首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Cyclobutane pyrimidine dimers (CPDs) and pyrimidine (6-4) pyrimidone photoproducts (6-4PPs) are the two main classes of mutagenic DNA damages induced by UVB radiation. Numerous studies have been devoted so far to their formation and repair in human cells and skin. However, the biochemical methods used often lack the specificity that would allow the individual study of each of the four CPDs and 6-4PPs produced at TT, TC, CT and CC dinucleotides. In the present work, we applied an HPLC-mass spectrometry assay to study the formation and repair of CPDs and 6-4PPs photoproducts in primary cultures of human keratinocytes and fibroblasts as well as in whole human skin. We first observed that the yield of dimeric lesions was slightly higher in fibroblasts than in keratinocytes. In contrast, the rate of global repair was higher in the last cell type. Moreover, removal of DNA photoproducts in skin biopsies was found to be slower than in both cultured skin cells. In agreement with previous works, the repair of 6-4PPs was found to be more efficient than that of CPDs in the three types of samples, with no observed difference between the removal of the TT and TC derivatives. In contrast, a significant influence of the nature of the two modified pyrimidines was observed on the repair rate of CPDs. The decreasing order of removal efficiency was the following: C<>T>C<>C>T<>C>T<>T. These data, together with the known intrinsic mutational properties of the lesions, would support the reported UV mutation spectra. A noticeable exception concerns CC dinucleotides that are mutational hotspots with an UV-specific CC to TT tandem mutation, although related bipyrimidine photoproducts are produced in low yields and efficiently repaired.  相似文献   

2.
Induction of DNA damage by solar UV radiation is a key event in the development of skin cancers. Bipyrimidine photoproducts, including cyclobutane pyrimidine dimers (CPDs), (6-4) photoproducts (64 PPs) and their Dewar valence isomers, have been identified as major UV-induced DNA lesions. In order to identify the predominant and most persistent lesions, we studied the repair of the three types of photolesions in primary cultures of human keratinocytes. Specific and quantitative data were obtained using HPLC associated with tandem mass spectrometry. As shown in other cell types, 64 PPs are removed from UVB-irradiated keratinocytes much more efficiently than CPDs. In contrast, CPDs are still present in high amounts when cells recover their proliferation capacities after cell cycle arrest and elimination of a part of the population by apoptosis. The predominance of CPDs is still maintained when keratinocytes are exposed to a combination of UVB and UVA. Under these conditions, 64 PPs are converted into their Dewar valence isomers that are as efficiently repaired as their (6-4) precursors. Exposure of cells to pure UVA radiation generates thymine cyclobutane dimers that are slightly less efficiently repaired than CPDs produced upon UVB irradiation. Altogether, our results show that CPDs are the most frequent and the less efficiently repaired bipyrimidine photoproducts irrespectively of the applied UV treatment.  相似文献   

3.
The most prevalent DNA lesions induced by UVB are the cyclobutane pyrimidine dimers (CPDs) and the pyrimidine (6-4) pyrimidone photoproducts ((6-4)PPs). It has been a long standing controversy as to which of these photoproduct is responsible for mutations in mammalian cells. Here we have introduced photoproduct-specific DNA photolyases into a mouse cell line carrying the transgenic mutation reporter genes lacI and cII. Exposure of the photolyase-expressing cell lines to photoreactivating light resulted in almost complete repair of either CPDs or (6-4)PPs within less than 3 h. The mutations produced by the remaining, nonrepaired photoproducts were scored. The mutant frequency in the cII gene after photoreactivation by CPD photolyase was reduced from 127 x 10(-5) to 34 x 10(-5) (background, 8-10 x 10(-5)). Photoreactivation with (6-4) photolyase did not lower the mutant frequency appreciably. In the lacI gene the mutant frequency after photoreactivation repair of CPDs was reduced from 148 x 10(-5) to 28 x 10(-5) (background, 6-10 x 10(-5)). Mutation spectra obtained with and without photoreactivation by CPD photolyase indicated that the remaining mutations were derived from background mutations, unrepaired CPDs, and other DNA photopoducts including perhaps a small contribution from (6-4)PPs. We conclude that CPDs are responsible for at least 80% of the UVB-induced mutations in this mammalian cell model.  相似文献   

