首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The mechanism of heartwood formation in Cryptomeria japonica D. Don has long been studied since heartwood formation is a fundamental physiological feature of trees. In this study, the water distribution in the xylem of C. japonica was investigated at the cellular level to reveal the role of water distribution in the xylem during heartwood formation. Samples were taken from different heights of each trunk, in which the phases of heartwood formation differed. These were designated as SIH, which consisted of sapwood, intermediate wood, and heartwood; SI, which consisted of sapwood and intermediate wood but no heartwood; and S-all, which consisted entirely of sapwood. Cryo-scanning electron microscopic observations of the heartwood-formed (SIH) and non-heartwood-formed (SI and S-all) xylem revealed different patterns of water distribution changes in tracheids between the latewood and earlywood. In the latewood, almost all tracheids were filled with water in all areas from the sapwood to the heartwood (98–100% of tracheids had water in their lumina). In the earlywood, however, the water distribution differed between the sapwood (95–99%), intermediate wood (7–12%), and heartwood (4–100%). Many of the tracheids in the xylem, where the sapwood changed to intermediate wood lost water. In the heartwood, some tracheids remained empty, while others were refilled with water. These results suggest that the water distribution changes in individual tracheids are closely related to heartwood formation. Water loss from tracheids may be an important factor inducing heartwood formation in the xylem of C. japonica.  相似文献   

2.

Background and Aims

Heartwood formation is a unique phenomenon of tree species. Although the accumulation of heartwood substances is a well-known feature of the process, the accumulation mechanism remains unclear. The aim of this study was to determine the accumulation process of ferruginol, a predominant heartwood substance of Cryptomeria japonica, in heartwood-forming xylem.

Methods

The radial accumulation pattern of ferruginol was examined from sapwood and through the intermediate wood to the heartwood by direct mapping using time-of-flight secondary ion mass spectrometry (TOF-SIMS). The data were compared with quantitative results obtained from a novel method of gas chromatography analysis using laser microdissection sampling and with water distribution obtained from cryo-scanning electron microscopy.

Key Results

Ferruginol initially accumulated in the middle of the intermediate wood, in the earlywood near the annual ring boundary. It accumulated throughout the entire earlywood in the inner intermediate wood, and in both the earlywood and the latewood in the heartwood. The process of ferruginol accumulation continued for more than eight annual rings. Ferruginol concentration peaked at the border between the intermediate wood and heartwood, while the concentration was less in the latewood compared wiht the earlywood in each annual ring. Ferruginol tended to accumulate around the ray parenchyma cells. In addition, at the border between the intermediate wood and heartwood, the accumulation was higher in areas without water than in areas with water.

Conclusions

TOF-SIMS clearly revealed ferruginol distribution at the cellular level. Ferruginol accumulation begins in the middle of intermediate wood, initially in the earlywood near the annual ring boundary, then throughout the entire earlywood, and finally across to the whole annual ring in the heartwood. The heterogeneous timing of ferruginol accumulation could be related to the distribution of ray parenchyma cells and/or water in the heartwood-forming xylem.  相似文献   

3.
An analysis was made of progressive changes in patterns of cavitation in the sapwood of three species of conifer (Larix kaempferi, Abies sachalinensis, and Picea jezoensis) that were growing in a sub-frigid zone. In all three conifers, all tracheids of the newly forming outermost annual ring were filled with water or cytoplasm during the period from May to August. However, many tracheids in the transition zone from earlywood to latewood lost water in September, presumably through drought-induced cavitation. Cavitated tracheids tended to be continuously distributed in a tangential direction. Subsequently, some earlywood tracheids of the outermost annual ring lost water during the period from January to March. This was associated with freeze-thaw cycles. In the second and third annual rings from the cambium of all three conifers, the lumina of most tracheids in the transition zone from earlywood to latewood contained no water. In contrast, some latewood tracheids near the annual ring boundary and many earlywood tracheids retained water in their lumina. The third annual ring had more cavitated tracheids than the second annual ring. Our observations indicated that cavitation progressed gradually in the tracheids of the conifers and that they were never refilled once cavitation had occurred. The region involved in water transport in conifers did not include the entire sapwood and differed among annual rings.  相似文献   

