首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Whole‐genome duplication is considered an important speciation mechanism in plants. However, its effect on reproductive isolation between higher cytotypes is not well understood. We used backcrosses between different ploidy levels and surveys of mixed‐ploidy contact zones to determine how reproductive barriers differed with cytotype across a polyploid complex. We backcrossed F1 hybrids derived from 2X‐4X and 4X‐6X crosses in the Campanula rotundifolia autopolyploid complex, measured backcross fitness, and estimated backcross DNA cytotype. We then sampled four natural mixed‐ploidy contact zones (two 2X‐4X and two 4X‐6X), estimated ploidy, and genotyped individuals across each contact zone. Reproductive success and capacity for gene flow was markedly lower for 2X‐4X than 4X‐6X hybrids. In fact, 3X hybrids could not backcross; all 2X‐4X backcross progeny resulted from neotetraploid F1 hybrids. Further, no 3X individuals were found in 2X‐4X contact zones, and 2X and 4X individuals were genetically distinct. By contrast, backcrosses of 5X hybrids were relatively successful, particularly when crossed to 6X individuals. In 4X‐6X contact zones, 5X individuals and aneuploids were common and all cytotypes were largely genetically similar and spatially intermixed. Taken together, these results provide strong evidence that reproduction is low between 2X and 4X cytotypes, primarily occurring via unreduced gamete production, but that reproduction and gene flow are ongoing between 4X and 6X cytotypes. Further, it suggests whole‐genome duplication can result in speciation between diploids and polyploids, but is less likely to create reproductive barriers between different polyploid cytotypes, resulting in two fundamentally different potentials for speciation across polyploid complexes.

To assess the role of ploidy in determining reproductive isolation and speciation in polyploid contact zones, we used backcrosses between different ploidy levels and surveys of mixed‐ploidy contact zones to determine how reproductive barriers differed with cytotype across a polyploid complex. Reproductive success and capacity for gene flow was markedly higher for 4X‐6X hybrids than 2X‐4X hybrids, which was also seen in natural mixed‐ploidy contact zones. Our results suggest whole‐genome duplication can result in speciation between diploids and polyploids, but is less likely to create reproductive barriers between different polyploid cytotypes, resulting in two fundamentally different potentials for speciation across polyploid complexes.  相似文献   

2.
Aging is a biological process linked to specific patterns and changes in the epigenome. We hypothesize that age‐related variation in the DNA methylome could reflect cumulative environmental modulation to the epigenome which could impact epigenomic instability and survival differentially by sex. To test the hypothesis, we performed sex‐stratified epigenome‐wide association studies on age‐related intra‐pair DNA methylation discordance in 492 twins aged 56–80 years. We identified 3084 CpGs showing increased methylation variability with age (FDR < 0.05, 7 CpGs with p < 1e‐07) in male twins but no significant site found in female twins. The results were replicated in an independent cohort of 292 twins aged 30–74 years with 37% of the discovery CpGs successfully replicated in male twins. Functional annotation showed that genes linked to the identified CpGs were significantly enriched in signaling pathways, neurological functions, extracellular matrix assembly, and cancer. We further explored the implication of discovery CpGs on individual survival in an old cohort of 224 twins (220 deceased). In total, 264 CpGs displayed significant association with risk of death in male twins. In female twins, 175 of the male discovery CpGs also showed non‐random correlation with mortality. Intra‐pair comparison showed that majority of the discovery CpGs have higher methylation in the longer‐lived twins suggesting that loss of DNA methylation during aging contributes to increased risk of death which is more pronounced in male twins. In conclusion, age‐related epigenomic instability in the DNA methylome is more evident in males than in females and could impact individual survival and contribute to sex difference in human lifespan.  相似文献   

