首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 562 毫秒
1.
Seasonal changes in testicular activity, plasma luteinizing hormone (LH), estradiol (E2), testosterone (T), and 5 alpha-dihydrotestosterone (5 alpha-DHT) were related to pair bond formation, nest building, nest defense, and parental behavior in free-living Indian rose-ringed parakeets (Psittacula krameri) in northwest India. Spermatozoa production occurred between January and March when daylengths were short (10-12 hr) and ambient temperature was seasonally low (8-20 degrees C). At other times of the year the testes were regressed. Plasma LH levels increased during the prebreeding period (September-December) when the birds were forming pairs and selecting or defending nest sites. Plasma LH levels increased further between January and March and decreased to seasonal low values during the post breeding period between April and June when the birds were caring for young. Concentrations of plasma androgens and estrogens were similar during the prebreeding and postbreeding phases of the breeding cycle. During the breeding period, the ratios between plasma 5 alpha-DHT and testosterone and between plasma estradiol and testosterone increased. It is proposed that the absence of marked seasonal changes in plasma steroid levels is related to nest defense behavior which occurs during the prebreeding, breeding, and postbreeding phases of the breeding cycle. Winter breeding makes it possible for the parakeets to avoid competition with other birds for nesting sites, to avoid fledging young during the monsoon period, and to take advantage of the winter pea crop which provides the female with extra nutrients for egg production.  相似文献   

2.
The aim of the current investigation was to study the effect of lithium on circadian rhythms of pineal - testicular hormones by quantitations of pineal and serum serotonin, N-acetylserotonin and melatonin, and serum testosterone at four time points (06.00, 12.00, 18.00 and 24.00) of a 24-hr period under normal photoperiod (L:D), reversed photoperiod (D:L), constant light (L:L) and constant dark phase (D:D) in rats. Circadian rhythms were observed in pineal hormones in all the combinations of photoperiodic regimens, except in constant light, and in testosterone levels in all the photoperiodic combinations. Pineal and serum N-acetylserotonin and melatonin levels were higher than serotonin at night (24.00 hr), in natural L:D cycle, in reversed L:D cycle or similar to normal L:D cycle in constant dark phase, without any change in constant light. In contrast, testosterone level was higher in light phase (12.00 hr through 18.00 hr) than in the dark phase (24.00 hr through 06.00 hr) in normal L:D cycle, in reversed L:D cycle, similar to normal L:D cycle in constant dark (D:D), and reversed to that of the normal L:D cycle in constant light (L:L). Lithium treatment (2 mEq/kg body weight daily for 15 days) suppressed the magnitude of circadian rhythms of pineal and serum serotonin, N-acetylserotonin and melatonin, and testosterone levels by decreasing their levels at four time points of a 24-hr period in natural L:D or reversed D:L cycle and in constant dark (D:D). Pineal indoleamine levels were reduced after lithium treatment even in constant light (L:L). Moreover, lithium abolished the melatonin rhythms in rats exposed to normal (L:D) and reversed L:D (D:L) cycles, and sustained the rhythms in constant dark. But testosterone rhythm was abolished after lithium treatment in normal (L:D)/reversed L:D (D:L) cycle or even in constant light/dark. The findings indicate that the circadian rhythm exists in pineal hormones in alternate light - dark cycle (L:D/D:L) and in constant dark (D:D), but was absent in constant light phase (L:L) in rats. Lithium not only suppresses the circadian rhythms of pineal hormones, but abolishes the pineal melatonin rhythm only in alternate light - dark cycles, but sustains it in constant dark. The testosterone rhythm is abolished after lithium treatment in alternate light - dark cycle and constant light/dark. It is suggested that (a) normal circadian rhythms of pineal hormones are regulated by pulse dark phase in normal rats, (b) lithium abolishes pineal hormonal rhythm only in pulse light but sustains it in constant dark phase, and (c) circadian testosterone rhythm occurs in both pulse light or pulse dark phase in normal rats, and lithium abolishes the rhythm in all the combinations of the photoperiod. The differential responses of circadian rhythms of pineal and testicular hormones to pulse light or pulse dark in normal and lithium recipients are discussed.  相似文献   

