首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 812 毫秒
1.
Inward eutrophic remodeling is the most prevalent structural change of resistance arteries in hypertension. Sympathetic and angiotensin (ANG)-induced vasoconstriction has been associated with hypertension and with the production of matrix metalloproteinases (MMPs) and ROS. Therefore, we hypothesize that prolonged exposure to norepinephrine (NE) and ANG II induces arteriolar inward remodeling dependent on the activation of MMPs and the production of ROS. This hypothesis was tested on rat cremaster arterioles that were isolated, cannulated, pressurized, and exposed to either NE (10(-5.5) mol/l) + ANG II (10(-7) mol/l) or vehicle (control) for 4 h. The prolonged exposure to NE + ANG II induced inward remodeling, as evidenced by the reduced maximal arteriolar passive diameter observed after versus before exposure to the vasoconstrictor agonists. NE + ANG II also increased the arteriolar expression and activity of MMP-2 and the production of ROS as determined, respectively, by real-time RT-PCR, gel and in situ zymography, and the use of ROS-sensitive dyes with multiphoton microscopy. Inhibition of MMP activation (with GM-6001) or ROS production (with apocynin or tempol) prevented the NE + ANG II-induced inward remodeling. Inhibition of ROS production prevented the activation of MMPs and the remodeling process, whereas inhibition of MMP activation did not affect ROS production. These results indicate that prolonged stimulation of resistance arterioles with NE + ANG II induces a ROS-dependent activation of MMPs necessary for the development of arteriolar inward remodeling. These mechanisms may contribute to the structural narrowing of resistance vessels in hypertension.  相似文献   

2.
Of the many processes that affect the outcome of wound repair, epidermal-dermal interactions are essential to extracellular matrix (ECM) remodeling and in particular, soluble factors released by keratinocytes are known to have a direct impact on the production of ECM by dermal fibroblasts. Aminopeptidase N (APN) has recently been proposed as a cell-surface receptor for stratifin and is responsible for the stratifin-mediated matrix metalloproteinase-1 (MMP-1) upregulation in fibroblasts. The present study examines whether modulation of APN gene expression has any impact on the fibroblast ECM gene expression profile. The result reveals that in the presence of keratinocyte-derived soluble factors, transient knockdown of APN in dermal fibroblasts affects the expression of key ECM components such as fibronectin, tenascin-C, MMP-1, MMP-3, and MMP-12. The regulatory effects of APN on fibronectin and selective MMPs appear to be associated with receptor-mediated signal transduction independently of its peptidase activity. On the contrary, inhibition of the APN enzymatic activity by bestatin significantly reduces the tenascin-C expression and enhances the contraction of fibroblast-populated collagen gel, suggesting an activity-dependent regulation of fibroblast contractility by APN. The overall effects of APN on the expression of fibronectin, tenascin-C, and MMPs in fibroblasts propose an important role for APN in the regulation of keratinocyte-mediated ECM remodeling and fibroblast contractile activity.  相似文献   

3.
Chronic hypoxia is implicated in lung fibrosis, which is characterized by enhanced deposition of extracellular matrix (ECM) molecules. Transforming growth factor-beta (TGF-beta) plays a key role in fibroblast homeostasis and is involved in disease states characterized by excessive fibrosis, such as pulmonary fibrosis. In this study, we investigated if hypoxia modulates the effects of TGF-beta on the expression of gelatinases: matrix metalloproteinase (MMP)-2 and MMP-9, interstitial collagenases: MMP-1 and MMP-13, tissue inhibitors of MMP (TIMP), collagen type I and interleukin-6 (IL-6). Primary human lung fibroblasts, established from tissue biopsies, were cultivated under normoxia or hypoxia in the presence of TGF-beta1, TGF-beta2 or TGF-beta3. Gelatinases were assessed by gelatin zymography and collagenases, TIMP, collagen type I and IL-6 by ELISA. Under normoxia fibroblasts secreted MMP-2, collagenases, TIMP, collagen type I and IL-6. TGF-betas significantly decreased MMP-1 and increased TIMP-1, IL-6 and collagen type I. Hypoxia significantly enhanced MMP-2, and collagenases. Compared to normoxia, the combination of TGF-beta and hypoxia reduced MMP-1, and further amplified the level of TIMP, IL-6, and collagen type I. Thus, in human lung fibroblasts hypoxia significantly increases the TGF-betas-induced secretion of collagen type I and may be associated to the accumulation of ECM observed in lung fibrosis.  相似文献   

