首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 762 毫秒
1.
A three-dimensional model of the knee is used to study ligament function during anterior-posterior (a-p) draw, axial rotation, and isometric contractions of the extensor and flexor muscles. The geometry of the model bones is based on cadaver data. The contacting surfaces of the femur and tibia are modeled as deformable; those of the femur and patella are assumed to be rigid. Twelve elastic elements are used to describe the geometry and mechanical properties of the cruciate ligaments, the collateral ligaments, and the posterior capsule. The model is actuated by thirteen musculotendinous units, each unit represented as a three-element muscle in series with tendon. The calculations show that the forces applied during a-p draw are substantially different from those applied by the muscles during activity. Principles of knee-ligament function based on the results of in vitro experiments may therefore be overstated. Knee-ligament forces during straight a-p draw are determined solely by the changing geometry of the ligaments relative to the bones: ACL force decreases with increasing flexion during anterior draw because the angle between the ACL and the tibial plateau decreases as knee flexion increases; PCL force increases with increasing flexion during posterior draw because the angle between the PCL and the tibial plateau increases. The pattern of ligament loading during activity is governed by the geometry of the muscles spanning the knee: the resultant force in the ACL during isometric knee extension is determined mainly by the changing orientation of the patellar tendon relative to the tibia in the sagittal plane; the resultant force in the PCL during isometric knee flexion is dominated by the angle at which the hamstrings meet the tibia in the sagittal plane.  相似文献   

2.
A three-dimensional model of the knee is developed to study the interactions between the muscles, ligaments, and bones during activity. The geometry of the distal femur, proximal tibia, and patella is based on cadaver data reported for an average-size knee. The shapes of the femoral condyles are represented by high-order polynomials: the tibial plateaux and patellar facets are approximated as flat surfaces. The contacting surfaces of the femur and tibia are modeled as deformable, while those of the femur and patella are assumed to be rigid. Interpenetration of the femur and tibia is taken into account by modeling cartilage as a thin, linear, elastic layer, mounted on rigid bone. Twelve elastic elements describe the geometry and mechanical properties of the cruciate ligaments, the collateral ligaments, and the posterior capsule. The model is actuated by thirteen musculotendinous units, each unit modeled as a three-element muscle in series with tendon. The path of each muscle is approximated as a straight line, except where it contacts and wraps around bone and other muscles; changes in muscle paths are taken into account using data obtained from MRI. In the first part of this paper, the model is used to simulate passive knee flexion. Quantitative comparisons of the model results with experimental data reported in the literature indicate that the relative movements of the bones and the geometry of the ligaments and muscles in the model are similar to those evident in the real knee. In Part II, the model is used to describe knee-ligament function during anterior-posterior draw, axial rotation, and isometric knee-extension and knee-flexion exercises.  相似文献   

3.
A three-dimensional model of the knee is developed to study the interactions between the muscles, ligaments, and bones during activity. The geometry of the distal femur, proximal tibia, and patella is based on cadaver data reported for an average-size knee. The shapes of the femoral condyles are represented by high-order polynomials; the tibial plateaux and patellar facets are approximated as flat surfaces. The contacting surfaces of the femur and tibia are modeled as deformable, while those of the femur and patella are assumed to be rigid. Interpenetration of the femur and tibia is taken into account by modeling cartilage as a thin, linear, elastic layer, mounted on rigid bone. Twelve elastic elements describe the geometry and mechanical properties of the cruciate ligaments, the collateral ligaments, and the posterior capsule. The model is actuated by thirteen musculotendinous units, each unit modeled as a three-element muscle in series with tendon. The path of each muscle is approximated as a straight line, except where it contacts and wraps around bone and other muscles; changes in muscle paths are taken into account using data obtained from MRI. In the first part of this paper, the model is used to simulate passive knee flexion. Quantitative comparisons of the model results with experimental data reported in the literature indicate that the relative movements of the bones and the geometry of the ligaments and muscles in the model are similar to those evident in the real knee. In Part II, the model is used to describe knee-ligament function during anterior-posterior draw, axial rotation, and isometric knee-extension and knee-flexion exercises.  相似文献   