3.
Effects of exogenous androgens (testosterone, testosterone propionate and dihydrotestosterone) and estradiol-17beta on the oviductal growth/hypertrophy were studied in young and bilaterally ovariectomized (BLO) adult frogs (Rana cyanophlyctis) during postbreeding phase of the reproductive cycle. Estradiol-17beta injections induced oviductal hypertrophy to the maximal extent among hormone treated groups. In androgen treated frogs also there was an increase in the oviductal dry weight and protein content both in young and BLO adult frogs, suggesting the role of endogenous androgens in controlling the growth of oviduct in R. cyanophlyctis.  相似文献   

4.
Male rose-ringed parakeets (Psittacula krameri) were transferred to a long photoperiod (LP; LD 16:8) or a short photoperiod (SP; LD 8:16) for 45 or 90 days on four dates corresponding to the beginnings of different reproductive phases in an annual testicular cycle, and testicular responsiveness was evaluated by comparison with the testicular volume, weight, seminiferous tubular diameter, and germ cell profiles of birds in a natural photoperiod (NP). Exposure of birds to LP during the progressive phase (November) led to precocious maturation of testes after 45 days, but induced regression at 90 days. After showing retarded gametogenic functions at 45 days, parallel (November) SP birds exhibited an accelerated rate of germ cell formation at day 90. During the prebreeding phase (January), there were no remarkable differences in any features of testes among NP. LP, and SP birds at 45 days, but gonadal involution in LP parakeets and active spermatogenesis in SP birds occurred after 90 days. The testes did not show any response to LP or SP for 45 and 90 days when the birds were transferred to altered photoperiods during the breeding (March) and preparatory (June) phases, indicating that the parakeets were photorefractory for at least 6 months (March through September). The results also suggest that initiation and termination of seasonal gametogenic activity in parakeets are possibly functions of endogenous rhythmicity or extraphotoperiodic environmental factors. Duration of light may have certain influences on the attainment of annual peak in spermatogenesis, but in all probability the species has a low photoperiod threshold for induction of testicular growth.  相似文献   

5.
Abdominal fat body mass of Calotes versicolor showed annual changes that were universal related to the changes in ovarian somatic (GSI) and hepatosomatic (HSI) indices. Fat bodies were absent in late breeding phase (June-August). Thirty day fatectomy (FBX) during prebreeding phase significantly reduced GSI, HSI, and total number of extrastromal follicles; also, recruitment of vitellogenic follicles was arrested and ateretic follicles increased. The FBX during postbreeding phase had no such effect, whereas in 30 day ovariectomised (OvX) lizards in prebreeding phase fat body mass significantly increased but HSI decreased. However, in lizards in prebreeding phase, E2 caused a significant decrease in fat body mass and an increase in HSI, while during the postbreeding phase there was a significant increase in HSI but the fat bodies were not affected. The above findings suggest that the development of the first clutch of vitellogenic follicles in the lizard utilises lipids stored in the fat bodies and that the growth of the subsequent clutches of vitellogenic follicles is met through the intake of food, which is abundant in the latter part of the breeding phase. The fat bodies are not needed for the growth of previtellogenic follicles. The fact that lipolytic action of E2 occurs only during the breeding phase suggests that responsiveness of the fat bodies to the steroid is related to the reproductive phase and that during postbreeding phase of the lizard they become refractory to E2.  相似文献   

6.
Female Clarias batrachus acclimated to long photoperiod (13L:11D), were subjected to 30º ± 1ºC thermopulses of either 6-hour or 12-hour duration at different phases of the LD cycle during the late resting phase (first week of January) of their annual reproductive cycle. Six-hour pulses were given either at 0600 or 1200 or 1800 or 0000. Twelve-hour thermopulses were given at 0600 or 1800. The long photoperiods were started at 0530 and that of ambient at 0630 coinciding with the average timing of sunrise that prevailed during the period of the study. The results indicate that exposure to long photoperiod or constant high temperature induced gonadal growth (GSI) and elevated testosterone and oestradiol levels in plasma. The high temperature was significantly more effective in its action. Further, combination of long photoperiod and high temperature produced the strongest gonadal stimulation as gauged from GSI and the levels of steroid hormones. Interestingly, 30ºC thermopulses of 12-h duration when given at 0600 to fish held under long photoperiod induced gonadal development of comparable magnitude as observed in response to constant high temperature under long photoperiod. Thermopulses (30ºC) of 6-h duration given at 0600 or 1200 also induced significant gonadal recrudescence but of much lesser magnitude. Thermopulses either of 6-h or 12-h duration at 1800 failed to elicit any change in the variables under study. The results of cosinor analysis performed on the responses to 6-h thermopulses also substantiate that there is a rhythm in the sensitivity of C. batrachus to thermopulses. Thus it appears that in this species temperature-induced gonadal recrudescence would occur only following coincidence of high temperature with the thermoinducible phase. The underlying mechanism of this phenomenon might be circadian in nature.  相似文献   