4.
Hypoxia is associated with extracellular matrix remodeling in several inflammatory lung diseases, such as fibrosis, chronic obstructive pulmonary disease, and asthma. In a human cell culture model, we assessed whether extracellular matrix modification by hypoxia and platelet-derived growth factor (PDGF) involves the action of matrix metalloproteinases (MMPs) and thereby affects cell proliferation. Expression of MMP and its activity were assessed by zymography and enzyme-linked immunosorbent assay in human lung fibroblasts and pulmonary vascular smooth muscle cells (VSMCs), and synthesis of soluble collagen type I was assessed by enzyme-linked immunosorbent assay. In both cell types, hypoxia up-regulated the expression of MMP-1, -2, and -9 precursors without subsequent activation. MMP-13 was increased by hypoxia only in fibroblasts. PDGF-BB inhibited the synthesis and secretion of all hypoxia-dependent MMP via Erk1/2 mitogen-activated protein (MAP) kinase activation. Hypoxia and PDGF-BB induced synthesis of soluble collagen type I via Erk1/2 and p38 MAP kinase. Hypoxia-induced cell proliferation was blocked by antibodies to PDGF-BB or by inhibition of Erk1/2 but not by the inhibition of MMP or p38 MAP kinase in fibroblasts. In VSMCs, hypoxia-induced proliferation involved Erk1/2 and p38 MAP kinases and was further increased by fibroblast-conditioned medium or soluble collagen type I via Erk1/2. In conclusion, hypoxia controls tissue remodeling and proliferation in a cell type-specific manner. Furthermore, fibroblasts may affect proliferation of VSMC indirectly by inducing the synthesis of soluble collagen type I.  相似文献   

5.
Matrix metalloproteinases (MMPs) such as gelatinases are believed to play an important role in invasion and metastasis of cancer. In this study we investigated the possible role of MMP-2 and MMP-9 in an experimental model of colon cancer metastasis in rat liver. We demonstrated with gelatin zymography that the tumors contained MMP-2 and MMP-9, but only MMP-2 was present in the active form. Immunolocalization of MMP-2 showed that the protein was localized at basement membranes of colon cancer cells and in intratumor stroma, associated with extracellular matrix (ECM) components. However, zymography and immunohistochemistry (IHC) do not provide information on the localization of MMP activity. Therefore, we developed an in situ zymography technique using the quenched fluorogenic substrate DQ-gelatin in unfixed cryostat sections. The application of DQ-gelatin in combination with a gelled medium allows precise localization of gelatinolytic activity. Fluorescence due to gelatinolytic activity was found in the ECM of tumors and was localized similarly to both MMP-2 protein and collagen type IV, its natural substrate. The localization of MMP-2 activity and collagen type IV at similar sites suggests a role of MMP-2 in remodeling of ECM of stroma in colon cancer metastases in rat liver.  相似文献   

6.
7.
Cell-extracellular matrix interaction and extracellular matrix remodeling are known to be important in fetal lung development. We investigated the localization of matrix metalloproteinases (MMPs) in fetal rabbit lungs. Immunohistochemistry for type IV collagen, MMP-1, MMP-2, MMP-9, membrane type (MT) 1 MMP, and tissue inhibitor of metalloproteinase (TIMP)-2 and in situ hybridization for MMP-9 mRNA were performed. Gelatin zymography and Western blotting for MT1-MMP in lung tissue homogenates were also studied. MMP-1 and MT1-MMP were detected in epithelial cells, and MMP-2 and TIMP-2 were detected in epithelial cells and some mesenchymal cells in each stage. MMP-9 was found in epithelial cells mainly in the late stage. Gelatin zymography revealed that the ratio of active MMP-2 to latent MMP-2 increased dramatically during the course of development. MT1-MMP was detected in tissue homogenates, especially predominant in the late stage. These findings suggest that MMPs and their inhibitors may contribute to the formation of airways and alveoli in fetal lung development and that activated MMP-2 of alveolar epithelial cells may function to provide an extremely wide alveolar surface.  相似文献   

