, as judged from electrophoresis of strain-specific hemoglobin variants. Thus, adult hematopoietic bone marrow cells did not resume fetal differentiation despite their post-transplant maturation in a fetal environment.  相似文献   

18.
Neurite outgrowth from dorsal root (DRG) and sympathetic ganglia has been studied utilizing a simplified in vitro culture system for intact ganglia. Attachment of ganglia to tissue culture plates was achieved after a brief incubation of ganglia on the plates in the presence of 100% fetal calf serum or 5% ovalbumin in F12 medium. Neurite outgrowth from dorsal root and sympathetic ganglia was dependent on the continued presence of nerve growth factor (NGF) and on the NGF concentration. The NGF induced neurite outgrowth from DRG cultured in serum-free medium was delayed approximately 24 hr compared to the outgrowth in serum-containing medium.  相似文献   

19.
Prenatal stress applied during the last trimester of pregnancy has been shown to alter fetal development and influence adult sexual behavior. Since androstenedione (Δ4) has the potential to participate in differentiation processes, this study was designed to assess the effect of prenatal stress on maternal and fetal Δ4 titers. Restraint/illumination/heat (environmental stress) or ACTH injections were used to stress pregnant rat dams beginning on Day 14 of pregnancy. Blood samples and organ weights were obtained from nonpregnant animals, pregnant rats on Days 5, 10, 15, 18, and 20 of pregnancy, and fetuses on Days 18 and 20 of gestation. Maternal and male and female fetal Δ4 titers were determined by radioimmunoassay. ACTH and environmental stress significantly reduced fetal body weight and male anogenital distance. Environmental stress also significantly reduced the size of 20-day fetal adrenals and testes. Each treatment caused significant short-term (1 hr after treatment) and long-term (16 hr after treatment) elevation of maternal plasma Δ4 on Days 15 and 18 of gestation, but only short-term elevation of Δ4 titers on Day 20. ACTH treatment did not cause long-term elevation of fetal Δ4 although both ACTH treatment and environmental stress generated a significant short-term increase in fetal Δ4 titers. Environmental stress produced long-term elevation of fetal Δ4 in 18-day fetuses of both sexes and in 20-day female fetuses. It is concluded that maternal stress and exogenous ACTH significantly elevate maternal and fetal Δ4 titers during the prenatal period postulated to be critical in sexual differentiation of the rat brain.  相似文献   

20.
Summary Retinoic acid (RA), a naturally occurring metabolite of vitamin A, increased the number of receptors for nerve growth factor (NGF) in cultured human neuroblastoma cells (LA-N-1), as indicated by an immunofluorescence assay of cell surface receptors and by specific binding of 125I-NGF to solubilized receptors. Analysis of 125I-NGF binding showed that RA increased the number of both high affinity and low affinity receptors for NGF without affecting the equilibrium dissociation constants. Neurite outgrowth similar to that produced by NGF occurred following RA-treatment in LA-N-1 cells, in the SY5Y subclone of SK-N-SH human neuroblastoma cells and in explanted chick dorsal root ganglia (DRG). Whether morphological changes following RA treatment are directly related to the increase in NGF receptors is unknown. Data presented here are consistent with literature reports that RA modifies cell surface glycoproteins, including those that act as cell surface receptors for epidermal growth factor and insulin.Abbreviations DRG dorsal root ganglia - NGF nerve growth factor - RA retinoic acid  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号