4.
A potential cause of non-contact anterior cruciate ligament (ACL) injury is landing on an extended knee. In line with this hypothesis, studies have shown that the ACL is elongated with decreasing knee flexion angle. Furthermore, at low flexion angles the patellar tendon is oriented to increase the anterior shear component of force acting on the tibia. This indicates that knee extension represents a position in which the ACL is taut, and thus may have an increased propensity for injury, particularly in the presence of excessive force acting via the patellar tendon. However, there is very little in vivo data to describe how patellar tendon orientation and ACL elongation interact during flexion. Therefore, this study measured the patellar tendon tibial shaft angle (indicative of the relative magnitude of the shear component of force acting via the patellar tendon) and ACL length in vivo as subjects performed a quasi-static lunge at varying knee flexion angles. Spearman rho rank correlations within each individual revealed that flexion angles were inversely correlated to both ACL length (rho = −0.94 ± 0.07, mean ± standard deviation, p < 0.05) and patellar tendon tibial shaft angle (rho = −0.99 ± 0.01, p < 0.05). These findings indicate that when the knee is extended, the ACL is both elongated and the patellar tendon tibial shaft angle is increased, resulting in a relative increase in anterior shear force on the tibia acting via the patellar tendon. Therefore, these data support the hypothesis that landing with the knee in extension is a high risk scenario for ACL injury.  相似文献   

5.
The screw-home mechanism and coupling between forces in cruciate ligaments during passive knee joint flexion were investigated for various boundary conditions, flexion axis alignments and posterior cruciate ligaments (PCL)/anterior cruciate ligament (ACL) conditions. A developed non-linear 3D finite element model was used to perform detailed elasto-static response analyses of the human tibiofemoral joint as a function of flexion angle varying from 10 degrees hyper-extension to 90 degrees flexion. The tibia rotated internally as the femur flexed and externally as the femur extended. The re-alignment of the flexion axis by +/-5 degrees rotation about the axial (distal-proximal) axis, transection of the ACL and changes in cruciate ligament initial strains substantially influenced the 'screw-home' motion. On the other hand, restraint on this coupled rotation diminished ACL forces in flexion. A remarkable coupling was predicted between ACL and PCL forces in flexion; forces in both cruciate ligaments increased as the initial strain or pretension in one of them increased whereas they both diminished as one of them was cut or became slack. This has important consequences in joint functional biomechanics following a ligament injury or replacement surgery and, hence, in the proper management of joint disorders.  相似文献   

6.
Ligaments and articular contact guide passive knee flexion   总被引:4,自引:0,他引:4  
The aim of this study was to test the hypothesis that the coupled features of passive knee flexion are guided by articular contact and by the isometric fascicles of the ACL, PCL and MCL. A three-dimensional mathematical model of the knee was developed, in which the articular surfaces in the lateral and medial compartments and the isometric fascicles in the ACL, PCL and MCL were represented as five constraints in a one degree-of-freedom parallel spatial mechanism. Mechanism analysis techniques were used to predict the path of motion of the tibia relative to the femur. Using a set of anatomical parameters obtained from a cadaver specimen, the model predicts coupled internal rotation and ab/adduction with flexion. These predictions correspond well to measurements of the cadaver specimen’s motion. The model also predicts posterior translation of contact on the tibia with flexion. Although this is a well-known feature of passive knee flexion, the model predicts more translation than has been reported from experiments in the literature. Modelling of uncertainty in the anatomical parameters demonstrated that the discrepancy between theoretical predictions and experimental measurement can be attributed to parameter sensitivity of the model. This study shows that the ligaments and articular surfaces work together to guide passive knee motion. A principal implication of the work is that both articular surface geometry and ligament geometry must be preserved or replicated by surgical reconstruction and replacement procedures to ensure normal knee kinematics and by extension, mechanics.  相似文献   

7.
The effects of changes in cruciate ligament material and prestrain on knee joint biomechanics following ligament reconstruction surgery by a tendon are not adequately known. A 3D nonlinear finite element model of the entire knee joint was used to investigate the joint response at different flexion angles under a quadriceps force while varying ACL and PCL initial strains or material properties. The ACL and PCL forces as well as tibiofemoral contact forces/areas substantially increased with greater ACL or PCL initial strains or stiffness. The patellofemoral contact force slightly increased whereas the tibial extensor moment slightly decreased with tenser or stiffer ACL. Reverse trends were predicted with slacker ACL. Results confirm the hypotheses that changes in the prestrain of one cruciate ligament substantially influence the force in the other cruciate ligament and the entire joint and that the use of the patellar tendon (PT) as a replacement for cruciate ligaments markedly alters the joint biomechanics with trends similar to those predicted when increasing prestrains. Forces in both ACL and PCL ligaments increased as one of them became tenser or stiffer and diminished as it became slacker. These results have important consequences in joint biomechanics following ligament injuries or replacement and tend to recommend the use of grafts with smaller prestrains (i.e. slacker than intact) when using the PT as the replacement material with stiffness greater than that of replaced ligament itself.  相似文献   