8.
9.
Fibroblast migration, proliferation, extracellular matrix protein synthesis and degradation, all of which play important roles in inflammation, are themselves induced by various growth factors and cytokines. Less is known about the interaction of these substances on lung fibroblast function in pulmonary fibrosis. The goal of this study was to investigate the effects of PDGF alone and in combination with IL-1beta and TNF-alpha on the production of human lung fibroblast matrix metalloproteinases, proliferation, and the chemotactic response. The assay for MMPs activity against FITC labeled type I and IV collagen was based on the specificity of the enzyme cleavage of collagen. Caseinolytis and gelatinolytic activities of secreted proteinases were analyzed by zymography. Fibronectin in conditioned media was measured using human lung fibronectin enzyme immunoassay. Cell proliferation was measured by 3H-Thymidine incorporation assay. Cell culture supernatants were tested for PGE2 content by ELISA. Chemotactic activity was measured using the modified Boyden chamber. Matrix metalloproteinase assay indicated that IL-1beta, TNF-alpha and PDGF induced intestitial collagenase (MMP-1) production. MMP assay also indicated that IL-1beta and TNF-alpha had inhibitory effects on MMP-2,9(gelatinaseA,B) production. Casein zymography confirmed that IL-1beta stimulated stromlysin (matrix metalloproteinase 3; MMP-3) and gelatin zymography demonstrated that TNF-alpha induced MMP-9 production in human lung fibroblast, whereas PDGF alone did not. PDGF in combination with IL-1beta and TNF-alpha induced MMP-3 and MMP-9 activity, as demonstrated by zymography. PDGF stimulated lung fibroblast proliferation in a concentration-dependent manner, whereas IL-1beta and TNF-alpha alone had no effect. In contrast, the proliferation of human lung fibroblasts by PDGF was inhibited in the presence of IL-1beta and TNF-alpha, and this inhibition was not a consequence of any elevation of PGE2. PDGF stimulated fibroblast chemotaxis in a concentration-dependent manner, and this stimulation was augmented by combining PDGF with IL-1beta and TNF-alpha. These findings suggested that PDGF differentially regulated MMPs production in combination with cytokines, and further that MMP assay and zymography had differential sensitivity for detecting MMPs. The presence of cytokines with PDGF appears to modulate the proliferation and chemotaxis of human lung fibroblasts.  相似文献   

10.
Cultured hepatic stellate cells (HSCs) are known to change their morphology and function with respect to the production of extracellular matrices (ECMs) and matrix metalloproteinases (MMPs) in response to ECM components. We examined the regulatory role of the native form of type I collagen fibrils in pro-MMP-2 production and activation in cultured HSCs. Gelatin zymography of the conditioned media revealed that pro- and active form of MMP-2 was increased in the HSCs cultured on type I collagen gel but not on type I collagen-coated surface, gelatin-coated surface, type IV collagen-coated surface, or Matrigel, suggesting the importance of the native form of type I collagen fibrils in pro-MMP-2 production and activation. The induction of active MMP-2 by extracellular type I collagen was suppressed by the blocking antibody against integrin beta1 subunits, indicating the involvement of integrin signaling in pro-MMP-2 activation. RT-PCR analysis indicated that MMP-2, membrane type-1 MMP (MT1-MMP) and tissue inhibitor of metalloproteinase-2 (TIMP-2) mRNA levels were elevated in HSCs cultured on type I collagen gel. The increased MT1-MMP proteins were localized on the cell surface of HSCs cultured on type I collagen gel. In contrast to the expression of MMP-2, HSCs showed a great decline in MMP-13 expression in HSCs cultured on type I collagen gel. These results indicate that the native fibrillar (polymerized) but not monomeric form of type I collagen induced pro-MMP-2 production and activation through MT1-MMP and TIMP-2 in cultured HSCs, suggesting an important role of HSCs in ECM remodeling in the hepatic perisinusoidal spaces.  相似文献   

11.
Mononuclear phagocytes can interact with mesenchymal cells and extracellular matrix components that are crucial for connective tissue rearrangement. We asked whether blood monocytes can alter matrix remodeling mediated by human lung fibroblasts cultured in a three-dimensional collagen gel. Blood monocytes from healthy donors (>95% pure) were cast into type I collagen gels that contained lung fibroblasts. Monocytes in coculture inhibited the fibroblast-mediated gel contractility in a time- and concentration-dependent manner. The concentration of PGE(2), a well-known inhibitor of gel contraction, was higher (P < 0.01) in media from coculture; this media attenuated fibroblast gel contraction, whereas conditioned media from either cell type cultured alone did not. Three-dimensional cultured monocytes responded to conditioned media from cocultures by producing interleukin-1beta and tumor necrosis factor-alpha, whereas fibroblasts increased synthesis of PGE(2). Antibodies to interleukin-1beta and tumor necrosis factor-alpha blocked the monocyte inhibitory effect and reduced the amount of PGE(2) produced. The ability of monocytes to block the fibroblast contraction of matrix may be an important mechanism in regulating tissue remodeling.  相似文献   

