首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 100 毫秒
1.
We carried out the flash photolysis of oxy complexes of sperm whale myoglobin, cobalt-substituted sperm whale myoglobin, and Aplysia myoglobin. When the optical absorption spectral changes associated with the O2 rebinding were monitored on the nanosecond to millisecond time scale, we found that the transient spectra of the O2 photoproduct of sperm whale myoglobin were significantly different from the static spectra of deoxy form. This was sharply contrasted with the observations that the spectra of the CO photoproduct of sperm whale myoglobin and of the O2 photoproducts of cobalt-substituted sperm whale myoglobin and Aplysia myoglobin are identical to the corresponding spectra of their deoxy forms. These results led us to suggest the presence of a fairly stable transient species in the O2 photodissociation from the oxy complex of sperm whale myoglobin, which has a protein structure different from the deoxy form. We denoted the O2 photo-product to be Mb*. In the time-resolved resonance Raman measurements, the nu Fe-His mode of Mb* gave the same value as that of the deoxy form, indicating that the difference in the optical absorption spectra is possibly due to the structural difference at the heme distal side rather than those of the proximal side. The structure of Mb* is discussed in relation to the dynamic motion of myoglobin in the O2 entry to or exit from the heme pocket. Comparing the structural characteristics of several myoglobins employed, we suggested that the formation of Mb* relates to the following two factors: a hydrogen bonding of O2 with the distal histidine, and the movement of iron upon the ligation of O2.  相似文献   

2.
Haem disorder in two myoglobins: comparison of reorientation rate.   总被引:1,自引:0,他引:1       下载免费PDF全文
The globins from sperm whale and from Aplysia limacina myoglobins were reconstituted by addition of stoichiometric ferric protohaem and the Soret c.d. was followed as a function of time. For both reconstituted proteins, the Soret c.d. changes with time, reflecting haem reorientation inside its pocket, as previously described [Aojula, Wilson & Drake (1986) Biochem. J. 237, 613-616] for sperm whale myoglobin. The time course of the c.d. transition is found to be approx. 10 times faster in Aplysia than in sperm whale myoglobin, a result which is in agreement with the known structural and physicochemical properties of the two myoglobins; furthermore, these results confirm that c.d. and n.m.r. data on haem orientation in haemoproteins reflect the same molecular phenomenon.  相似文献   

3.
The pH dependence of the proton NMR chemical shifts of met-cyano and deoxy forms of native and reconstituted myoglobins reflects a structural transition in the heme pocket modulated by a single proton with pK 5.1-5.6. Comparison of this pH dependence of sperm whale and elephant myoglobin and that of the former protein reconstituted with esterified hemin eliminates both the distal histidine as well as the heme propionates as the titrating residue. Reconstitution of sperm whale met-cyano myoglobin with hemin modified at the 2,4-positions leads to a systematic variation in the pK for the structural transition, thus indicating the presence of a coupling between the titrating group and the heme pi system. The results are consistent with histidine FG3 (His-FG3) being the titrating group, and a donor-acceptor pi-pi interaction between its imidazole and the heme is proposed.  相似文献   

4.
The work in the literature on apomyoglobin is almost equally divided between horse and sperm whale myoglobins. The two proteins share high homology, show similar folding behavior, and it is often assumed that all folding phenomena found with one protein will also be found with the other. We report data at equilibrium showing that horse myoglobin was 2.1 kcal/mol less stable than sperm whale myoglobin at pH 5.0, and aggregated at high concentrations as measured by gel filtration and analytical ultracentrifugation experiments. The higher stability of sperm whale myoglobin was identified for both apo and holo forms, and was independent of pH from 5 to 8 and of the presence of sodium chloride. We also show that the substitution of sperm whale myoglobin residues Ala15 and Ala74 to Gly, the residues found at positions 15 and 74 in horse myoglobin, decreased the stability by 1.0 kcal/mol, indicating that helix propensity is an important component of the explanation for the difference in stability between the two proteins.  相似文献   