7.
The present experiments were carried out to investigate the effects of pinealectomy and bilateral enucleation on the ovarian activity in Rana perezi frogs maintained in 12-h light--12-h dark photoperiod and 20 +/- 1 degrees C during the vitellogenetic growth in late autumn. These environmental conditions, mainly temperature, induce a gonadal and metabolic response similar to that observed in the natural habitat in summer: a marked ovarian follicular regression, a depletion of the energetic resources from fat bodies and liver, and a minimum in oestradiol circulating levels. This response is partially blocked by pinealectomy and blinding. Protein phosphorus, as an index of vitellogenic proteins, and total ovary lipid content were significantly higher in pinealectomized and blinded frogs with respect to sham-operated animals. Likewise, oestradiol concentrations showed a significant increase during the dark phase of the daily photocycle in pinealectomized and blinded animals. From our results, we can suggest that the arrest of vitellogenesis, the depletion of energetic resources, and the regulation of oestradiol levels induced by the high temperature in Rana perezi frogs can be influenced, at least in part, by the pineal complex and lateral eyes.  相似文献   

8.
Abstract Reproduction is energetically demanding, and how much an individual is able to invest in reproduction is often a function of its health state. An understanding of the relationship between oxidative balance and reproductive decisions, especially in free-living species, is still very limited. We evaluated the relationship between oxidative health and reproductive effort in a free-living population of the cooperatively breeding Florida scrub jay Aphelocoma coerulescens. Specifically, we assessed whether prebreeding oxidative damage levels predicted reproductive effort and subsequently whether postbreeding oxidative damage levels reflected reproductive effort. Prebreeding oxidative damage levels were negatively correlated with reproductive effort in males. In males, postbreeding levels of oxidative damage were significantly greater than prebreeding levels. Given that females exhibited no such patterns, our results suggest that in this species, males bear the brunt of the oxidative costs associated with reproduction.  相似文献   

9.
Female Clarias batrachus acclimated to long photoperiod (13L:11D), were subjected to 30º ± 1ºC thermopulses of either 6-hour or 12-hour duration at different phases of the LD cycle during the late resting phase (first week of January) of their annual reproductive cycle. Six-hour pulses were given either at 0600 or 1200 or 1800 or 0000. Twelve-hour thermopulses were given at 0600 or 1800. The long photoperiods were started at 0530 and that of ambient at 0630 coinciding with the average timing of sunrise that prevailed during the period of the study. The results indicate that exposure to long photoperiod or constant high temperature induced gonadal growth (GSI) and elevated testosterone and oestradiol levels in plasma. The high temperature was significantly more effective in its action. Further, combination of long photoperiod and high temperature produced the strongest gonadal stimulation as gauged from GSI and the levels of steroid hormones. Interestingly, 30ºC thermopulses of 12-h duration when given at 0600 to fish held under long photoperiod induced gonadal development of comparable magnitude as observed in response to constant high temperature under long photoperiod. Thermopulses (30ºC) of 6-h duration given at 0600 or 1200 also induced significant gonadal recrudescence but of much lesser magnitude. Thermopulses either of 6-h or 12-h duration at 1800 failed to elicit any change in the variables under study. The results of cosinor analysis performed on the responses to 6-h thermopulses also substantiate that there is a rhythm in the sensitivity of C. batrachus to thermopulses. Thus it appears that in this species temperature-induced gonadal recrudescence would occur only following coincidence of high temperature with the thermoinducible phase. The underlying mechanism of this phenomenon might be circadian in nature.  相似文献   