12.
Early wound healing is associated with fibroblasts assembling a provisional fibronectin-rich extracellular matrix (ECM), which is subsequently remodeled and interlaced by type I collagen. This exposes fibroblasts to time-variant sets of matrices during different stages of wound healing. Our goal was thus to gain insight into the ECM-driven functional regulation of human foreskin fibroblasts (HFFs) being either anchored to a fibronectin (Fn) or to a collagen-decorated matrix, in the absence or presence of cyclic mechanical strain. While the cells reoriented in response to the onset of uniaxial cyclic strain, cells assembled exogenously added Fn with a preferential Fn-fiber alignment along their new orientation. Exposure of HFFs to exogenous Fn resulted in an increase in matrix metalloproteinase (MMP) expression levels, i.e. MMP-15 (RT-qPCR), and MMP-9 activity (zymography), while subsequent exposure to collagen slightly reduced MMP-15 expression and MMP-9 activity compared to Fn-exposure alone. Cyclic strain upregulated Fn fibrillogenesis and actin stress fiber formation, but had comparatively little effect on MMP activity. We thus propose that the appearance of collagen might start to steer HFFs towards homeostasis, as it decreased both MMP secretion and the tension of Fn matrix fibrils as assessed by Fluorescence Resonance Energy Transfer. These results suggest that HFFs might have a high ECM remodeling or repair capacity in contact with Fn alone (early event), which is reduced in the presence of Col1 (later event), thereby down-tuning HFF activity, a processes which would be required in a tissue repair process to finally reach tissue homeostasis.  相似文献   

13.
The uses of shark collagen as a matrix for cell culture and as a substrate for zymography were investigated. Fibroblasts were cultured on a gel matrix of shark type I collagen at 30 degrees C. The collagen gel had contracted by 4 days of incubation. Individual fibroblasts were visible against the transparent background of the contracted collagen as long, lean star-shaped cells. The matrix metalloproteinases (MMPs) from fibroblasts secreted from the medium more easily digested shark gelatin than pig gelatin. MMP-2, -9, and that of potential form were recognizable in the zymographic gel of shark gelatin.  相似文献   

14.
15.
16.
Ohga E  Matsuse T  Teramoto S  Ouchi Y 《Life sciences》2000,66(17):1603-1613
Activin A is a member of the transforming growth factor-beta superfamily that exerts its diverse biological effects through bindings to activin specific transmembrane serine/threonine kinase receptors. The fibroblast-mediated contraction of a collagen gel is thought to be a model of part of the wound-repair response and tissue contraction. In this study, we found the expression of activin type I receptors (ActR-I and ActR-IB) and type II receptor (ActR-II) on human fetal lung fibroblasts (HFL-1) by RT-PCR and immunocytochemistry. We also examined the effects of activin A on the HFL-1-mediated collagen gel contraction. Activin A stimulated collagen gel contraction in a dose dependent manner and its effect was abolished by an activin-binding protein, follistatin, that specifically suppresses activin A activities. This study demonstrated that ActR-I, ActR-1B and ActR-II are expressed on human fetal lung fibroblast and that activin A regulates fibroblast-mediated collagen gel contraction, suggesting that activin A might contribute to human lung fibroblast activities and structural remodeling observed in pulmonary fibrosis.  相似文献   

17.
Hypoxia not only controls organogenesis, embryogenesis, and wound repair, but also triggers tumor progression and metastasis. Matrix metalloproteinases (MMP), especially gelatinases (MMP-2, MMP-9) regulate the composition and stability of the extracellular matrix (ECM), which affects cell proliferation, migration, and differentiation. This study investigated the effect of hypoxia alone and in combination with ECM compounds and nutrition on MMP-2 and MMP-9 expression, activity, and synthesis in human lung fibroblasts and pulmonary vascular smooth muscle cells (VSMC). We also determined the expression of the tissue inhibitors of MMP (TIMP-1, -2). Cells were grown on plastic, collagen-I, collagen-IV, or gelatin and in either starving medium (0.1% serum) or growth medium (5% serum), and were subjected to normoxia or hypoxia (1% O(2)). Collagenases expression was determined by zymography. TIMP-1, -2 expression was assessed by Western blotting and RT-PCR. Depending on serum concentration human lung cells expressed pro-MMP-2 on all substrates. Hypoxia increased pro-MMP-2 expression, on collagen type I or type IV further via Erk1/2 and p38 MAP kinase signaling. MMP-9 was only expressed when cells were grown on collagen type IV and increased with serum concentration, and by hypoxia. TIMP-1 expression was only expressed when cells were grown on collagen type I and was significantly increased by hypoxia, while TIMP-2 expression was unchanged. We demonstrated that the hypoxia, ECM composition, and nutrition, rather than one of these conditions alone, modulate the expression and activity of collagenases and their inhibitors in primary human lung fibroblasts.  相似文献   