4.
Elucidation of the mechanisms involved in long-distance water transport in trees requires knowledge of the water distribution within the sapwood and heartwood of the stem as well as of the earlywood and latewood of an annual ring. X-ray computed tomography is a powerful tool for measuring density distributions and water contents in the xylem with high spatial resolution. Ten- to 20-year-old spruce (Picea abies L. KARST.) and oak (Quercus robur) trees grown in the field were used throughout the experiments. Stem and branch discs were collected from different tree heights, immediately deep frozen, and used for the tomographic determinations of spatial water distributions. Results are presented for single-tree individuals, demonstrating heartwood and sapwood distribution throughout their entire length as well as the water relations in single annual rings of both types of wood. Tree rings of the sapwood show steep water gradients from latewood to earlywood, whereas those of the heartwood reflect water deficiency in both species. Although only the latest two annual rings of the ringporous species are generally assumed to transport water, we found similar amounts of water and no tyloses in all rings of the oak sapwood, which indicates that at least water storage is important in the whole sapwood.  相似文献   

5.
The green wood of yezo species (Picea jezoensis var. komarovii (V. Vassil.) Cheng et L. K. Fu) was treated with air drying and ethanol exchange drying and by soaking the air-dried wood in water followed by ethanol change drying. The results showed that the proportion of aspirated pits in the respective earlywood and latewood of the air-dried sapwood was increased to 99% and 81%, while that of heartwood was also as high as 97% and 86% because most of the bordered pits were aspirated at its green state. The permeability of air-dried sapwood and heartwood was as low as 0.114 and 0.045 darcy respectively. The proportion of aspirated pits in the earlywood and latewood of sapwood after ethanol exchange drying was very low (8% and 17% respectively), whereas that of heartwood was very high (97% and 86% respectively) since most of the pits in it were aspirated at its green state, so the ethanol exchange drying failed to prevent pit aspiration. The permeability of sapwood and heartwood after ethanol exchange drying was 11.713 and 0.074 darcy respectivly, which was increased 101.5 times and 62.0% over the permeability at air-dried state. t-test showed that the difference of permeability of ethanol exchange drying versus air drying for sapwood was very significant at the level of 0.1%, but was not significant for heartwood. The proportion of aspirated pits in earlywood and latewood of air-dried sapwood and heartwood after soaking in water followed by ethanol exchange drying was decreased by 18% and 22%, and 0 and 17%, respectively, while the permeability of sapwood and heartwood was 0.439 and 0.060 darcy respectively, which was increased by 85% and 49% respectively. The permeability difference of soaking sapwood and heartwood versus their controls was very significant at the 0.1% level by t-test.  相似文献   

6.
A combined FT-IR microscopy and principle component analysis was used to investigate chemical variations between softwood species as well as types of wood cell walls; latewood tracheids, earlywood tracheids and earlywood ray parenchyma cells. The method allowed us to detect small spectral differences between cell types rather than species and to predict characteristic chemical components of each cell type. The method enabled information to be obtained which allowed a evaluation of the polysaccharide composition even in lignified woody plant cell walls.  相似文献   

7.
Localization of a heartwood norlignan, agatharesinol, in Sugi (Japanese cedar, Cryptomeria japonica D. Don, Taxodiaceae) was investigated by immunohistochemistry. Immuno light microscopy showed that the contents of ray parenchyma cells were immunostained in heartwood but not in sapwood. The staining of the heartwood tissue was competitively inhibited by agatharesinol but not by other Sugi heartwood extractives, and was, furthermore, markedly reduced by pre-extraction of the tissue with MeOH. These results indicated that the staining can be ascribed to the immunolabeling of agatharesinol in situ. The accumulations over the inner surface of some tracheid cell walls adjacent to the ray parenchyma cells were also immunolabeled, while the contents in axial parenchyma cells were not. In conclusion, agatharesinol was localized in the ray parenchyma cells in Sugi heartwood, and differences between the chemical structure of the contents of ray and axial parenchyma cells were also suggested.  相似文献   

8.
The water permeability of sapwood and heartwood of Abies grandis(Doug.) Lindl. was found for normal trees and those infestedby balsam woolly aphid Adelges Piceae (Ratz.). It was determinedas the rate of flow of water through plugs of the wood of standarddimensions and under constant suction. The permeability of normaltrees was less in the inner than the outer sapwood and thisdifference was correlated with a greater void space (gas-filledtracheids) in the inner sapwood. The permeability of the heartwoodwas less than 5 per cent that of the sapwood. Aphid infestationreduced the permeability of the outer sapwood to about the samelevel as normal heartwood. The infested wood had a high percentageof void space and again permeability was negatively correlatedwith void space. But for a given level of void space the infestedwood had a much lower permeability than normal wood. This suggeststhat there was factor additional to the air in the tracheids,which contributed to the low permeability of infested wood.The possible nature of this factor is briefly discussed.  相似文献   