3.
4.
Evolutionary selection ensures specificity and efficiency in dynamic metastable macromolecular machines that repair DNA damage without releasing toxic and mutagenic intermediates. Here we examine non‐homologous end joining (NHEJ) as the primary conserved DNA double‐strand break (DSB) repair process in human cells. NHEJ has exemplary key roles in networks determining the development, outcome of cancer treatments by DSB‐inducing agents, generation of antibody and T‐cell receptor diversity, and innate immune response for RNA viruses. We determine mechanistic insights into NHEJ structural biochemistry focusing upon advanced small angle X‐ray scattering (SAXS) results combined with X‐ray crystallography (MX) and cryo‐electron microscopy (cryo‐EM). SAXS coupled to atomic structures enables integrated structural biology for objective quantitative assessment of conformational ensembles and assemblies in solution, intra‐molecular distances, structural similarity, functional disorder, conformational switching, and flexibility. Importantly, NHEJ complexes in solution undergo larger allosteric transitions than seen in their cryo‐EM or MX structures. In the long‐range synaptic complex, X‐ray repair cross‐complementing 4 (XRCC4) plus XRCC4‐like‐factor (XLF) form a flexible bridge and linchpin for DNA ends bound to KU heterodimer (Ku70/80) and DNA‐PKcs (DNA‐dependent protein kinase catalytic subunit). Upon binding two DNA ends, auto‐phosphorylation opens DNA‐PKcs dimer licensing NHEJ via concerted conformational transformations of XLF‐XRCC4, XLF–Ku80, and LigIVBRCT–Ku70 interfaces. Integrated structures reveal multifunctional roles for disordered linkers and modular dynamic interfaces promoting DSB end processing and alignment into the short‐range complex for ligation by LigIV. Integrated findings define dynamic assemblies fundamental to designing separation‐of‐function mutants and allosteric inhibitors targeting conformational transitions in multifunctional complexes.  相似文献   

5.
6.
ObjectivesDysfunction of autophagy results in accumulation of depolarized mitochondria and breakdown of self‐renewal and pluripotency in ESCs. However, the regulators that control how mitochondria are degraded by autophagy for pluripotency regulation remains largely unknown. This study aims to dissect the molecular mechanisms that regulate mitochondrial homeostasis for pluripotency regulation in mouse ESCs.Materials and methods Parkin+/+ and parkin −/− ESCs were established from E3.5 blastocysts of parkin+/− x parkin+/− mating mice. The pink1 −/−, optn −/− and ndp52 −/− ESCs were generated by CRISPR‐Cas9. shRNAs were used for function loss assay of target genes. Mito‐Keima, ROS and ATP detection were used to investigate the mitophagy and mitochondrial function. Western blot, Q‐PCR, AP staining and teratoma formation assay were performed to evaluate the PSC stemness.ResultsPINK1 or OPTN depletion impairs the degradation of dysfunctional mitochondria during reprogramming, and reduces the reprogramming efficiency and quality. In ESCs, PINK1 or OPTN deficiency leads to accumulation of dysfunctional mitochondria and compromised pluripotency. The defective mitochondrial homeostasis and pluripotency in pink1 −/− ESCs can be compensated by gain expression of phosphomimetic Ubiquitin (Ub‐S65D) together with WT or a constitutively active phosphomimetic OPTN mutant (S187D, S476D, S517D), rather than constitutively inactive OPTN (S187A, S476A, S517A) or a Ub‐binding dead OPTN mutant (D477N).ConclusionsThe mitophagy receptor OPTN guards ESC mitochondrial homeostasis and pluripotency by scavenging damaged mitochondria through TBK1‐activated OPTN binding of PINK1‐phosphorylated Ubiquitin.  相似文献   

7.
8.
9.
10.
11.
Acanthamoeba polyphaga Mimivirus, a complex virus that infects amoeba, was first reported in 2003. It is now known that its DNA genome encodes for nearly 1,000 proteins including enzymes that are required for the biosynthesis of the unusual sugar 4‐amino‐4,6‐dideoxy‐d‐glucose, also known as d‐viosamine. As observed in some bacteria, the pathway for the production of this sugar initiates with a nucleotide‐linked sugar, which in the Mimivirus is thought to be UDP‐d‐glucose. The enzyme required for the installment of the amino group at the C‐4′ position of the pyranosyl moiety is encoded in the Mimivirus by the L136 gene. Here, we describe a structural and functional analysis of this pyridoxal 5′‐phosphate‐dependent enzyme, referred to as L136. For this analysis, three high‐resolution X‐ray structures were determined: the wildtype enzyme/pyridoxamine 5′‐phosphate/dTDP complex and the site‐directed mutant variant K185A in the presence of either UDP‐4‐amino‐4,6‐dideoxy‐d‐glucose or dTDP‐4‐amino‐4,6‐dideoxy‐d‐glucose. Additionally, the kinetic parameters of the enzyme utilizing either UDP‐d‐glucose or dTDP‐d‐glucose were measured and demonstrated that L136 is efficient with both substrates. This is in sharp contrast to the structurally related DesI from Streptomyces venezuelae, whose three‐dimensional architecture was previously reported by this laboratory. As determined in this investigation,DesI shows a profound preference in its catalytic efficiency for the dTDP‐linked sugar substrate. This difference can be explained in part by a hydrophobic patch in DesI that is missing in L136. Notably, the structure of L136 reported here represents the first three‐dimensional model for a virally encoded PLP‐dependent enzyme and thus provides new information on sugar aminotransferases in general.  相似文献   