10.
Serum levels of gonadal steroid were assayed at approximately 3-month intervals in groups of 5 to 8 male or female woodchucks which were exposed to a natural photoperiod for 1 year as yearlings or 3 years as adults (Study 1), or a constant photoperiod of 12L:12D from birth for 4.5 years (Study 2). After 4.5 years of 12L:12D, food intake was measured in November and compared with that in natural photoperiod animals (Study 3). Other groups of 11 males and 3 females were housed in 12L:12D for 2.5 years after capture at 2 months of age, and gonadal structure and serum steroid levels in November were compared with those of animals at selected times in the normal annual cycle (Study 4). All animals were provided food and water ad libitum and were not induced to hibernate. In Study 1, normal circannual breeding season elevations in testosterone in males and in progesterone in females were detected in most animals maintained in natural photoperiod. In Study 2, similar cycles persisted for 4.5 years in animals exposed to 12L:12D. However, based on quarterly blood samples, obvious asynchrony relative to natural light animals appeared to develop after 2, 3, or 4 years, with apparent free-running intervals of about 10 to 11 months. In Study 3, mean daily food consumption in late autumn for woodchucks in the 12L:12D group was 72% greater than animals in the natural photoperiod. In Study 4, some woodchucks exposed to 12L:12D for only 2.5 years had prematurely increased spermatogenic activity, Leydig tissue development, and elevated serum testosterone levels in November. They were similar in November to those in natural photoperiod animals in March, and significantly greater than those in natural photoperiod animals in November when normal regression and repair of the testis was complete. Likewise, females in the 12L:12D group had luteinized follicles and elevated progesterone in November which were not noted in natural photoperiod animals and which were similar to those observed during the spring in unbred females under normal conditions. The results suggest that circannual cycles of metabolic and reproductive activity in woodchucks persist in the absence of normal changes in photoperiod, are entrained to seasonal changes in the natural photoperiod, and can recede to a periodicity of less than 12 months within 2.5 to 4 years of laboratory maintenance in 12L:12D.  相似文献   

11.
The Djungarian hamster exhibits an agouti pelage in the summer and a predominantly white pelage in the winter. This pelage color cycle is known to be regulated by the length of the daily photoperiod probably acting through the pineal gland, as is the seasonal cycle of reproductive function with which it is closely correlated ( Figala et al., '73; Hoffmann, ' 78b ). The possibility of a causal relationship between the decline in gonadal hormone secretion and the coat color change occurring in short photoperiod was examined. Gonadectomized and intact male and female hamsters were exposed to either long (16L:8D) or short ( 10L : 14D ) photoperiod for several months. Gonadectomy neither induced the change to the winter pelage color in long photoperiod-housed animals, nor prevented either the change to the winter pelage or the spontaneous return to summer pelage color in short photoperiod-housed animals. Chronic implants of testosterone in castrated males delayed and attenuated the short photoperiod-induced coat color change. Administration of ovine prolactin (100 micrograms/day) stimulated pigmentation in hamsters with the winter pelage, whereas administration of a alpha MSH (30 micrograms/day) was without effect. These results suggest that changes in pelage color may be regulated largely by changes in pituitary prolactin secretion and modified to some extent by changes in gonadal steroid hormone secretion.  相似文献   

12.
The reproductive cycle of wild rabbits (Oryctolagus cuniculus) living in Zembra Island (North Tunisia) is dependent on an external factor, the photoperiod: the gonads are inhibited by long days and stimulated by short days or melatonin implants. Here we studied the role of an internal factor, thyroid hormones and the possible thyroid-gonadal interrelationships, in animals captured on Zembra Island and maintained in natural conditions of photoperiod and temperature. We determined the seasonal profile of the thyroid and testis cycles and investigated the effects of castration and thyroidectomy on the seasonal testosterone and thyroxine cycles. Plasma thyroxine and testosterone levels followed similar, parallel seasonal patterns, with a peak in autumn (October) and low values from January to August. In thyroidectomized animals, plasma testosterone levels, although significantly higher than those in controls (P < 0.001), remained low throughout the 13 mo of the experiment, and no testicular reactivation was observed in the fall. In castrated animals, despite the increase in thyroxine concentration in the 3 mo following castration (P < 0.01), plasma thyroxine levels remained low during the 2 yr of the study. We then investigated the combined effects of long days (16L:8D) and moderately high temperature (25 degrees C) on these two endocrine axes. In constant gonado-inhibiting conditions (16L:8D), whether the temperature was kept constantly high or allowed to fluctuate naturally, no reactivation of the thyroid and testicular axes was observed in the fall. In control animals, the peaks of testosterone and thyroxine concentrations observed in September were larger (P < 0.001) than those in animals subjected to the same natural photoperiod conditions but with constantly high temperature. The lower level of autumnal testis stimulation (P < 0.001) in animals maintained in conditions of constant high temperature (25 degrees C) may be attributed to the low thyroxine levels induced by high temperature. These results clearly confirm that the thyroid and testicular cycles display similar seasonal variations and show that the thyroid and gonadal axes are strictly interdependent. This study provides the first demonstration, for a given species, that the seasonal reactivation of gonad activity is controlled by the thyroid, and thyroid activity is controlled by the gonads.  相似文献   