4.
In vivo formation and repair of the major UV-induced DNA photoproducts, cyclobutane pyrimidine dimers (CPDs) and 6-4 pyrimidine-pyrimidone photoproducts (6-4 PPs), have been examined at the gene and nucleotide level in Escherichia coli. Each type of DNA photoproduct has individually been studied using photoreactivation and two newly developed assays; the multiplex QPCR assay for damage detection at the gene level and the reiterative primer extension (PE) assay for damage detection at the nucleotide level. In the E. coli lacI and lacZ genes, CPDs and 6-4 PPs form in a 2:1 ratio, respectively, during UV irradiation. Repair of 6-4 PPs is more efficient than repair of CPDs since, on the average, 42% of 6-4 PPs are repaired in both genes in the first 40 min following 200 J/m2 UV irradiation, while 1% of CPDs are repaired. The location, relative frequency of formation, and efficiency of repair of each type of photoproduct was examined in the first 52 codons of the E. coli lacI gene at the nucleotide level. Hotspots of formation were found for each type of lesion. Most photoproducts are at sites where both CPDs and 6-4 PPs are formed. Allowing 40 min of recovery following 200 J/m2 shows that in vivo repair of 6-4 PPs is about fourfold more efficient than the repair of CPDs. Comparison of the lesion-specific photoproduct distribution of the lacI gene with a UV-induced mutation spectrum from wild-type cells shows that most mutational hotspots are correlated with sites of a majority of CPD formation. However, 6-4 PPs are also formed at some of these sites with relatively high frequency. This information, taken together with the observation that 6-4 PPs are repaired faster than CPDs, suggest that the cause of mutagenic hotspots in wild-type E. coli is inefficient repair of CPDs.  相似文献   

5.
The major types of DNA damage induced by sunlight in the skin are DNA photoproducts, such as cyclobutane pyrimidine dimers (CPDs), (6-4)photoproducts (6-4PPs) and Dewar isomers of 6-4PPs. A sensitive method for quantitating and visualizing each type of DNA photoproduct induced by biologically relevant doses of ultraviolet (UV) or sunlight is essential to characterize DNA photoproducts and their biological effects. We have established monoclonal antibodies specific for CPDs, 6-4PPs or Dewar isomers. Those antibodies allow one to quantitate photoproducts in DNA purified from cultured cells or from the skin epidermis using an enzyme-linked immunosorbent assay. One can also use those specific antibodies with in situ laser cytometry to visualize and measure DNA photoproducts in cultured cells or in the skin, using indirect immunofluorescence and a laser-scanning confocal microscope. This latter method allows us to reconstruct three-dimensional images of nuclei containing DNA photoproducts and to simultaneously examine DNA photoproducts and histology in multilayered epidermis. Using those techniques, one can determine the induction and repair of these three distinct types of DNA photoproducts in cultured cells and in the skin exposed to sublethal or suberythematous doses of UV or solar simulated radiation. As examples of the utility of these techniques and antibodies, we describe the DNA repair kinetics following irradiation of human cell nuclei and the photoprotective effect of melanin against DNA photoproducts in cultured pigmented cells and in human epidermis.  相似文献   

6.
Ultraviolet (UV) light generates two major DNA lesions: cyclobutane pyrimidine dimers (CPDs) and pyrimidine-(6-4)-pyrimidone photoproducts (6-4PPs), but the specific participation of these two lesions in the deleterious effects of UV is a longstanding question. In order to discriminate the precise role of unrepaired CPDs and 6-4PPs in UV-induced responses triggering cell death, human fibroblasts were transduced by recombinant adenoviruses carrying the CPD-photolyase or 6-4PP-photolyase cDNAs. Both photolyases were able to prevent UV-induced apoptosis in cells deficient for nucleotide excision repair (NER) to a similar extent, while in NER-proficient cells UV-induced apoptosis was prevented only by CPD-photolyase, with no effects observed when 6-4PPs were removed by the specific photolyase. These results strongly suggest that both CPDs and 6-4PPs contribute to UV-induced apoptosis in NER-deficient cells, while in NER-proficient cells, CPDs are the only lesions responsible for UV-killing, probably due to the rapid repair of 6-4PPs by NER. As a consequence, the difference in skin photosensitivity, including carcinogenesis, of most of the xeroderma pigmentosum patients and of normal people is probably not only a quantitative aspect, but depends on the type of DNA damage induced by sunlight and its rate of repair.  相似文献   

