首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 875 毫秒
1.
By presenting different kinds of food sources to colonies ofM. sabuleti, we have demonstrated that this species regulates its foraging activity by altering the proportion of scouts that return to the nest to recruit nestmates after discovering a food source and by varying the number of nestmates recruited by a scout. These two parameters are related to the kind of food discovered. Our behavioral experiments showed that the probability that a scout returned to the nest decreased with a decreasing quantity of sucrose solution. In contrast, the number of returned scouts that elicited recruitment from the nest and the mean number of nestmates recruited by one of these scouts were independent of the quantity of the sucrose solution. Recruitment even occurred toward a 1- or 0.25-µl droplet of sucrose solution. When a scout discovered a large dead prey, a large drop of prey juice, a cluster of 30 dead fruit flies, or 1 isolated fruit fly, it always went back to the nest, but it elicited recruitment only when the food source was a large dead prey or a large drop of prey juice. No recruitment occurred when the food source was a single fruit fly and recruitment occurred only once in 30 trials when a cluster of 30 fruit flies was discovered.  相似文献   

2.
Gnamptogenys moelleri nests in bromeliads and feeds on an array of food items, including dead and live animals, and nectar. Field data in Brazilian forests indicate that G. moelleri hunts solitarily, while retrieving is performed both by solitary workers for small items, or by a group of recruited workers for large items. This flexible foraging strategy was investigated in the laboratory through a series of experiments to assess the context in which recruitment is elicited. Three types of food were used: 50% honey solution, large insect prey, and cluster of small insects. For all food types the first encounter by a scout resulted in increased numbers of ants leaving the nest and finding the food in the arena. After finding liquid food or large prey, the forager returns to the nest and transmits information to nestmates about food location on the substrate. The successful scout repeatedly taps the sting on the ground, and recruited ants collectively retrieve the large insect to the nest. On the other hand, there is no transmission of information to nestmates about the location of small clumped prey, although the returning scout induces nestmates to leave the nest and hunt. Because foraging in G. moelleri is restricted mostly to the nest bromeliad, and small worker size (0.5 cm) precludes capturing large prey solitarily, recruitment behavior widens the spectrum of food items consumed by this ant species. Although recruitment behavior in ponerines has already been reported to vary with the type and size of a food source, this study also shows that the transmission of information about food location depends on the type of food found (large prey or liquid food versus cluster of small prey).  相似文献   

3.
In social insects, selection takes place primarily at the level of the colony. Therefore, unlike solitary insects, social species are expected to forage at rates that maximize colony fitness rather than individual fitness. Workers can increase the net benefit of foraging by responding to increased resource availability, by responding more strongly to higher‐quality resources, and by decreasing the uncertainty with which nestmates find resources. Unlike many ants and social bees, no social wasp is known to utilize a nest‐based recruitment signal to inform nestmates of food location. On the other hand, wasps do learn the odor of food brought to the nest and use this cue to locate the food source outside the nest. Here, we quantify the effects of three food‐associated variables on the allocation of foraging effort in the yellowjacket Vespula germanica. We used an experimental approach to assess whether resource quantity, quality, or associated olfactory information affect the probability that a forager will leave the nest on a foraging trip. We addressed these questions by inserting a known amount of sucrose solution directly into nests and recording foraging effort (departure rate) over the subsequent hour‐long observation period. No differences were found in foraging effort because of the presence/absence of olfactory cues, but there was strong evidence that foraging effort increased in response to resource influx and resource quality. Thus, while olfactory cues are learned in the nest, only resource quality and the cue of increased amount of food in the nest factor into a forager's decision of whether or not to depart on a foraging trip. However, as prior work has shown, once a wasp forager leaves the nest, it uses the learned olfactory cues to aid in finding resources.  相似文献   