13.
The importance of photoperiods in the regulation of annual testicular events in the carp Catla catla was evaluated by subjecting them to either long (16 h light : 8 h dark) or short (8 h light : 16 h dark) photoperiods for 30 days during the preparatory, prespawning, spawning and postspawning phases of an annual gonadal cycle. In each reproductive phase, testicular responsiveness to subjected photoperiods was determined by comparing the gonadal status in corresponding groups of control or natural photoperiodic fish. The values of testicular weight, gametogenic index, as well as testicular activity of two steroidogenic enzymes (Δ53β‐, and 17β‐hydroxysteroid dehydrogenase), and the serum titre of testosterone were considered as the indices of functional status of the testis in the fish concerned. During the prespawning phase, exposure of fish to a daily long photoperiod schedule resulted in precocious maturation of testis, while retardation of testicular growth was noted under the influences of short photoperiod. However, none of the employed photo‐schedules could influence the gametogenic and steroidogenic functions of the testis in the remaining part of the gonadal cycle. Collectively, the present study provides evidence for the first time that in the case of a commercially important carp, Catla catla, artificial, long photoperiods may be used for advanced testicular maturation, while reductions in maturation‐associated growth and deterioration in flesh quality may be avoided by submitting the fish to shorter day lengths during the prespawning phase of the reproductive cycle.  相似文献   

14.
The viscacha (Lagostomus maximus maximus) is a seasonal rodent living in the Southern Hemisphere. The adult males exhibit an annual reproductive cycle characterized by a gonadal regression period during winter. In this study, we investigated the effects of bilateral enucleation and captivity on their annual reproductive cycle. Testicular volume relative to body weight was recorded monthly in intact and bilaterally enucleated animals placed under natural photoperiod, water, and food ad lib. and constant temperature. Testes and accessory organs were evaluated by qualitative and quantitative light microscopic studies. The intact animals showed an annual reproductive cycle with complete gonadal atrophy in the first year. In the second year, testicular regression was observed but attenuated in regard to that recorded in the first winter period, indicating that adaptive changes might be involved. Bilateral enucleation in the viscacha dampened and extended the period of its annual reproductive cycle. The results suggest that both conditions, constant captivity and enucleation, produced stimulatory effects on the reproductive system of this rodent. Furthermore, local control mechanisms might be responsible for the morphological differences observed in testes, epididymis, and seminal vesicles from both groups, which exhibited similar levels of serum testosterone. Finally, an intact retinohypothalamic-pineal axis and/or photoperiodic input would be necessary to maintain the reproductive cycle amplitude and timing in viscacha.  相似文献   

15.
We examined the effects of photoperiod on pituitary levels of two types of gonadotropin (GTH), GTH I and GTH II, in masu salmon Oncorhynchus masou to study their mechanism of synthesis. In Experiment 1, the effects of long or short photoperiod combined with castration were examined using 8-month-old precocious males. Castration was carried out in early August and then the fish were reared under a short (8L16D) or long (16L8D) photoperiod for 60 days. In Experiment 2, the effects of photoperiod combined with testosterone treatment were examined using 12-month-old immature females. Silastic tubes containing testosterone (500 microg /fish) or vehicle were implanted intra-peritoneally in early October. Fish were reared under 16L8D for 60 days, and then half of the fish were transferred to 8L16D, while the remaining fish were kept under 16L8D until Day 90. In Experiment 1, GTH I contents were higher under 16L8D than under 8L16D in the castrated group on Day 30. Moreover, GTH I contents were higher in the castrated group than the control group under 16L8D on Day 30. GTH II contents increased with testicular maturation in the control groups, whereas they remained at low levels in the castrated groups regardless of photoperiodic treatment. In Experiment 2, GTH I contents did not change remarkably in all the groups, while GTH II contents were remarkably increased by testosterone treatment regardless of photoperiodic treatment. These results indicate that the synthesis of GTH I and GTH II are differently regulated by photoperiod and testosterone in masu salmon.  相似文献   