7.
8.
The induction of apoptosis in keratinocytes by ultraviolet (UV)-irradiation is considered to be a protective function against skin cancer. UV-induced DNA damage is a crucial event in UVB- and UVC-mediated apoptosis. However, the differences between the UVB- and UVC-induced apoptotic pathways remain unclear. Here we examine the differential mechanisms by which UVB and UVC irradiations induce keratinocyte apoptosis using human keratinocyte HaCaT cells. Differences in the production of (6-4)photoproducts ((6-4)PPs) and cyclobutane pyrimidine dimers (CPDs) were measured following irradiation with UVB and UVC at doses causing the same extent of apoptotic cell death. In addition, main apoptotic features, such as caspase activation and its regulation, were compared between UVB- and UVC-induced apoptosis. Exposures of 500 J/m2 UVB and 100 J/m2 UVC resulted in apoptosis to almost the same extent. At these apoptotic doses, the amounts of both (6-4)PPs and CPDs were significantly larger in the case of UVC irradiation than UVB irradiation; in parallel, the release of cytochrome c and Smac/DIABLO and the activation of caspases-9 following UVC irradiation were greater than after UVB irradiation. Importantly, caspase-8 activation occurred only in UVB-irradiated cells. Furthermore, the activation of caspase-8 was not inhibited by caspases-9 and -3 specific tetrapeptide inhibitors, indicating that the caspase-8 cleavage is not due to feedback from activation of caspases-9 and -3. Thus, these results clearly suggest that the reason apoptosis is induced to the same extent by UVB irradiation as by UVC irradiation, despite the lower production of photoproducts in DNA by UVB irradiation, is attributable to the additional activation of the caspase-8 pathway. Thus, UVB irradiation induces apoptosis through both mitochondrial (intrinsic) and caspase-8 activation (extrinsic) pathways, while UVC induces apoptosis only via the intrinsic pathway.  相似文献   

9.
The initial step in mammalian nucleotide excision repair (NER) of the major UV-induced photoproducts, cyclobutane pyrimidine dimers (CPDs) and 6-4 photoproducts (6-4PPs), requires lesion recognition. It is believed that the heterodimeric proteins XPC/hHR23B and UV-DDB (UV-damaged DNA binding factor, composed of the p48 and p127 subunits) perform this function in genomic DNA, but their requirement and lesion specificity in vivo remains unknown. Using repair-deficient xeroderma pigmentosum (XP)-A cells that stably express photoproduct-specific photolyases, we determined the binding characteristics of p48 and XPC to either CPDs or 6-4PPs in vivo. p48 localized to UV-irradiated sites that contained either CPDs or 6-4PPs. However, XPC localized only to UV-irradiated sites that contained 6-4PPs, suggesting that XPC does not efficiently recognize CPDs in vivo. XPC did localize to CPDs when p48 was overexpressed in the same cell, signifying that p48 activates the recruitment of XPC to CPDs and may be the initial recognition factor in the NER pathway.  相似文献   

10.
The genome of a radiation-resistant bacterium, Deinococcus radiodurans, contains one uvsE gene and two uvrA genes, uvrA1 and uvrA2. Using a series of mutants lacking these genes, we determined the biological significance of these components to UV resistance. The UV damage endonuclease (UvsE)-dependent excision repair (UVER) pathway and UvrA1-dependent pathway show some redundancy in their function to counteract the lethal effects of UV. Loss of these pathways does not cause increased sensitivity to UV mutagenesis, suggesting either that these pathways play no function in inducing mutations or that there are mechanisms to prevent mutation other than these excision repair pathways. UVER efficiently removes both cyclobutane pyrimidine dimers (CPDs) and pyrimidine (6-4) pyrimidone photoproducts (6-4PPs) from genomic DNA. In contrast, the UvrA1 pathway does not significantly contribute to the repair of CPDs but eliminates 6-4PPs. Inactivation of uvrA2 does not result in a deleterious effect on survival, mutagenesis, or the repair kinetics of CPDs and 6-4PPs, indicating a minor role in resistance to UV. Loss of uvsE, uvrA1, and uvrA2 reduces but does not completely abolish the ability to eliminate CPDs and 6-4PPs from genomic DNA. The result indicates the existence of a system that removes UV damage yet to be identified.  相似文献   