8.
The effects of changes in cruciate ligament material and prestrain on knee joint biomechanics following ligament reconstruction surgery by a tendon are not adequately known. A 3D nonlinear finite element model of the entire knee joint was used to investigate the joint response at different flexion angles under a quadriceps force while varying ACL and PCL initial strains or material properties. The ACL and PCL forces as well as tibiofemoral contact forces/areas substantially increased with greater ACL or PCL initial strains or stiffness. The patellofemoral contact force slightly increased whereas the tibial extensor moment slightly decreased with tenser or stiffer ACL. Reverse trends were predicted with slacker ACL. Results confirm the hypotheses that changes in the prestrain of one cruciate ligament substantially influence the force in the other cruciate ligament and the entire joint and that the use of the patellar tendon (PT) as a replacement for cruciate ligaments markedly alters the joint biomechanics with trends similar to those predicted when increasing prestrains. Forces in both ACL and PCL ligaments increased as one of them became tenser or stiffer and diminished as it became slacker. These results have important consequences in joint biomechanics following ligament injuries or replacement and tend to recommend the use of grafts with smaller prestrains (i.e. slacker than intact) when using the PT as the replacement material with stiffness greater than that of replaced ligament itself.  相似文献   

9.
Patterns of fibre elongation and orientation for the cruciate and collateral ligaments of the human knee joint and for the patellar tendon have not yet been established in three-dimensions. These patterns are essential for understanding thoroughly the contribution of these soft tissues to joint function and of value in surgical treatments for a more conscious assessment of the knee status. Measurements from 10 normal cadaver knees are here reported using an accurate surgical navigation system and consistent anatomical references, over a large flexion arc, and according to current recommended conventions. The contours of relevant sub-bundles were digitised over the corresponding origins and insertions on the bones. Representative fibres were calculated as the straight line segments joining the centroids of these attachment areas. The most isometric fibre was also taken as that whose attachment points were at the minimum change in length over the flexion arc. Changes in length and orientation of these fibres were reported versus the flexion angle. A good general repeatability of intra- and inter-specimens was found. Isometric fibres were found in the locations reported in the literature. During knee flexion, ligament sub-bundles slacken in the anterior cruciate ligament, and in the medial and lateral collateral ligaments, whereas they tighten in the posterior cruciate ligament. In each cruciate ligament the two compounding sub-bundles have different extents for the change in fibre length, and also bend differently from each other on both tibial planes. In the collateral ligaments and patellar tendon all fibres bend posteriorly. Patellar tendon underwent complex changes in length and orientation, on both the tibial sagittal and frontal planes. For the first time thorough and consistent patterns of geometrical changes are provided for the main knee ligaments and tendons after careful fibre mapping.  相似文献   

10.
Lateral view radiographs of ten autopsy knees were used to determine the orientation of the patellar ligament, patella and quadriceps tendon relative to tibia and femur at different flexion-extension angles (0-120 degrees) of the knee. The results show a linear relationship between the angle of flexion and the movement of the patellar ligament relative to the tibia and of the movement of the patella relative to tibia and femur. There is a non-linear relationship between angle of flexion and the movement of the quadriceps tendon relative to the patellar ligament, patella and femur. The angular changes between patella and patellar ligament are negligible. The complicated movements of the distal part of the quadriceps femoris muscle may significantly influence biomechanical parameters such as the forces acting at the patella and tibial tuberosity.  相似文献   

11.
The hamstring muscles have been recognized as an important element in compensating for the loss of stability in the ACL-deficient knee, but it is still not clear whether the hamstring muscle force can completely compensate for the loss of ACL, and the consequences of increased hamstring muscle force. A two-dimensional anatomical knee model in the sagittal plane was developed to examine the effect of various levels of hamstring muscle activation on restraining anterior tibial translation in the ACL-deficient knee during level walking. The model included the tibiofemoral and patellofemoral joints, four major ligaments, the medial capsule, and five muscle units surrounding the knee. Simulations were conducted to determine anterior tibial translation and internal joint loading at a single selected position when the knee was under a peak external flexion moment during early stance phase of gait. Incremental hamstring muscle forces were applied to the modeled normal and the ACL-deficient knees. Results of simulations showed that the ACL injury increased the anterior tibial translation by 11.8mm, while 56% of the maximal hamstring muscle force could reduce the anterior translation of the tibia to a normal level during the stance phase of gait. The consequences of increased hamstring muscle force included increased quadriceps muscle force and joint contact force.  相似文献   