12.
Werner syndrome (WS) is an accelerated aging disorder characterized by genomic instability, which is caused by WRN protein deficiency. WRN participates in DNA metabolism including DNA repair. In a previous report, we showed that WRN protein is recruited to laser‐induced DNA double‐strand break (DSB) sites during various stages of the cell cycle with similar intensities, supporting that WRN participates in both non‐homologous end joining (NHEJ) and homologous recombination (HR). Here, we demonstrate that the phosphorylation of WRN by CDK2 on serine residue 426 is critical for WRN to make its DSB repair pathway choice between NHEJ and HR. Cells expressing WRN engineered to mimic the unphosphorylated or phosphorylation state at serine 426 showed abnormal DSB recruitment, altered RPA interaction, strand annealing, and DSB repair activities. The CDK2 phosphorylation on serine 426 stabilizes WRN’s affinity for RPA, likely increasing its long‐range resection at the end of DNA strands, which is a crucial step for HR. Collectively, the data shown here demonstrate that a CDK2‐dependent phosphorylation of WRN regulates DSB repair pathway choice and cell cycle participation.  相似文献   

13.
14.
15.
Double-strand break (DSB) repair through homologous recombination (HR) is an evolutionarily conserved process that is generally error-free. The risk to genome stability posed by nonallelic recombination or loss-of-heterozygosity could be reduced by confining HR to sister chromatids, thereby preventing recombination between homologous chromosomes. Here we show that the sister chromatid cohesion complex (cohesin) is a limiting factor in the control of DSB repair and genome stability and that it suppresses DNA damage–induced interactions between homologues. We developed a gene dosage system in tetraploid yeast to address limitations on various essential components in DSB repair and HR. Unlike RAD50 and RAD51, which play a direct role in HR, a 4-fold reduction in the number of essential MCD1 sister chromatid cohesion subunit genes affected survival of gamma-irradiated G2/M cells. The decreased survival reflected a reduction in DSB repair. Importantly, HR between homologous chromosomes was strongly increased by ionizing radiation in G2/M cells with a single copy of MCD1 or SMC3 even at radiation doses where survival was high and DSB repair was efficient. The increased recombination also extended to nonlethal doses of UV, which did not induce DSBs. The DNA damage–induced recombinants in G2/M cells included crossovers. Thus, the cohesin complex has a dual role in protecting chromosome integrity: it promotes DSB repair and recombination between sister chromatids, and it suppresses damage-induced recombination between homologues. The effects of limited amounts of Mcd1and Smc3 indicate that small changes in cohesin levels may increase the risk of genome instability, which may lead to genetic diseases and cancer.  相似文献   

16.
Lipid metabolism influences stem cell maintenance and differentiation but genetic factors that control these processes remain to be delineated. Here, we identify Tnfaip2 as an inhibitor of reprogramming of mouse fibroblasts into induced pluripotent stem cells. Tnfaip2 knockout impairs differentiation of embryonic stem cells (ESCs), and knockdown of the planarian para‐ortholog, Smed‐exoc3, abrogates in vivo tissue homeostasis and regeneration—processes that are driven by somatic stem cells. When stimulated to differentiate, Tnfaip2‐deficient ESCs fail to induce synthesis of cellular triacylglycerol (TAG) and lipid droplets (LD) coinciding with reduced expression of vimentin (Vim)—a known inducer of LD formation. Smed‐exoc3 depletion also causes a strong reduction of TAGs in planarians. The study shows that Tnfaip2 acts epistatically with and upstream of Vim in impairing cellular reprogramming. Supplementing palmitic acid (PA) and palmitoyl‐L‐carnitine (the mobilized form of PA) restores the differentiation capacity of Tnfaip2‐deficient ESCs and organ maintenance in Smed‐exoc3‐depleted planarians. Together, these results identify a novel role of Tnfaip2 and exoc3 in controlling lipid metabolism, which is essential for ESC differentiation and planarian organ maintenance.  相似文献   