4.
We study the influence of food distance on the individual foraging behaviour of Lasius niger scouts and we investigate which cue they use to assess their distance from the nest and accordingly tune their recruiting behaviour. Globally, the number of U-turns made by scouts increases with distance resulting in longer travel times and duration of the foraging cycle. However, over familiar areas, home-range marking reduces the frequency and thereby the impact of U-turns on foraging times leading to a quicker exploitation of food sources than over unmarked set-ups. Regarding information transfer, the intensity of the recruitment trail reaching the nest decreases with increasing food distance for all set-ups and is even more reduced in the absence of home-range marking. Hence, the probability of a scout continuing to lay a trail changes along the homeward journey but in a different way according to home-range marking. Over unexplored setups, at a given distance from the food source, the percentage of returning trail-laying ants remains unchanged for all tested nest-feeder distances. Hence, the tuning of the trail recruiting signal by scouts was not influenced by an odometric estimate of the distance already travelled by the ants during their outward journey to the food. By contrast, over previously explored set-ups, a distance-related factor – that is the intensity of home-range marking – strongly influences their recruiting behaviour. In fact, over a home-range marked bridge, the probability of returning ants maintaining their trail-laying behaviour increases with decreasing food distance while the gradient of home-range marks even induces ants which have stopped laying a trail to resume this behaviour in the nest vicinity. We suggest that home-range marking laid passively by walking ants is a relevant cue for scouts to indirectly assess distance from the nest but also local activity level or foraging risks in order to adaptively tune trail recruitment and colony foraging dynamics. Received 13 July 2004; revised 26 January and 20 May 2005; accepted 2 July 2005.  相似文献   

5.
Ant colonies that undergo long starvation periods have to tune their exploratory and foraging responses to face their food needs. Although the number of foragers is known to increase with food deprivation in the ant Lasius niger, such enhanced food exploitation is not related to a more intense recruitment by successful scouts. We thus suggest that the colony’s response to a food shortage could result from changes at the level of the ant recruits, in particular from changes in their spatial organization inside the nest. Since aggregation plays a key role in the social organization of ants, we assume that the colony’s response to starvation could be due to changes in the aggregative behaviour of L. niger nestmates.We thus compared the aggregation dynamics of inner-nest workers and foragers having undergone either a short or a long-lasting starvation period. Whatever the ethological group (foragers or inner-nest workers), there was no significant influence of starvation on the aggregation dynamics nor on any feature of the observed clusters. This result shows that an increased foraging response to food shortage cannot be explained by changes in the tendency of nestmates to aggregate within the nest. Finally, we discuss other behavioural mechanisms, in particular changes in behavioural thresholds that could underlie the adaptive changes seen in colony foraging after long starvation periods. Received 25 June 2007; revised 21 January 2008; accepted 24 January 2008.  相似文献   

6.
Spatial distribution of ant workers within the nest is a key element of the colony social organization contributing to the efficiency of task performance and division of labour. Spatial distribution must be efficiently organized when ants are highly starved and have to get food rapidly. By studying ants’ behaviour within the nest during the beginning of food recruitment, this study demonstrates how the spatial organization is affected by starvation and improves the efficiency and the speed of recruitment as well as the allocation of food. (1) In starved nests, nestmates left the deep part of the nest and crowded near the nest entrance. This modification of the spatial distribution is a local phenomenon concerning only the individuals situated in the first chamber near the nest entrance. These starved individuals have a higher probability of leaving the nest after a contact with recruiters than nestmates situated deeper in the nest. This strongly suggests that nestmates situated near the nest entrance have a low response threshold to the signals emitted by recruiters. Their higher responsiveness speeds up their exit to the foraging area and hence may increase the efficiency of highly starved colonies in exploiting new food opportunities. (2) In starved nests, the trajectory covered by recruiters between contacts with nestmates was nearly twice as small. For recruiters, this represented a gain of time in the allocation of food. As the recruitment process follows snowball dynamics, this gain of time by starved recruiters might also speed up the exploitation of food. This study evidences how the spatial distribution of individuals as a function of their motivational state might have a regulatory function in the recruitment process, which should be generic for many social species.  相似文献   

7.
The search for food in the French subterranean termite Reticulitermes santonensis De Feytaud is organized in part by chemical trails laid with the secretion of their abdominal sternal gland. Trail-laying and -following behavior of R. santonensis was investigated in bioassays. During foraging for food termites walk slowly (on average, 2.3 mm/s) and lay a dotted trail by dabbing the abdomen at intervals on the ground. When food is discovered they return at a quick pace (on average, 8.9 mm/s) to the nest, laying a trail for recruiting nestmates to the food source. While laying this recruitment trail the workers drag the abdomen continuously on the ground. The recruitment trail is highly attractive: it is followed within a few seconds, by more nestmates, and at a quicker pace (on average, 6.4 mm/s) than foraging trails (on average, 2.9 mm/s). The difference between foraging and recruitment trails in R. santonensis could be attributed to different quantities of trail pheromone. A caste-specific difference in trail pheromone thresholds, with workers of R. santonensis being more sensitive to trails than soldiers, was also documented: soldiers respond only to trails with a high concentration of trail pheromone.  相似文献   