12.
An anatomical dynamic model consisting of three body segments, femur, tibia and patella, has been developed in order to determine the three-dimensional dynamic response of the human knee. Deformable contact was allowed at all articular surfaces, which were mathematically represented using Coons' bicubic surface patches. Nonlinear elastic springs were used to model all ligamentous structures. Two joint coordinate systems were employed to describe the six-degrees-of-freedom tibio-femoral (TF) and patello-femoral (PF) joint motions using twelve kinematic parameters. Two versions of the model were developed to account for wrapping and nonwrapping of the quadriceps tendon around the femur. Model equations consist of twelve nonlinear second-order ordinary differential equations coupled with nonlinear algebraic constraint equations resulting in a Differential-Algebraic Equations (DAE) system that was solved using the Differential/Algebraic System Solver (DASSL) developed at Lawrence Livermore National Laboratory. Model calculations were performed to simulate the knee extension exercise by applying non-linear forcing functions to the quadriceps tendon. Under the conditions tested, both "screw home mechanism" and patellar flexion lagging were predicted. Throughout the entire range of motion, the medial component of the TF contact force was found to be larger than the lateral one while the lateral component of the PF contact force was found to be larger than the medial one. The anterior and posterior fibers of both anterior and posterior cruciate ligaments, ACL and PCL, respectively, had opposite force patterns: the posterior fibers were most taut at full extension while the anterior fibers were most taut near 90 degrees of flexion. The ACL was found to carry a larger total force than the PCL at full extension, while the PCL carried a larger total force than the ACL in the range of 75 degrees to 90 degrees of flexion.  相似文献   

13.
Knee laxity, defined as the net translation or rotation of the tibia relative to the femur in a given direction in response to an applied load, is highly variable from person to person. High levels of knee laxity as assessed during routine clinical exams are associated with first-time ligament injury and graft reinjury following reconstruction. During laxity exams, ligaments carry force to resist the applied load; however, relationships between intersubject variations in knee laxity and variations in how ligaments carry force as the knee moves through its passive envelope of motion, which we refer to as ligament engagement, are not well established. Thus, the objectives of this study were, first, to define parameters describing ligament engagement and, then, to link variations in ligament engagement and variations in laxity across a group of knees. We used a robotic manipulator in a cadaveric knee model (n = 20) to quantify how important knee stabilizers, namely the anterior and posterior cruciate ligaments (ACL and PCL, respectively), as well as the medial collateral ligament (MCL) engage during respective tests of anterior, posterior, and valgus laxity. Ligament engagement was quantified using three parameters: (1) in situ slack, defined as the relative tibiofemoral motion from the neutral position of the joint to the position where the ligament began to carry force; (2) in situ stiffness, defined as the slope of the linear portion of the ligament force–tibial motion response; and (3) ligament force at the peak applied load. Knee laxity was related to parameters of ligament engagement using univariate and multivariate regression models. Variations in the in situ slack of the ACL and PCL predicted anterior and posterior laxity, while variations in both in situ slack and in situ stiffness of the MCL predicted valgus laxity. Parameters of ligament engagement may be useful to further characterize the in situ biomechanical function of ligaments and ligament grafts.  相似文献   

14.
The ability to climb a steep step or rise from a low chair after total knee replacement may be enhanced if the required force in the quadriceps muscle is reduced. This can potentially be achieved if the total knee produces a large lever arm measured from the femoral-tibial contact point to the patellar ligament. A reduced quadriceps force would also reduce the patello-femoral force and the femoral-tibial contact force. The contact point location is likely to be a function of the geometry of the femoral and tibial components in the sagittal plane, including the relative distal and posterior radii of the femoral profile, the location of the bottom-of-the-dish of the tibial surface, the radius of the tibial surface, and the presence or absence of the posterior cruciate ligament. A three-dimensional model of the knee was developed including the quadriceps and various ligaments. In the study, the motion was confined to flexion extension and displacement in the sagittal plane. The quadriceps was assumed to be the only muscle acting. A standard software package (Pro/Mechanica) was used for the analysis. For a femoral component with a smaller distal radius, there was 12% reduction in the quadriceps muscle force and up to 11% reduction in the patello-femoral force from about 100 up to 60 degrees flexion. However, apart from that, there were less than 10% differences in all the forces as a function of all of the design variables studied. This was attributed to the relatively small changes in the lever arm of the patella tendon, since the tendon moves in an anterior-posterior direction along with the femur. An additional factor explaining the results was the change in the anterior-posterior contact point as controlled by the forces in the patella tendon and in the soft tissues. The results imply that for a standard condylar replacement knee, the muscle and contact forces are not greatly affected by the geometrical design variables.  相似文献   