5.
Overall association and dissociation rate constants were measured at 20 degrees C for O2, CO, and alkyl isocyanide binding to position 45 (CD3) mutants of pig and sperm whale myoglobins and to sperm whale myoglobin reconstituted with protoheme IX dimethyl ester. In pig myoglobin, Lys45(CD3) was replaced with Arg, His, Ser, and Glu; in sperm whale myoglobin, Arg45(CD3) was replaced with Ser and Gly. Intramolecular rebinding of NO, O2, and methyl isocyanide to Arg45, Ser45, Glu45, and Lys45(native) pig myoglobins was measured following 35-ps and 17-ns excitation pulses. The shorter, picosecond laser flash was used to examine ligand recombination from photochemically produced contact pairs, and the longer, nanosecond flash was used to measure the rebinding of ligands farther removed from the iron atom. Mutations at position 45 or esterification of the heme did not change significantly (less than or equal to 2-fold) the overall association rate constants for NO, CO, and O2 binding at room temperature. These data demonstrate unequivocally that Lys(Arg)45 makes little contribution to the outer kinetic barrier for the entry of diatomic gases into the distal pocket of myoglobin, a result that contradicts a variety of previous structural and theoretical interpretations. However, the rates of geminate recombination of NO and O2 and the affinity of myoglobin for O2 were dependent upon the basicity of residue 45. The series of substitutions Arg45, Lys45, Ser45, and Glu45 in pig myoglobin led to a 3-fold decrease in the initial rate for the intramolecular, picosecond rebinding of NO and 4-fold decrease in the geminate rate constant for the nanosecond rebinding of O2. (ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

6.
The study of the thermal evolution of the Soret band in heme proteins has proved to be a useful tool to understand their stereodynamic properties; moreover, it enables one to relate protein matrix fluctuations and functional behavior when carried out in combination with kinetic experiments on carbon monoxide rebinding after flash photolysis. In this work, we report the thermal evolution of the Soret band of deoxy, carbonmonoxy, and nitric oxide derivatives of the cooperative homodimeric Scapharca inaequivalvis hemoglobin in the temperature range 10-300 K and the carbon monoxide rebinding kinetics after flash photolysis in the temperature range 60-200 K. The two sets of results indicate that Scapharca hemoglobin has a very rigid protein structure compared with other hemeproteins. This feature is brought out i) by the absence of nonharmonic contributions to the soft modes coupled to the Soret band in the liganded derivatives, and ii) by the almost "in plane" position of the iron atom in the photoproduct obtained approximately 10(-8) s after dissociating the bound carbon monoxide molecule at 15 K.  相似文献   

7.
The met-cyano complex of elephant myoglobin has been investigated by high field 1H NMR spectroscopy, with special emphasis on the use of exchangeable proton resonances in the heme cavity to obtain structural information on the distal glutamine. Analysis of the distance dependence of relaxation rates and the exchange behavior of the four hyperfine shifted labile proton resonances has led to the assignment of the proximal His-F8 ring and peptide NHs and the His-FG3 ring NH and the distal Gln-E7 amide NH. The similar hyperfine shift patterns for both the apparent heme resonances as well as the labile proton peaks of conserved resonances in elephant and sperm whale met-cyano myoglobins support very similar electronic/molecular structures for their heme cavities. The essentially identical dipolar shifts and dipolar relaxation times for the distal Gln-E7 side chain NH and the distal His-E7 ring NH in sperm whale myoglobin indicate that those labile protons occupy the same geometrical position relative to the iron and heme plane. This geometry is consistent with the distal residue hydrogen bonding to the coordinated ligand. The similar rates and identical mechanisms of exchange with bulk water of the labile protons for the three conserved residues in the elephant and sperm whale heme cavity indicate that the dynamic stability of the proximal side of the heme pocket is unaltered upon the substitution (His----Gln). The much slower exchange rate (by greater than 10(4] of the distal NH in elephant relative to sperm whale myoglobin supports the assignment of the resonance to the intrinsically less labile amide side chain.  相似文献   