8.
In the ant species Tetramorium caespitum, communication and foraging patterns rely on group-mass recruitment. Scouts having discovered food recruit nestmates and behave as leaders by guiding groups of recruits to the food location. After a while, a mass recruitment takes place in which foragers follow a chemical trail. Since group recruitment is crucial to the whole foraging process, we investigated whether food characteristics induce a tuning of recruiting stimuli by leaders that act upon the dynamics and size of recruited groups. High sucrose concentration triggers the exit of a higher number of groups that contain twice as many ants and reach the food source twice as fast than towards a weakly concentrated one. Similar trends were found depending on food accessibility: for a cut mealworm, accessibility to haemolymph results in a faster formation of larger groups than for an entire mealworm. These data provide the background for developing a stochastic model accounting for exploitation patterns by group-mass recruiting species. This model demonstrates how the modulations performed by leaders drive the colony to select the most profitable food source among several ones. Our results highlight how a minority of individuals can influence collective decisions in societies based on a distributed leadership.  相似文献   

9.
The Neotropical species Odontomachus bauri employs canopy orientation during foraging and homing. An artificial canopy pattern above the ants is much more effective as an orientation cue than horizontal landmarks or chemical marks. However, both horizontal visual cues and chemical marks on the ground can serve in localizing the nest entrance. Successful O. bauri foragers recruit nestmates to leave the nest and search for food. However, the recruitment signals do not contain directional information. Antennation bouts and pheromones from the pygidial gland most likely serve as stimulating recruitment signals. Secretions from the mandibular and poison gland elicit alarm and attack behavior.  相似文献   

10.
We studied the foraging and predatory behaviors of the invasive African myrmicine ant, Pheidole megacephala (F.) in its native range. Workers can singly capture a wide range of insects, including relatively large prey items. For still larger prey, they recruit at short range those nestmates situated within reach of an alarm pheromone and together spread-eagle the insect. These behaviors are complimented by a long-range recruitment (of nestmates remaining in the nest) based on prey size. P. megacephala scouts also use long-range recruitment when they detect the landmarks of termites and competing ant species, thus permitting them to avoid confronting these termites and ants solitarily.  相似文献   

11.
This study considers the interplay between individual load-size selection and recruitment behavior in the leaf-cutting ant Atta cephalotes. Foraging workers anchor themselves on the leaf edge by their hind legs and pivot around them while cutting arcs from leaves. Since workers not only cut leaves but also lay chemical trails to recruit nestmates, we investigated whether there is conflict of motivation affecting the workers' decision either to quickly inform nestmates about a newly discovered food source, or instead to cut full-load leaf fragments, which could delay recruitment. Workers were presented with leaves of privet of three different grades of toughness (measured as leaf density=mass/area) as sources of different quality, and load-size selection and recruitment behavior by harvesting-satiated and harvesting-deprived workers were measured. The following results were obtained. (1) Leaf density affected individual load-size selection: both harvesting-satiated and harvesting-deprived workers were found to cut smaller leaf fragments from the denser leaves. (2) Harvesting-deprived workers cut smaller fragments than harvesting-satiated workers, and therefore saved cutting time. The fragments cut were smaller only during the initial phases of the recruitment process, when information about the discovery needed to be transferred. (3) Harvesting-deprived workers showed higher recruitment rates than harvesting-satiated workers. A considerable number of ants were observed to return to the nest unladen. During the initial phases, the ratio of laden/unladen workers was lower than that for harvesting-satiated workers, and increased with the development of the tograging process. (4) Scout workers confronted with familiar leaves ran back to the nest laying chemical trails without even contacting the leaves. They relied on olfactory cues to start recruiting nestmates, and leaf density played no role in their decisions. (5) When confronted with unfamiliar leaves, on the other hand, they assessed leaf quality by probing bites at the leaf edge, although no actual cuts occurred. In this situation, the resulting recruitment rates depended on physical leaf traits, being higher for the tenderer leaves. (6) Workers foraging on unfamiliar leaves cut smaller fragments than workers cutting familiar leaves, and most of them displayed trail-laying behavior when returning to the nest. The results support the hypothesis of a trade-off between time spent collecting and that invested to recruit nestmates. During the initial phases of exploitation of a newly discovered food source, workers reduced their individual carrying performance in order to return earlier to the colony for further recruitment.  相似文献   