15.
This study aimed to analyze the spatial developmental changes of rat cruciate ligaments by three-dimensional (3D) reconstruction using episcopic fluorescence image capture (EFIC). Cruciate ligaments of Wister rat embryos between embryonic day (E) 16 and E20 were analyzed. Samples were sectioned and visualized using EFIC. 3D reconstructions were generated using Amira software. The length of the cruciate ligaments, distances between attachment points to femur and tibia, angles of the cruciate ligaments and the cross angle of the cruciate ligaments were measured. The shape of cruciate ligaments was clearly visible at E17. The lengths of the anterior cruciate ligament (ACL) and posterior cruciate ligament (PCL) increased gradually from E17 to E19 and drastically at E20. Distances between attachment points to the femur and tibia gradually increased. The ACL angle and PCL angle gradually decreased. The cross angle of the cruciate ligaments changed in three planes. The primordium of the 3D structure of rat cruciate ligaments was constructed from the early stage, with the completion of the development of the structures occurring just before birth.  相似文献   

16.
This study investigated the effect of hamstring co-contraction with quadriceps on the kinematics of the human knee joint and the in-situ forces in the anterior cruciate ligament (ACL) during a simulated isometric extension motion of the knee. Cadaveric human knee specimens (n = 10) were tested using the robotic universal force moment sensor (UFS) system and measurements of knee kinematics and in-situ forces in the ACL were based on reference positions on the path of passive flexion/extension motion of the knee. With an isolated 200 N quadriceps load, the knee underwent anterior and lateral tibial translation as well as internal tibial rotation with respect to the femur. Both translation and rotation increased when the knee was flexed from full extension to 30 of flexion; with further flexion, these motion decreased. The addition of 80 N antagonistic hamstrings load significantly reduced both anterior and lateral tibial translation as well as internal tibial rotation at knee flexion angles tested except at full extension. At 30 of flexion, the anterior tibial translation, lateral tibial translation, and internal tibial rotation were significantly reduced by 18, 46, and 30%, respectively (p<0.05). The in-situ forces in the ACL under the quadriceps load were found to increase from 27.8+/-9.3 N at full extension to a maximum of 44.9+/-13.8 N at 15 of flexion and then decrease to 10 N beyond 60 of flexion. The in-situ force at 15 was significantly higher than that at other flexion angles (p<0.05). The addition of the hamstring load of 80 N significantly reduced the in-situ forces in the ACL at 15, 30 and 60 of flexion by 30, 43, and 44%, respectively (p<0.05). These data demonstrate that maximum knee motion may not necessarily correspond to the highest in-situ forces in the ACL. The data also suggest that hamstring co-contraction with quadriceps is effective in reducing excessive forces in the ACL particularly between 15 and 60 of knee flexion.  相似文献   

17.
The purpose of this study was to predict and explain the pattern of shear force and ligament loading in the ACL-deficient knee during walking, and to compare these results to similar calculations for the healthy knee. Musculoskeletal modeling and computer simulation were combined to calculate ligament forces in the ACL-deficient knee during walking. Joint angles, ground-reaction forces, and the corresponding lower-extremity muscle forces obtained from a whole-body dynamic optimization simulation of walking were input into a second three-dimensional model of the lower extremity that represented the knee as a six degree-of-freedom spatial joint. Anterior tibial translation (ATT) increased throughout the stance phase of gait when the model ACL was removed. The medial collateral ligament (MCL) was the primary restraint to ATT in the ACL-deficient knee. Peak force in the MCL was three times greater in the ACL-deficient knee than in the ACL-intact knee; however, peak force sustained by the MCL in the ACL-deficient knee was limited by the magnitude of the total anterior shear force applied to the tibia. A decrease in anterior tibial shear force was brought about by a decrease in the patellar tendon angle resulting from the increase in ATT. These results suggest that while the MCL acts as the primary restraint to ATT in the ACL-deficient knee, changes in patellar tendon angle reduce total anterior shear force at the knee.  相似文献   