9.
A vesselless fossil wood was discovered in the Miocene Yanagida Formation in the Noto Peninsula, central Japan. This fossil has distinct growth rings with gradual transition from the early- to the latewood ; tracheids, which are called 'usual traeheids' here, constitute the ground mass of the wood and have typical scalariform bordered pits on radial walls in the earlywood and circular sparse pits on those in the latewood ; rays are 1\2-4 cells wide and heterogeneous with low to high uniseriate wings; axial parenchyma strands are scattered in the latewood. This wood has a peculiar feature; sporadic radial files of broad tracheids whose tangential walls have crowded alternate bordered pits. The radial walls have crowded half-bordered pits to ray cells, but no pits to the usual tracheids. Among all of the extant and extinct angiosperms and gymnosperms, these unusual tracheids occur only in Tetracentron. From these features, we refer the fossil to the extant genus Tetracentron, and name it T. japonoxylum. A revision of homoxylic woods is made for comparision with the present fossil. Tetracentron japonoxylum is the only fossil wood of Tetracentron.  相似文献   

10.
Differences in patterns of cell death between ray parenchyma cells and ray tracheids in the conifers Pinus densiflora and Pinus rigida were clarified. Differentiation and cell death of ray tracheids occurred successively and both were related to the distance from the cambium. In this respect, they resembled those of longitudinal tracheids. Thus, the cell death of short-lived ray tracheids could be characterized as time-dependent programmed cell death. In contrast, ray parenchyma cells survived for several years or more, and no successive cell death occurred, even within a single radial line of cells in a ray. Thus, the features of death of the ray parenchyma cells were different from those of ray tracheids. Cell death occurred early in ray parenchyma cells that were in contact with ray tracheids. The initiation of secondary wall thickening occurred earlier in ray parenchyma cells that were in contact with ray tracheids in Pinus densiflora than in others. In addition, localized thickening of secondary walls occurred only in ray parenchyma cells that were in contact with ray tracheids in Pinus rigida. Moreover, no polyphenols were evident in such cells in either species. Therefore, ray parenchyma cells that were in contact with ray tracheids appeared not to play a role in the formation of heartwood extractives. Our observations indicate that short-lived ray tracheids might affect the pattern of differentiation and, thus, the functions of neighboring long-lived ray parenchyma cells in conifers.  相似文献   

11.
The aim of this study was to investigate bending stiffness and compression strength perpendicular to the grain of Norway spruce (Picea abies (L.) Karst.) trunkwood with different anatomical and hydraulic properties. Hydraulically less safe mature sapwood had bigger hydraulic lumen diameters and higher specific hydraulic conductivities than hydraulically safer juvenile wood. Bending stiffness (MOE) was higher, whereas radial compression strength lower in mature than in juvenile wood. A density-based tradeoff between MOE and hydraulic efficiency was apparent in mature wood only. Across cambial age, bending stiffness did not compromise hydraulic efficiency due to variation in latewood percent and because of the structural demands of the tree top (e.g. high flexibility). Radial compression strength compromised, however, hydraulic efficiency because it was extremely dependent on the characteristics of the “weakest” wood part, the highly conductive earlywood. An increase in conduit wall reinforcement of earlywood tracheids would be too costly for the tree. Increasing radial compression strength by modification of microfibril angles or ray cell number could result in a decrease of MOE, which would negatively affect the trunk’s capability to support the crown. We propose that radial compression strength could be an easily assessable and highly predictive parameter for the resistance against implosion or vulnerability to cavitation across conifer species, which should be topic of further studies.  相似文献   

12.
Heartwood development and other functional changes in stem conductance in response to water stress in radiata pine were investigated using two contrasting climatic areas (high-altitude sub-alpine vs. warm–dry inland) of the Hume region of New South Wales, Australia. The study included mature (34.5–36.5 years old) and young stands (10–11 years old) measured under normal climate and during an extreme drought. The effect of water stress on heartwood development was examined using sapwood percentage, sapwood saturation, development of dry sapwood and evidence of cavitation in sapwood. Trees at the warm–dry site developed heartwood at faster rates than on the high-altitude site. At breast height, the mature stands of the warm–dry site had 8–14 % less sapwood. Extensive cavitation towards the sapwood/heartwood boundary occurred in some of the mature and young stands on the warm–dry site. We postulated that in water-limiting environments, cavitation of the inner sapwood precedes heartwood formation and is an adaptation mechanism that regulates stem conductance capacity and thus water use in the tree. The drought of 2006 led to decreases in moisture associated with cavitation not previously reported for radiata pine and demonstrated the drought hardiness of the species. In the warm–dry site, breast-height sapwood saturation dropped to 58 and 82 % for suppressed and average-sized trees in a mature unthinned stand; and 75–78 % for two young stands. These saturation levels, however, only imply average values as some cells cavitated whilst others were fully saturated. Cavitation occurred in a localized fashion affecting small to large groups of cells.  相似文献   