11.
BACKGROUND: The high and steadily increasing incidence of ultraviolet-B (UV-B)-induced skin cancer is a problem recognized worldwide. UV introduces different types of damage into the DNA, notably cyclobutane pyrimidine dimers (CPDs) and (6-4) photoproducts (6-4PPs). If unrepaired, these photolesions can give rise to cell death, mutation induction, and onset of carcinogenic events, but the relative contribution of CPDs and 6-4PPs to these biological consequences of UV exposure is hardly known. Because placental mammals have undergone an evolutionary loss of photolyases, repair enzymes that directly split CPDs and 6-4PPs into the respective monomers in a light-dependent and lesion-specific manner, they can only repair UV-induced DNA damage by the elaborate nucleotide excision repair pathway. RESULTS: To assess the relative contribution of CPDs and 6-4PPs to the detrimental effects of UV light, we generated transgenic mice that ubiquitously express CPD-photolyase, 6-4PP-photolyase, or both, thereby allowing rapid light-dependent repair of CPDs and/or 6-4PPs in the skin. We show that the vast majority of (semi)acute responses in the UV-exposed skin (i.e., sunburn, apoptosis, hyperplasia, and mutation induction) can be ascribed to CPDs. Moreover, CPD-photolyase mice, in contrast to 6-4PP-photolyase mice, exhibit superior resistance to sunlight-induced tumorigenesis. CONCLUSIONS: Our data unequivocally identify CPDs as the principal cause of nonmelanoma skin cancer and provide genetic evidence that CPD-photolyase enzymes can be employed as effective tools to combat skin cancer.  相似文献   

12.
DNA damage can cause cell death unless it is either repaired or tolerated. The precise contributions of repair and tolerance mechanisms to cell survival have not been previously evaluated. Here we have analyzed the cell killing effect of the two major UV light-induced DNA lesions, cyclobutane pyrimidine dimers (CPDs) and 6-4 pyrimidine-pyrimidone photoproducts (6-4PPs), in nucleotide excision repair-deficient human cells by expressing photolyase(s) for light-dependent photorepair of either or both lesions. Immediate repair of the less abundant 6-4PPs enhances the survival rate to a similar extent as the immediate repair of CPDs, indicating that a single 6-4PP lesion is severalfold more toxic than a CPD in the cells. Because UV light-induced DNA damage is not repaired at all in nucleotide excision repair-deficient cells, proliferation of these cells after UV light irradiation must be achieved by tolerance of the damage at replication. We found that RNA interference designed to suppress polymerase zeta activity made the cells more sensitive to UV light. This increase in sensitivity was prevented by photorepair of 6-4PPs but not by photorepair of CPDs, indicating that polymerase zeta is involved in the tolerance of 6-4PPs in human cells.  相似文献   

13.
The major types of DNA damage induced by sunlight in the skin are DNA photoproducts, such as cyclobutane pyrimidine dimers (CPDs), (6‐4)photoproducts (6‐4PPs) and Dewar isomers of 6‐4PPs. A sensitive method for quantitating and visualizing each type of DNA photoproduct induced by biologically relevant doses of ultraviolet (UV) or sunlight is essential to characterize DNA photoproducts and their biological effects. We have established monoclonal antibodies specific for CPDs, 6‐4PPs or Dewar isomers. Those antibodies allow one to quantitate photoproducts in DNA purified from cultured cells or from the skin epidermis using an enzyme‐linked immunosorbent assay. One can also use those specific antibodies with in situ laser cytometry to visualize and measure DNA photoproducts in cultured cells or in the skin, using indirect immunofluorescence and a laser‐scanning confocal microscope. This latter method allows us to reconstruct three‐dimensional images of nuclei containing DNA photoproducts and to simultaneously examine DNA photoproducts and histology in multilayered epidermis. Using those techniques, one can determine the induction and repair of these three distinct types of DNA photoproducts in cultured cells and in the skin exposed to sublethal or suberythematous doses of UV or solar simulated radiation. As examples of the utility of these techniques and antibodies, we describe the DNA repair kinetics following irradiation of human cell nuclei and the photoprotective effect of melanin against DNA photoproducts in cultured pigmented cells and in human epidermis.  相似文献   

14.
Exposure to solar ultraviolet light is the major cause of most skin cancers. While the genotoxic properties of UVB radiation are now well understood, the DNA damaging processes triggered by less energetic but more abundant UVA photons remain to be elucidated. Evidence has been provided for the induction of oxidative lesions to cellular DNA including strand breaks and 8-oxo-7,8-dihydro-2′-deoxyguanosine (8-oxodGuo). Formation of cyclobutane pyrimidine dimers (CPDs) has also been reported, mostly in rodent cells. In order to gain insights into the relevance of the latter photoproducts in UVA-mutagenesis of human skin, we quantified the level of 8-oxodGuo and CPDs within primary cultures of normal fibroblasts and keratinocytes using specific chromatographic assays. The yield of formation of CPDs was found to be higher than that of 8-oxodGuo in both cell types. In addition, CPDs were mostly TT derivatives, and neither (6-4) photoproducts nor Dewar valence isomers were detected. These observations are reminiscent of results obtained in rodent cells and suggest that a photosensitized triplet energy transfer occurs and that this reaction is more efficient than photooxidation of DNA components. The predominant formation of CPDs with respect to oxidative damage within normal human skin cells exposed to UVA radiation should be taken into account in photoprotection strategies.  相似文献   