16.
Daily variation in melatonin receptor (MT1 and MT2) density in three specific tissues-brain, retina, and ovary-and its temporal relationship with serum melatonin were evaluated for the first time in a freshwater teleost, the carp Catla catla, under natural as well as altered photoperiods in different reproductive phases of the annual cycle. Cosinor analysis was used to determine rhythmic features of the serum melatonin and receptors (MT1 and MT2) in different tissues. In each photoperiodic group, irrespective of season, the daily minimum serum melatonin level was noted at midday. However, the daily peak value of melatonin varied in relation to both photo-schedules and reproductive phases. Under natural photoperiods (NPs; duration varied with seasons) and short photoperiods (SPs; light [L]:dark [D] 8:16), it occurred in the late dark phase during the preparatory phase, and at midnight in the remaining parts of the annual cycle. On the other hand, in each reproductive phase, compared to corresponding NP carp, the daily melatonin peak under long photoperiods (LPs; L:D 16:8) exhibited a phase delay of ~2-3?h (occurring during the late dark phase). The melatonin levels at each sampling point were highest during the postspawning phase and lowest during the spawning phase, irrespective of the photoperiodic history of the fish. In each tissue, Western blot analysis revealed a band at ~37?kDa and a band at ~36?kDa corresponding to the molecular weights of native MT1 and MT2 receptor proteins, respectively, with the band intensity of MT1 always being higher than that of a 36-kDa protein. The content of both melatonin receptor proteins varied significantly according to the studied tissue (being highest in the retina, intermediate in the brain, and lowest in the ovary), time in the daily cycle (peak at midnight and fall at midday), and reproductive phase in the annual cycle (highest in the spawning phase and lowest in the postspawning phase). Remarkably, no significant effects of altered photoperiod were detected on any rhythm parameters of either MT1 or MT2 in any of the studied tissues. Collectively, the results of the present study suggest a role of photoperiod in determining daily and seasonal profiles of serum melatonin, but not its receptor proteins, on the ovary or on any nongonad tissues in carp.  相似文献   

17.
The present study attempted for the first time to explore the importance of photoperiod in the regulation of seasonal ovarian functions in any subtropical major carp. Adult Indian major carp Catla catla were transferred to a long photoperiod (LP; LD 16:8) or a short photoperiod (SP; LD 8:16) for 30 days on 4 dates corresponding to the beginnings of 4 reproductive phases in an annual cycle, and responsiveness of the ovary was evaluated by comparison with the gonadal weight (I(G)), relative number of developing oocytes, serum levels of vitellogenin, and the activity of 2 important steroidogenic enzymes, that is, Delta(5)3beta-hydroxysteroid dehydrogenase and 17.beta-hydroxysteroid dehydrogenase, in the ovary of fish in a natural photoperiod. Exposure of fish to LP during the preparatory phase (February-March) resulted in a significant (p < 0.001) increase in the values of vitellogenin and in the activity of both the steroidogenic enzymes but not in the ovarian weight and in the relative number of different stages of oocytes. A more stimulatory influence of LP was noted during the prespawning phase (April-May), when precocious maturation of ovary was evident from a significant (p < 0.001) rise in the values of each studied features of ovarian functions. However, no ovarian response was found when the fish were transferred to LP during the spawning (July-August) and the postspawning (September-October) phases. On the other hand, the SP was found to have an inhibitory influence on ovarian growth and maturation during the prespawning and the spawning phases or to have no influences on ovarian functions during the preparatory and the postspawning phases of an annual cycle. The results of our study provide the first evidence that photoperiod per se plays an important role in the seasonal maturation of ovary in a subtropical freshwater major carp.  相似文献   