13.
The Spanish populations of Pinus sylvestris L. occupy differentiated sites and must therefore include structural variations to cope with varied climate conditions. This study compares wood anatomical traits of P. sylvestris from ten Spanish regions of provenance with contrasting climates, taking into account the effects of region of provenance and tree nested within provenance on variation in wood biometry. In general, the effect of both sources of variation (provenance and tree) on wood biometry was highly significant. Most of the anatomical variations observed were intra-populational (at the tree level), although variation explained by provenance was high for some parameters (e.g., ray frequency and ray parenchyma cell frequency), suggesting high environmental influence. Trees in the driest region, growing in a Mediterranean phytoclimate, were characterized by large tracheid lumens, suggesting more efficient water conduction. They also had thick cell walls, which would reduce the risk of cavitation caused by high implosion stress during periods of drought, as well as a high ray tracheid frequency, implying greater water storage capacity in the sapwood. The population with greatest growth, located in an oroboreal phytoclimate, was characterized by large bordered pits and long tracheids, which would reduce resistivity in water transport. At higher altitudes, tracheid lumen diameter and resin canal diameter tended to be smaller, and intertracheid wall strength was greater. Results are discussed in relation to adaptation of the species to growth demands and frost.  相似文献   

14.
Nakaba S  Sano Y  Kubo T  Funada R 《Plant cell reports》2006,25(11):1143-1148
We monitored the distribution of death of secondary xylem cells in a conifer, Abies sachalinensis. The cell death of tracheids, which are tracheary elements, occurred successively and was related to the distance from cambium. Thus, it resembled programmed cell death. By contrast, the death of long-lived ray parenchyma cells had the following features: (1) ray parenchyma cells remained alive for several years or more; (2) in many cases, no successive cell death occurred even within a given radial cell line of a ray; and (3) the timing of cell death differed among upper and lower radial cell lines and other lines of cells within a ray. These results indicate that the death of long-lived ray parenchyma cells involves a different process from the death of tracheids. The initiation of secondary wall formation and the lignification of ray parenchyma cells in the current year's annual ring were delayed in the upper and lower radial cell lines of a ray. In addition, the density of distribution and orientation of cortical microtubules in such cells were different from those in cells in other radial lines. Ray parenchyma cells in the previous year's annual ring within the upper and lower radial cell lines of a ray contained many starch grains. Our results indicate that positional information is an important factor in the control of the pattern of differentiation and, thus, of the functions of ray parenchyma cells that are derived from the same cambial ray cells.  相似文献   

15.
Summary The activities of two key enzymes in flavonoid biosynthesis, phenylalanine ammonia-lyase (PAL, E.C. 4.3.1.5) and chalcone synthase (CHS, E.C. 2.3.1.74) were determined in the trunkwood of Robinia pseudoacacia L. The trees under investigation were cut at different times of the year (September, November, January and April). At all times PAL is active, both in the youngest wood layer (the outermost growth ring) and at the sapwood heartwood boundary. On the other hand, CHS is active exclusively in the vicinity of the heartwood boundary. The results indicate that PAL is involved both in the formation of lignin (outermost annual ring), and in flavonoid biosynthesis (heartwood boundary). Highest activity of both PAL and CHS could be measured at the sapwood heartwood boundary in the tree felled in November, indicating that heartwood formation was occurring mainly at that time. The flavonoids accumulated in the heartwood are obviously formed in situ and seem to be transported only to a minor extent — if at all — via the phloem and the ray cells to the heartwood.  相似文献   

16.
The wood of Azadirachta indica is diffuse porous. Axial parenchyma is paratracheal banded or vasicentric. Rays are uniseriate to multiseriate and heterocellular with procumbent and upright cells. There is a strong negative correlation between vessel member length and diameter. The vulnerability and mesomorphic values are different in two trees of almost the same age growing in the same locality. The vessel member wall has spiral thickenings on its inner surface. Axial and ray parenchyma cells and sometimes vessels and fibres of the heartwood show the presence of extractives. The necrobiosis of the parenchyma cells occurs at the heartwood boundary. Senescence and death of parenchyma cells are associated with depletion of starch grains and accumulation of extractives. There is a climacteric rise in succinate dehydrogenase and acid phosphatase activities at the sapwood-heartwood interface which may be associated with heartwood formation. Peroxidase activity is greater near the cambial zone, indicating its probable role in lignification.  相似文献   