15.
16.
The XPC-HR23B complex, a mammalian factor specifically involved in global genomic nucleotide excision repair (NER) has been shown to bind various forms of damaged DNA and initiate DNA repair in cell-free reactions. To characterize the binding specificity of this factor in more detail, a method based on immunoprecipitation was developed to assess the relative affinity of XPC-HR23B for defined lesions on DNA. Here we show that XPC-HR23B preferentially binds to UV-induced (6-4) photoproducts (6-4PPs) as well as to cholesterol, but not to the cyclobutane pyrimidine dimer (CPD), 8-oxoguanine (8-oxo-G), O6-methylguanine (O6-Me-G), or a single mismatch. Human whole cell extracts could efficiently excise 6-4PPs and cholesterol in an XPC-HR23B-dependent manner, but not 8-oxo-G, O6-Me-G or mismatches. Thus, there was good correlation between the binding specificity of XPC-HR23B for certain types of lesion and the ability of human cell extracts to excise these lesions, supporting the model that XPC-HR23B initiates global genomic NER. Although, XPC-HR23B does not preferentially bind to CPDs, the excision of CPDs in human whole cell extracts was found to be absolutely dependent on XPC-HR23B, in agreement with the in vivo observation that CPDs are not removed from the global genome in XP-C mutant cells. These results suggest that, in addition to the excision repair pathway initiated by XPC-HR23B, there exists another sub-pathway for the global genomic NER that still requires XPC-HR23B but is not initiated by XPC-HR23B. Possible mechanisms will be discussed.  相似文献   

17.
Ultraviolet A (UVA) radiations are responsible for deleterious effects, mainly due to reactive oxygen species (ROS) production. Alpha-melanocyte stimulating hormone (α-MSH) binds to melanocortin-1 receptor (MC1R) in melanocytes to stimulate pigmentation and modulate cutaneous inflammatory responses. MC1R may be induced in keratinocytes after UV exposure. To investigate the effect of MC1R signaling on UVA-induced ROS (UVA-ROS) production, we generated HaCaT cells that stably express human MC1R (HaCaT-MC1R) or the Arg151Cys (R(151)C) non-functional variant (HaCaT-R(151)C). We then assessed ROS production immediately after UVA exposure and found that: (1) UVA-ROS production was strongly reduced in HaCaT-MC1R but not in HaCaT-R(151)C cells compared to parental HaCaT cells; (2) this inhibitory effect was further amplified by incubation of HaCaT-MC1R cells with α-MSH before UVA exposure; (3) protein kinase A (PKA)-dependent NoxA1 phosphorylation was increased in HaCaT-MC1R compared to HaCaT and HaCaT-R(151)C cells. Inhibition of PKA in HaCaT-MC1R cells resulted in a marked increase of ROS production after UVA irradiation; (4) the ability of HaCaT-MC1R cells to produce UVA-ROS was restored by inhibiting epidermal growth factor receptor (EGFR) or extracellular signal-regulated kinases (ERK) activity before UVA exposure. Our findings suggest that constitutive activity of MC1R in keratinocytes may reduce UVA-induced oxidative stress via EGFR and cAMP-dependent mechanisms.  相似文献   

18.
19.
20.
Cyclobutane pyrimidine dimers (CPDs) and 6-4 photoproducts (6-4PPs) comprise major UV-induced photolesions. If left unrepaired, these lesions can induce mutations and skin cancer, which is facilitated by UV-induced immunosuppression. Yet the contribution of lesion and cell type specificity to the harmful biological effects of UV exposure remains currently unclear. Using a series of photolyase-transgenic mice to ubiquitously remove either CPDs or 6-4PPs from all cells in the mouse skin or selectively from basal keratinocytes, we show that the majority of UV-induced acute effects to require the presence of CPDs in basal keratinocytes in the mouse skin. At the fundamental level of gene expression, CPDs induce the expression of genes associated with repair and recombinational processing of DNA damage, as well as apoptosis and a response to stress. At the organismal level, photolyase-mediated removal of CPDs, but not 6-4PPs, from the genome of only basal keratinocytes substantially diminishes the incidence of skin tumors; however, it does not affect the UVB-mediated immunosuppression. Taken together, these findings reveal a differential role of basal keratinocytes in these processes, providing novel insights into the skin's acute and chronic responses to UV in a lesion- and cell-type-specific manner.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号