8.
The titration behavior of individual tyrosine residues of myoglobins has been studied by observing the pH dependence of the chemical shifts of Czeta and Cgamma of these residues in natural abundance of 13C Fourier transform NMR spectra (at 15.18 MHz, in 20-mm sample tubes, at 37 degrees) of cyanoferrimyoglobins from sperm whale, horse, and red kangaroo. A comparison of the pH dependence of the spectra of the three proteins yielded specific assignments for the resonance of Tyr-151 (sperm whale) and Tyr-103 (sperm whale and horse). Selective proton decoupling yielded specific assignments for Czeta of Tyr-146 of the cyanoferrimyoglobins from horse and kangaroo, but not the corresponding assignment for sperm whale. The pH dependence of the chemical shifts indicated that only Tyr-151 and Tyr-103 are titratable tyrosine residues. Even at pH 12, Tyr-146 did not begin to titrate. The titration behavior of C zeta and Cgamma of Tyr-151 of sperm whale cyanoferrimyoglobin yielded a single pK value of 10.6. The pH dependence of the chemical shift of each of the resonances of Tyr-103 of the cyanoferrimyoglobins from horse and sperm whale could not be fitted with the use of a single pK value, but was consistent with two pK values (about 9.8 and 11.6). Furthermore, the resonances of Czeta and Cgamma of Tyr-103 broadened at high pH. The titration behavior of the tyrosines of sperm whale carbon monoxide myoglobin and horse ferrimyoglobin was also examined. A comparison of all the experimental results indicated that Tyr-151 is exposed to solvent, Tyr-146 is not exposed, and Tyr-103 exhibits intermediate behavior. These results for myoglobins in solution are consistent with expectations based on the crystal structure.  相似文献   

9.
S J Shire  G I Hanania  F R Gurd 《Biochemistry》1975,14(7):1352-1358
The modified Tanford-Kirkwood electrostatic theory (Shire et al., 1974a) was applied to ferrimyoglobins from the following animal species: sperm whale (Physeter catodon), horse, California grey whale (Eschrichtius gibbosus), harbor seal (Phoca vitulina), and California sea lion (Zalophus californianus). Computations were made of the overall hydrogen ion titration curves of the proteins, and of pH and ionic strength variations of ionization equilibria for individual groups in the protein, with particular reference to the hemic acid ionization of the iron bound water molecule. Coordinates and static solvent accessibility were estimated in terms of the sperm whale myoglobin structure. Where possible, theoretical results and experimental data are compared. Some comparative features of charge and ionization properties among the various myoglobins are presented.  相似文献   

10.
Monoclonal hybridoma antibodies specific for the protein antigen sperm whale myoglobin were produced using hyperimmune spleen cells from mice with the genetic trait of high responsiveness to myoglobin. Antibodies from the several clones tested were found to produce linear Scatchard plots, as predicted for homogeneous antibodies, and to possess high affinities for the immunogen (KA congruent to 10(9) M-1). None of the monoclonal antibodies tested reacted with either fragment (1-55) or fragment (132-153) of sperm whale myoglobin. Competitive binding assays using human and horse myoglobins suggested that several of these monoclonal antibodies, which can readily distinguish these myoglobins, recognize different antigenic determinants on the myoglobin molecule. Studies using additional myoglobin sequence variants as competitors should be able to more closely define these antigenic determinants.  相似文献   

11.
The kinetics of NO geminate recombination to sperm whale and elephant myoglobins has been studied on the picosecond time scale using an amplified colliding-pulse mode-locked ring dye laser. The dynamics of ligand rebinding are shown to be affected by the distal structure of the protein surrounding the heme pocket.  相似文献   

12.
5,5-Dimethyl-1-pyrroline N-oxide (DMPO) spin trapping in conjunction with antibodies specific for the DMPO nitrone epitope was used on hydrogen peroxide-treated sperm whale and horse heart myoglobins to determine the site of protein nitrone adduct formation. The present study demonstrates that the sperm whale myoglobin tyrosyl radical, formed by hydrogen peroxide-dependent self-peroxidation, can either react with another tyrosyl radical, resulting in a dityrosine cross-linkage, or react with the spin trap DMPO to form a diamagnetic nitrone adduct. The reaction of sperm whale myoglobin with equimolar hydrogen peroxide resulted in the formation of a myoglobin dimer detectable by electrophoresis/protein staining. Addition of DMPO resulted in the trapping of the globin radical, which was detected by Western blot. The location of this adduct was demonstrated to be at tyrosine-103 by MS/MS and site-specific mutagenicity. Interestingly, formation of the myoglobin dimer, which is known to be formed primarily by cross-linkage of tyrosine-151, was inhibited by the addition of DMPO.  相似文献   