18.
Musculoskeletal models are widely used to investigate joint kinematics and predict muscle force during gait. However, the knee is usually simplified as a one degree of freedom joint and knee ligaments are neglected. The aim of this study was to develop an OpenSim gait model with enhanced knee structures. The knee joint in this study included three rotations and three translations. The three knee rotations and mediolateral translation were independent, with proximodistal and anteroposterior translations occurring as a function of knee flexion/extension. Ten elastic elements described the geometrical and mechanical properties of the anterior and posterior cruciate ligaments (ACL and PCL), and the medial and lateral collateral ligaments (MCL and LCL). The three independent knee rotations were evaluated using OpenSim to observe ligament function. The results showed that the anterior and posterior bundles of ACL and PCL (aACL, pACL and aPCL, pPCL) intersected during knee flexion. The aACL and pACL mainly provided force during knee flexion and adduction, respectively. The aPCL was slack throughout the range of three knee rotations; however, the pPCL was utilised for knee abduction and internal rotation. The LCL was employed for knee adduction and rotation, but was slack beyond 20° of knee flexion. The MCL bundles were mainly used during knee adduction and external rotation. All these results suggest that the functions of knee ligaments in this model approximated the behaviour of the physical knee and the enhanced knee structures can improve the ability to investigate knee joint biomechanics during various gait activities.  相似文献   

19.
Three orthogonal components of the tibiofemoral and patellofemoral forces were measured simultaneously for knees with intact cruciate ligaments (nine knees), following anterior cruciate ligament resection (six knees), and subsequent posterior cruciate ligament resection (six knees). The knees were loaded using an experimental protocol that modeled static double-leg squat. The mean compressive tibial force increased with flexion angle. The mean anteroposterior tibial shear force acted posteriorly on the tibia below 50 deg flexion and anteriorly above 55 deg. Mediolateral shear forces were low compared to the other force components and tended to be directed medially on both the patella and tibia. The mean value of the ratio of the resultant tibial force divided by the quadriceps force decreased with increasing flexion angle and was between 0.6 and 0.7 above 70 deg flexion. The mean value of the ratio of the resultant tibiofemoral contact force divided by the resultant patellofemoral contact force decreased with increasing flexion and was between 0.8 and 1.0 above 55 deg flexion. Cruciate ligament resection resulted in no significant changes in the patellar contact forces. Following resection of the anterior cruciate ligament, the tibial anteroposterior shear force was directed anteriorly over all flexion angles tested. Subsequent resection of the posterior cruciate ligament resulted in an approximately 10 percent increase in the quadriceps tendon and tibial compressive force.  相似文献   

20.
The hamstring muscles have the potential to counteract anterior shear forces at the knee joint by co-contracting during knee extension efforts. Such a muscle recruitment pattern might protect the anterior cruciate ligament (ACL) by reducing its strain. In this study we investigated to what extent co-activation of the knee flexors during extension efforts is compatible with the hypothesis that this co-activation serves to counteract anterior tibial shear forces during isometric knee extension efforts in healthy subjects. To this aim, it is investigated whether co-activation varies with the required knee extension moment, with the knee joint angle, and with the position of the external flexing force relative to the knee joint. With unaltered moment and muscle activation, distal positioning of the flexing force on the tibia causes higher resultant (muscular plus external) forward shear forces at the knee as compared to proximal positioning. In ten subjects, knee flexor and extensor EMG was measured during a quasi-isometric positioning task for a range (5-50 degrees) of knee flexion angles. It was found that the co-activation of the knee flexors increased with the extension moment, but this increase was less than proportional (p<0.001). The extension moment increased 2.7 to 3.4 times, whereas the activation of Biceps Femoris and Semitendinosus increased only a factor 1.3 to 2.0 (joint angle dependent). Furthermore, a strong increase in co-activation was seen near full extension of the knee joint. The position of the external extension load on the tibia did not affect the level of co-contraction. It is argued that these results do not suggest a recruitment pattern that is directed at reduction of anterior shear forces in the knee joint during sub-maximal isometric knee extension efforts in healthy subjects.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号