18.
《The Journal of cell biology》1995,131(6):1903-1915
The reorganization of extracellular matrix (ECM) is an important function in many biological and pathophysiological processes. Culture of fibroblasts in a three-dimensional collagenous environment represents a suitable system to study the underlying mechanisms resulting from cell-ECM interaction, which leads to reprogramming of fibroblast biosynthetic capacity. The aim of this study was to identify receptors that transduce ECM signals into cellular events, resulting in reprogramming of connective tissue metabolism. Our data demonstrate that in human skin fibroblasts alpha 1 beta 1 and alpha 2 beta 1 integrins are the major receptors responsible for regulating ECM remodeling: alpha 1 beta 1 mediates the signals inducing downregulation of collagen gene expression, whereas the alpha 2 beta 1 integrin mediates induction of collagenase (MMP-1). Applying mAb directed against different integrin subunits resulted in triggering the heterodimeric receptors and enhancing the normal biochemical response to receptor ligation. Different signal transduction inhibitors were tested for their influence on gel contraction, expression of alpha 1(I) collagen and MMP-1 in fibroblasts within collagen gels. Ortho-vanadate and herbimycin A displayed no significant effect on any of these three processes. In contrast, genistein reduced lattice contraction, and completely inhibited induction of MMP-1, whereas type I collagen down- regulation was unaltered. Calphostin C inhibited only lattice contraction. Taken together, these data indicate a role of tyrosine- specific protein kinases in mediating gel contraction and induction of MMP-1, as well as an involvement of protein kinase C in the contraction process. The data presented here indicate that different signaling pathways exist leading to the three events discussed here, and that these pathways do not per se depend upon each other.  相似文献   

19.
Tissue inhibitors of metalloproteinases (TIMPs) regulate extracellular matrix (ECM) degradation by matrix metalloproteinases (MMPs) throughout lung development. We examined lungs from TIMP3 null mice and found significant air space enlargement compared with wild type (WT) animals during a time course spanning early alveologenesis (post‐partum days 1, 5, 9 and 14). Trichrome staining revealed a similar pattern of collagen distribution in the walls of nascent alveoli; however, the alveolar walls of TIMP3 mutant mice appeared to be thinner than controls. Assessment of MMP2 and MMP9 activities by gelatin zymography demonstrated a significant elevation in the active form of MMP2 at post‐partum days 1 and 5. Treatment of null pregnant dams with a broad spectrum synthetic metalloproteinase inhibitor, GM6001, on embryonic day 16.5 enhanced the formation of primitive alveoli during the saccular stage of lung development as evidenced by a partial, but significant, rescue of alveolar size in post‐partum day 1 animals. We propose that increased MMP activity in the absence of TIMP3 enhances ECM proteolysis, upsetting proper formation of primitive alveolar septa during the saccular stage of alveologenesis. Therefore, TIMP3 indirectly regulates alveolar formation in the mouse. To our knowledge, ours is the first study to demonstrate that in utero manipulation of the TIMP/MMP proteolytic axis, to specifically inhibit proteolysis, significantly affects lung development.  相似文献   

20.
BACKGROUND: Transgenic (tg) mice with chronic overexpression of the human erythropoietin gene are characterized by an increased hematocrit of about 0.80 in adulthood. This is accompanied by cardiac dysfunction and premature death. The aim of this study was to examine whether this cardiac dysfunction was accompanied by hypertrophy of the heart with remodeling of the extracellular matrix (ECM). METHODS: 3-months-old wild type (wt) and tg mice without cardiac hypertrophy were compared with the respective 7-months-old mice. The mRNA of brain natriuretic peptide (BNP), of the matrix metalloproteinases (MMP)-2, -8, -9, -13, of the tissue inhibitor of metalloproteinase (TIMP)-1, -2, -3, -4 and of collagen I and III was detected by ribonuclease protection assay. The activity of MMPs was measured by zymography. RESULTS: There was hypertrophy of both ventricles in 7-months-old tg mice, which was accompanied by elevated mRNA expression of BNP. MMP-2 activity was increased and MMP-9 activity was decreased in the left ventricle (LV) of 3-months-old tg mice. This was accompanied by elevated TIMP-4 expression, followed by a shift of collagen mRNA expression from type III to type I in this ventricle. CONCLUSION: The shift to collagen I in the heart of tg mice might be associated with a stiffer ventricle resulting in diastolic dysfunction. This may be responsible for a relative and intermittent LV- and right ventricle (RV)-insufficiency which was likely to have occurred as evidenced by the elevation of lung and liver weight with hemorrhage and interstitial fibrosis after 7 months.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号