17.
The primary pathways for DNA double strand break (DSB) repair are homologous recombination (HR) and non-homologous end–joining (NHEJ). The choice between HR and NHEJ is influenced by the extent of DNA end resection, as extensive resection is required for HR but repressive to NHEJ. Conversely, association of the DNA end-binding protein Ku, which is integral to classical NHEJ, inhibits resection. In absence of key NHEJ components, a third repair pathway is exposed; this alternative-end joining (A-EJ) is a highly error-prone process that uses micro-homologies at the breakpoints and is initiated by DNA end resection. In Saccharomyces cerevisiae, the high mobility group protein Hmo1p has been implicated in controlling DNA end resection, suggesting its potential role in repair pathway choice. Using a plasmid end-joining assay, we show here that absence of Hmo1p results in reduced repair efficiency and accuracy, indicating that Hmo1p promotes end-joining; this effect is only observed on DNA with protruding ends. Notably, inhibition of DNA end resection in an hmo1Δ strain restores repair efficiency to the levels observed in wild-type cells. In absence of Ku, HMO1 deletion also reduces repair efficiency further, while inhibition of resection restores repair efficiency to the levels observed in kuΔ. We suggest that Hmo1p functions to control DNA end resection, thereby preventing error-prone A-EJ repair and directing repairs towards classical NHEJ. The very low efficiency of DSB repair in kuΔhmo1Δ cells further suggests that excessive DNA resection is inhibitory for A-EJ.  相似文献   

18.
Defects in DNA single‐strand break repair (SSBR) are linked with neurological dysfunction but the underlying mechanisms remain poorly understood. Here, we show that hyperactivity of the DNA strand break sensor protein Parp1 in mice in which the central SSBR protein Xrcc1 is conditionally deleted (Xrcc1Nes‐Cre) results in lethal seizures and shortened lifespan. Using electrophysiological recording and synaptic imaging approaches, we demonstrate that aberrant Parp1 activation triggers seizure‐like activity in Xrcc1‐defective hippocampus ex vivo and deregulated presynaptic calcium signalling in isolated hippocampal neurons in vitro. Moreover, we show that these defects are prevented by Parp1 inhibition or deletion and, in the case of Parp1 deletion, that the lifespan of Xrcc1Nes‐Cre mice is greatly extended. This is the first demonstration that lethal seizures can be triggered by aberrant Parp1 activity at unrepaired SSBs, highlighting PARP inhibition as a possible therapeutic approach in hereditary neurological disease.  相似文献   

19.
Sperm DNA injury is one of the common causes of male infertility. Folic acid deficiency would increase the methylation level of the important genes, including those involved in DNA double‐strand break (DSB) repair pathway. In the early stages, we analysed the correlation between seminal plasma folic acid concentration and semen parameters in 157 infertility patients and 91 sperm donor volunteers, and found that there was a significant negative correlation between seminal folic acid concentration and sperm DNA Fragmentation Index (DFI; r = −0.495, p < 0.01). Then through reduced representation bisulphite sequencing, global DNA methylation of sperm of patients in the low folic acid group and the high folic acid group was analysed, it was found that the methylation level in Rad54 promoter region increased in the folic acid deficiency group compared with the normal folic acid group. Meanwhile, the results of animal model and spermatocyte line (GC‐2) also found that folic acid deficiency can increase the methylation level in Rad54 promoter region, increased sperm DFI in mice, increased the expression of γ‐H2AX, that is, DNA injury marker protein, and increased sensitivity of GC‐2 to external damage and stimulation. The study indicates that the expression of Rad54 is downregulated by folic acid deficiency via DNA methylation. This may be one of the mechanisms of sperm DNA damage caused by folate deficiency.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号