13.
The reaction of cyanide metmyoglobin with dithionite conforms to a two-step sequential mechanism with formation of an unstable intermediate, identified as cyanide bound ferrous myoglobin. This reaction was investigated by stopped-flow time resolved spectroscopy using different myoglobins, i.e. those from horse heart, Aplysia limacina buccal muscle, and three recombinant derivatives of sperm whale skeletal muscle myoglobin (Mb) (the wild type and two mutants). The myoglobins from horse and sperm whale (wild type) have in the distal position (E7) a histidyl residue, which is missing in A. limacina Mb as well as the two sperm whale mutants (E7 His----Gly and E7 His----Val). All these proteins in the reduced form display an extremely low affinity for cyanide at pH less than 10. The differences in spectroscopy and kinetics of the ferrous cyanide complex of these myoglobins indicate a role of the distal pocket on the properties of the complex. The two mutants of sperm whale Mb are characterized by a rate constant for the decay of the unstable intermediate much faster than that of the wild type, at all pH values explored. Therefore, we envisage a specific role of the distal His (E7) in controlling the rate of cyanide dissociation and also find that this effect depends on the protonation of a single ionizable group, with pK = 7.2, attributed to the E7 imidazole ring. The results on A. limacina Mb, which displays the slowest rate of cyanide dissociation, suggests that a considerable stabilizing effect can be exerted by Arg E10 which, according to Bolognesi et al. (Bolognesi, M., Coda, A., Frigerio, F., Gatti, C., Ascenzi, P., and Brunori, M. (1990) J. Mol. Biol. 213, 621-625), interacts inside the pocket with fluoride bound to the ferric heme iron. A mechanism of control for the rate of dissociation of cyanide from ferrous myoglobin, involving protonation of the bound anion, is discussed.  相似文献   

14.
Free radicals of myoglobins were measured at room temperature with an ESR spectrometer equipped with a flow apparatus. When horse heart MetMb was mixed with an equimolar amount of ethyl hydroperoxide (EtOOH), a well resolved ESR spectrum with 6 lines and a shoulder was observed. It reached a maximum in a few seconds and decayed with a half-life of about 10 s when the final concentrations of MetMb and EtOOH were 200 microM. This decay rate was the same at a MetMb concentration of 50 microM. The maximum molar radical concentration amounted to about half of the total myoglobin. In the case of sperm whale myoglobin, a similar 6-line spectrum reached a maximum in 1 s and decayed with a half-life of a few seconds. In this case, however, a small and poorly resolved doublet spectrum remained, the half-life of which was about 8 min. An effect of O2 on the signal decay was evident for horse heart myoglobin, but not for sperm whale myoglobin.  相似文献   

15.
Dynamic aspects of the heme-binding site of myoglobins derived from two phylogenetically distant species, namely sperm whale and bluefin tuna, have been investigated by studying steady-state and time-resolved emission properties of 2-p-toluidinyl-6-naphthalene sulfonic acid (TNS) apomyoglobin conjugates. Multi-frequency phase and modulation fluorometry data indicate that charge movements occur in the fluorophore environment during the excited state lifetime in the sperm whale myoglobin system. In the case of the bluefin tuna myoglobin TNS adduct these movements were not detected, indicating that the relaxation processes differ in the two types of myoglobins.  相似文献   