12.
Prior work has shown that yellowjacket waSPS remember food odors and use them as cues when foraging. There is also evidence they have mechanisms to recruit nest mates to highly rewarding food sources, as naïve individuals are more likely to go to food sources with scents similar to those visited by nest mates. We asked whether recruitment requires behavioral stimulation by returning foragers, as in honey bees, or if sampling the food source inside the nest is sufficient. We tested this by eliminating the behavior of returning foragers by inserting a scented sugar solution directly into a Vespula germanica nest. Exiting foragers were given a choice of the test scent and a control scent. WaSPS were more likely to choose the test scent. We conclude that behavioral interactions with returning foragers are not necessary to stimulate nest mates to associate an odor with a food source and search for a resource bearing that odor, and that experience with the scented reward inside the nest is sufficient to achieve this result.  相似文献   

13.
The great flexibility of the feeding strategies exhibited by the ponerine ant Brachyponera senaarensis (Mayr) allows it to exploit either seeds or animal prey items as food resources. Predation is generally limited to small prey and is very similar to scavenging behavior. In laboratory conditions, the predatory behavior of B. senaarensis is not different in structure from that known in other carnivorous ants species. The workers forage individually and return to the nest using a series of cues involving light, a chemical graduated marking system near the nest entrance, and memory. During nest-moving, recruitment by tandem running was observed. However, in colonies where the food supply is regular, workers that discover food do not recruit nestmates, but make repeated trips between the nest and the food source. On the contrary, in starved colonies, the introduction of prey may produce a massive exit of foragers, corresponding to a primitive form of mass recruitment similar to that observed in some other ant species.  相似文献   

14.
We investigated field-based recruitment via visual, chemical and acoustic cues provided by conspecific wasps on carbohydrate feeders in Vespula koreensis. A wild colony nest was excavated and artificially installed in a field site. Naïve foragers were individually marked and trained to an experimental feeder. We conducted three separate experiments in which foragers were presented with feeder dishes with different cue intensities. For the first, a different number of decoys were posed as if feeding (visual cue). In the second, dishes had been previously visited by different numbers of individuals, thus presenting different concentrations of a possible food site marking substance (chemical cue). In the third, each dish was placed in front of a covered flask with a different number of nestmates inside (acoustic cue combined with body-odor cue). We observed no social facilitation or social inhibition due to any of the experimental cues. Previous studies in Vespula species have shown a variety of foraging strategies ranging from local enhancement to local inhibition. Field-based recruitment mechanisms in yellowjackets may have evolved independently in different lineages.  相似文献   

15.
Animals can acquire a global knowledge about their environment that exceeds their individual capacities by estimating the local density and activity of nestmates in an area. In ants, home range marking can indicate the density and activity of nestmates, allowing scouts to assess the potential interest of the area as a foraging site. We investigated how home range marking through footprints influences the foraging behaviour of Lasius niger scouts at a sugary food source (1 M, 1.5 ml). Over a marked apparatus the discovery time of food sources decreased while the probability of scouts recruiting nestmates and of continuing to lay a trail increased. For ants making U turns on their return to the nest, home range marking helped them to resume laying a trail after the U turn and delayed the occurrence of the U turn. As a result, the trail intensity and the rate at which information about food was conveyed by scouts to nestmates depended on home range marking. Such modulation of information reduces the number of foragers mobilized to less frequented areas that are potentially dangerous and promotes recruitment and exploitation of food sources to better known sites.  相似文献   

16.
Summary: We report in this study that the tree-dwelling African ant Polyrhachis laboriosa (Formicinae) uses different foraging strategies according to the size of the available food sources. We demonstrate that a recruitment behaviour can be induced with a 125 7l alimentary reward and that foraging remains solitary when rewards are smaller. Small rewards do not elicit trail-laying behaviour, and exploration behaviour is considerable. With large permanent food sources, scouts use group recruitment and there is less exploration around the reward. The choice of the foraging strategy is determined by the first forager, which modifies its behaviour according to the volume of the food supply. Independently of the size of the reward, the forager shows many exploratory displays during the first visit to the source, and contrary to most ants, it never lays a trail during its first return to the nest. Visual cues remain mainly used for individual orientation; information collected during the first trips are then transmitted to nestmates thanks to temporary trail laying behaviour.  相似文献   