17.
The distribution of noncellulosic polysaccharides in cell walls of tracheids and xylem parenchyma cells in normal and compression wood of Pinus radiata, was examined to determine the relationships with lignification and cellulose microfibril orientation. Using fluorescence microscopy combined with immunocytochemistry, monoclonal antibodies were used to detect xyloglucan (LM15), β(1,4)-galactan (LM5), heteroxylan (LM10 and LM11), and galactoglucomannan (LM21 and LM22). Lignin and crystalline cellulose were localized on the same sections used for immunocytochemistry by autofluorescence and polarized light microscopy, respectively. Changes in the distribution of noncellulosic polysaccharides between normal and compression wood were associated with changes in lignin distribution. Increased lignification of compression wood secondary walls was associated with novel deposition of β(1,4)-galactan and with reduced amounts of xylan and mannan in the outer S2 (S2L) region of tracheids. Xylan and mannan were detected in all lignified xylem cell types (tracheids, ray tracheids, and thick-walled ray parenchyma) but were not detected in unlignified cell types (thin-walled ray parenchyma and resin canal parenchyma). Mannan was absent from the highly lignified compound middle lamella, but xylan occurred throughout the cell walls of tracheids. Using colocalization measurements, we confirmed that polysaccharides containing galactose, mannose, and xylose have consistent correlations with lignification. Low or unsubstituted xylans were localized in cell wall layers characterized by transverse cellulose microfibril orientation in both normal and compression wood tracheids. Our results support the theory that the assembly of wood cell walls, including lignification and microfibril orientation, may be mediated by changes in the amount and distribution of noncellulosic polysaccharides.  相似文献   

18.
Imai T  Tanabe K  Kato T  Fukushima K 《Planta》2005,221(4):549-556
Time-of-flight secondary ion mass spectrometry (TOF-SIMS) was applied to the investigation of heartwood extractives in Sugi (Cryptomeria japonica). Sugi heartwood tissue generated secondary ions that were not produced from sapwood tissue by TOF-SIMS. Among the peculiar ions generated from heartwood, two positive ions of m/z 285 and 301 were remarkable due to their appearance in a larger mass range and with a high intensity. These two ions were not generated from heartwood tissue preextracted with n-hexane, and the n-hexane extract of Sugi heartwood produced both ions. Gas chromatography-mass spectrometry of the n-hexane extract demonstrated that ferruginol, a diterpene phenol, the molecular weight of which is 286, constituted one of the predominant constituents of the extract. Authentic ferruginol also generated both ions by TOF-SIMS. The molecular formula of the m/z 285 ion generated from Sugi heartwood tissue was estimated to be C20H29O, which corresponds well with that of ferruginol, i.e. C20H30O, by peak identification. All these results strongly suggest that the m/z 285 ion generated from Sugi heartwood tissue originated significantly from ferruginol in Sugi heartwood. By TOF-SIMS imaging, the m/z 285 ion was detected uniformly in the tracheid cell walls, in the cell walls of the axial parenchyma cells and ray parenchyma cells, and also inside these parenchyma cells. These results indicate that ferruginol was distributed almost evenly in Sugi heartwood tissue.  相似文献   

19.
Acoustic emission (AE) and radial shrinkage were compared between fully saturated fresh and pre-dried Norway spruce sapwood during dehydration at ambient temperature. Hydraulic conductivity measurements, anatomical investigations on bordered pits and X-ray computed tomography (CT) scans were done to search for possible AE sources other than the breakage of the water columns inside the tracheids. Both fresh and pre-dried specimens showed radial shrinkage due to drying surface layers right from the beginning of dehydration, which induced almost no AE. Whereas no dimensional changes occurred in pre-dried wood thereafter, fresh wood showed a rapid shrinkage increase starting at 25% relative water loss. This dimensional change ceased when further moisture got lost and was even partially reversed. AE of fresh wood showed much higher activity and energy, which is a waveform feature that describes the strength of the acoustic signal. Extremely high single AE energy events were detected at this critical stage of dehydration. After partial recovery from shrinkage, neither dimensional changes nor AE activity showed differences between fresh and pre-dried wood after more than 80% relative moisture loss. Our results suggested that fresh sapwood is more prone to dehydration stresses than pre-dried sapwood. Differences in AE and shrinkage behavior might be due to the weakening or distortion of the pit membranes (cavitation fatigue), pit aspiration, structural changes of the cell walls and micro-checks, which occurred during the first dehydration cycle.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号