18.
Birds use photoperiod to control the time of breeding and moult. However, it is unclear whether responses are dependent on absolute photoperiod, the direction and rate of change in photoperiod, or if photoperiod entrains a circannual clock. If starlings (Sturnus vulgaris) are kept on a constant photoperiod of 12h light:12h darkness per day (12L:12D), then they can show repeated cycles of gonadal maturation, regression and moult, which is evidence for a circannual clock. In this study, starlings kept on constant 11.5L:12.5D for 4 years or 12.5L:11.5D for 3 years showed no circannual cycles in gonadal maturation or moult. So, if there is a circannual clock, it is overridden by a modest deviation in photoperiod from 12L:12D. The responses to 11.5L:12.5D and 12.5L:11.5D were very different, the former perceived as a short photoperiod (birds were photosensitive for most of the time) and the latter as a long photoperiod (birds remained permanently photorefractory). Starlings were then kept on a schedule which ranged from 11.5L:12.5D in mid-winter to 12.5L:11.5D in mid-summer (simulating the annual cycle at 9 degrees N) for 3 years. These birds entrained precisely to calendar time and changes in testicular size and moult were similar to those of birds under a simulated cycle at 52 degrees N. These data show that birds are very sensitive to changes in photoperiod but that they do not simply respond to absolute photoperiod nor can they rely on a circannual clock. Instead, birds appear to respond to the shape of the annual change in photoperiod. This proximate control could operate from near equatorial latitudes and would account for similar seasonal timing in individuals of a species over a wide range of latitudes.  相似文献   

19.
Duchemin  M. B.  Audet  C.  & Lambert  Y. 《Journal of fish biology》2004,65(S1):328-328
The winter flounder is an in‐shore flatfish living in shallow waters on the east coast of North America from Labrador to Georgia. In the St Lawrence estuary, the reproductive season is May and June. Our objective was to test the effects of winter‐spring photoperiod and temperature conditions on the timing of sexual maturation in both males and females. Groups (16 animals each) of winter flounder breeders were maintained from mid‐January to mid‐May under five different experimental conditions: (1) natural photoperiod and temperature conditions; (2) natural photoperiod, 6° C; (3) 15L : 9D, natural temperature conditions; (4) 15L : 9D, 6° C; (5) accelerated photoperiod increase from winter to spring conditions, 6° C. Natural photoperiod and temperature conditions correspond to a gradual increase in light period from 8L : 16D (January) to 15L : 9D (May) and in temperature from −1° C (January to April) to 6° C (May). GSI and condition factor did not differ among the treatments ( P  > 0·05). In males, milt production occurred simultaneously in the different treatments and histological examination did not indicate any significant effect of either photoperiod or temperature on testes development. In females, seven stages of oocyte development were observed. Both the number of oocytes at the cortical alveoli stage and number of atretic oocytes increased at 6° C (warm temperature conditions). Overall, neither photoperiod nor temperature modified the reproductive period. Warm winter‐spring temperature conditions, however, may decrease egg numbers and egg quality.  相似文献   

20.
The effect of varying photoperiod regimes (LD: 20,4; 4,20; 6,18; 18,6 and 12,12) on ovarian follicular development was analysed in the frogRana tigrina maintained at ambient and constant 30° ± l°C for 3 months. The experiments were conducted in early recrudescent and quiescent phases. The frogs were fed guppiesad libitum on alternate day. None of the photoperiod regimes had any effect on the ovaries or the fat bodies, whereas exposure to constant high temperature (regardless of photoperiod) during recrudescent phase induced production of greater number of eggs (∼ 18000 vs 13000 in controls) of ovulatory sizes (> 1400 μm) compared to the corresponding controls maintained at ambient temperature. Hence, ovarian mass also increased in these frogs. In the quiescent phase, high temperature merely enhanced growth of previtellogenic oocytes. In both the phases high temperature caused a reduction in the fat bodies over the respective controls, possibly due to increased metabolic activity. The above findings indicate that temperature plays a key role in the regulation of ovarian cycle ofRana tigrina and that the photoperiodic mechanisms may not govern the annual recrudescence of ovaries in the frog. The study also shows that the frog exhibits the phenomenon of “phenotypic plasticity” in its reproductive behaviour by producing significantly greater number of eggs in response to elevated temperature.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号