17.
Abstract. 1. Foragers of social insects can be guided to profitable food sources by social information transfer within the nest. This study showed that in addition to such an information-centre strategy, social information in the field also plays an important role in individual foraging decisions. The effect of the presence of a nestmate on individual decision-making on where to forage was investigated in six species of stingless bee that differ in their recruitment system. Some species preferred to feed close to a nestmate (local enhancement) whereas other species actively avoided landing close to a nestmate. The term local inhibition is introduced for this avoidance behaviour.
2. Local enhancement and local inhibition were species specific but were not related to the species' recruitment system.
3. Local enhancement and local inhibition were affected by the individual's experience with the food source. Newly recruited foragers of Trigona amalthea showed local enhancement whereas experienced foragers showed local inhibition.
4. These individual decision-making rules explained accurately the spatial distribution of recruited nestmates: foraging groups of T. amalthea , which shows local inhibition, were more dispersed than foraging groups of Oxytrigona mellicolor , which shows local enhancement.
5. The effect of heterospecifics on stingless bee flower choice was investigated for 18 species combinations. Landing decisions were influenced significantly by the aggressiveness and the body size of the resident bee. Larger and more aggressive heterospecifics were avoided, whereas in some cases less aggressive bees acted as an attraction cue.  相似文献   

18.
F. Ito 《Insectes Sociaux》1993,40(2):163-167
Summary Group recruitment during foraging was observed in a primitive ponerine ant,Amblyopone sp. (reclinata group) under laboratory condition. Workers searched for prey singly; however, if a item of prey was stung by a worker, other ants joined the attack. After the prey became immobile, one of the workers laid a trail directly toward the nest. This scout worker recruited additional workers (between 3 and 33). They formed a single file procession to the point of prey capture, and cooperatively transported the prey. A scout worker could stimulate nest workers to leave the nest without direct contact, and the recruited workers could trace the trail without guidance by the scout worker. This is the first report of recruitment behavior during foraging in the primitive antAmblyopone.  相似文献   

19.
Tandem running is a common recruitment strategy in ant species with small colony sizes. During a tandem run, an informed leader guides a usually naïve nestmate to a food source or a nest site. Some species perform tandem runs only during house hunting, suggesting that tandem running does not always improve foraging success in species known to use tandem running as a recruitment strategy, but more natural history information on tandem running under natural conditions is needed to better understand the adaptive significance of tandem recruitment in foraging. Studying wild colonies in Brazil, we for the first time describe tandem running in the ponerine ant Pachycondyla harpax (Fabricius). We asked if foragers perform tandem runs to carbohydrate- (honey) and protein-rich (cheese) food items. Furthermore, we tested whether the speed and success rate of tandem runs depend on the foraging distance. Foragers performed tandem runs to both carbohydrate food sources and protein-rich food items that exceed a certain size. The probability to perform a tandem run and the travelling speed increase with increasing foraging distances, which could help colonies monopolize more distant food sources in a competitive environment. Guiding a recruit to a food source is costly for leaders as ants are ~66% faster when travelling alone. If tandem runs break up (~23% of all tandem runs), followers do not usually discover the food source on their own but return to the nest. Our results show that tandem running to food sources is common in P. harpax, but that foragers modify their behaviour according to the type of food and its distance from the nest. Competition with other ants was intense and we discuss how tandem running in P. harpax might help colonies to build-up a critical number of ants at large food items that can then defend the food source against competitors.  相似文献   

20.
Deeply conserved molecular mechanisms regulate food-searching behaviour in response to nutritional cues in a wide variety of vertebrates and invertebrates. Studies of the highly eusocial honey bee have shown that nutritional physiology and some conserved nutrient signalling pathways, especially the insulin pathway, also regulate the division of labour between foraging and non-foraging individuals. Typically, lean workers leave the nest to forage for food, and well-nourished workers perform tasks inside the nest. Here we provide the first direct test of whether similar mechanisms operate in a primitively eusocial insect in an independently evolved social lineage, the paper wasp Polistes metricus. We found that food deprivation caused reduced lipid stores and higher levels of colony and individual foraging. Individuals with greatly reduced lipid stores foraged at extremely elevated levels. In addition, brain expression of several foraging-related genes was influenced by food deprivation, including insulin-like peptide 2 (ilp2). Together with previous findings, our results demonstrate that nutrition regulates foraging division of labour in two independently evolved social insect lineages (bees and wasps), despite large differences in social organization. Our results also provide additional support for the idea that nutritional asymmetries among individuals, based on differences in nutritional physiology and expression of conserved nutrient signalling genes in the brain, are important in the division of labour in eusocial societies.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号