16.
17.
Proton NMR studies of sperm whale and horse deoxymyoglobin have revealed that both proteins exhibit a single, well defined, pH-induced structural change. The changes in hyperfine shifts are clearly observed not only at the heme peripheral substituents, but also at the proximal histidyl imidazole, which suggest that heme-apoprotein contacts are looser in the acidic than alkaline conformations. The hyperfine shift changes are modulated by a single titratable group with a pK of approx. 5.7 in both proteins. Oxygen binding studies of sperm whale myoglobin over a range of temperature and pH showed that, while the oxygen affinity was independent of pH at 25 degrees C, it increased below pH 7 at 0 degrees C and decreased below pH 7 at 37 degrees C. Hence, sperm whale myoglobin exhibits a small acid Bohr effect which most likely arises from the characterized structural changes in the deoxy proteins. While horse myoglobin failed to exhibit a resolvable acid Bohr effect between 0 and 37 degrees C, it did show a weak alkaline Bohr effect at 25 degrees C which disappeared at lower temperatures. Since the oxygen affinity changed smoothly over several pH units, this alkaline Bohr effect can not be associated with any well defined conformational change detected by NMR.  相似文献   

18.
Metmyoglobin has been reduced at low temperature (below 100 K) using x-rays or by excitation of tris(2,2′,bipyridine)ruthenium(II) chloride with visible light. Upon reduction, an intermediate state is formed where the structure of the protein is very similar to that of metmyoglobin with the water molecule still bound to the heme iron, but the iron is II low spin. The nature of the intermediate state has been investigated with optical spectroscopy. The Qo and Qv bands of the intermediate state are split, suggesting that the protoporphyrin is distorted. The intermediate state undergoes a relaxation observed by a shifting of the Soret band at temperatures above 80 K. Above 140 K, the protein begins to relax to the deoxy conformation. The relaxation kinetics of the protein have been monitored optically as a function of time and temperature from minutes to several hours and from 150 K to 190 K. By measuring the entire visible spectrum, we are able to distinguish between electron transfer processes and the protein relaxation from the intermediate state to deoxy myoglobin. The relaxation has been measured in both horse myoglobin and sperm whale myoglobin with the relaxation occurring on faster time scales in horse myoglobin. Both the reduction kinetics and the relaxation show non-exponential behavior. The reduction kinetics can be fit well to a stretched exponential. The structural relaxation from the intermediate state to the deoxy conformation shows a more complex, dynamical behavior and the reaction is most likely affected by the relaxation of the protein within the intermediate state. Received: 30 June 1997 / Accepted: 6 November 1997  相似文献   

19.
The binding of various linear and branched chain alkylisocyanides to soybean leghemoglobin has been studied with respect to association and dissociation kinetics and the results compared with those obtained in parallel on sperm whale and horse heart myoglobins; the linear ligands used (methyl to n-heptyl) cover a greater distribution of chain lengths than hitherto used. The association rate constants are much higher for leghemoglobin than for myoglobin, while the dissociation rates are slower. For a given protein, the dissociation rate constants are not much different when different isocyanides are used (except for methyl), whereas the association rates show complex behavior in relation with the alkyl chain length; singular differences are observed between leghemoglobin and sperm whale myoglobin in this regard. For myoglobin, the binding rate constants decrease from methyl to n-propyl, but remain approximately the same when the ligand carries a still longer alkyl chain. In contrast, for leghemoglobin, although the rate constants decrease from methyl to n-propyl, they show a progressive and important rise with longer alkyl substituents: n-butyl and n-pentyl.  相似文献   

20.
We have measured spectral and kinetic differences in protoheme, sperm whale or horse heart myoglobin and human hemoglobin following photodissociation induced by optical pulses of 80 fs duration. Full ligation was performed with oxygen or carbon monoxide. Femtosecond kinetics and transient difference spectra revealed the appearance of a deoxy species with tau approximately equal to 250-300 fs. The transient deoxy species in myoglobin and hemoglobin evidenced a 3-4 nm red shift of their delta A spectra compared with the equilibrium delta A spectrum. This shift was not observed after photodissociation of the carbon monoxide liganded protoheme. We proposed that the 250 fs time constant corresponding to the appearance of the deoxy-like species is related to the displacement of the ferrous iron out of the heme plane. Consequently, the small red shift of the delta A spectra observed in photodissociated hemoproteins may be tentatively attributed to changes in the vibrational modes of either the proximal histidine-Fe2+ bond and/or of the N4 porph-Fe-N epsilon His (F8) bent.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号