首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 24 毫秒
1.
SecA, the ATPase of Sec translocase, mediates the post-translational translocation of preprotein through the protein-conducting channel SecYEG in the bacterial inner membrane. Here we report the structures of Escherichia coli Sec intermediates during preprotein translocation as visualized by electron microscopy to probe the oligomeric states of SecA during this process. We found that the translocase holoenzyme is symmetrically assembled by SecA and SecYEG on proteoliposomes, whereas the translocation intermediate 31 (I31) becomes asymmetric because of the presence of preprotein. Moreover, SecA is a dimer in these two translocation complexes. This work also shows surface topological changes in the components of translocation intermediates by immunogold labeling. The channel entry for preprotein translocation was found at the center of the I31 structures. Our results indicate that the presence of preprotein introduces asymmetry into translocation intermediates, while SecA remains dimeric during the translocation process.  相似文献   

2.
SecYEG forms the protein-conducting channel of the Escherichia coli translocase. It binds the peripheral ATPase SecA that drives the preprotein translocation reaction. PrlA4 is a double mutant of SecY that enables the translocation of preproteins with a defective or even missing signal sequence. The effect of the individual mutations, F286Y and I408N, was studied with SecYEG proteoliposomes. SecY(I408N) is responsible for the increased translocation of preproteins with a defective and normal signal sequence, and exhibits a stronger prl phenotype than PrlA4. This activity correlates with an elevated SecA-translocation ATPase and SecA binding affinity. SecY(F286Y) supports only a low SecA binding affinity, preprotein translocation and SecA translocation ATPase activity. These results suggest that the second site F286Y mutation reduces the strength of the I408N mutation of PrlA4 by lowering the SecA binding affinity.  相似文献   

3.
Wang L  Miller A  Rusch SL  Kendall DA 《Biochemistry》2004,43(41):13185-13192
Protein translocation in Escherichia coli is initiated by the interaction of a preprotein with the membrane translocase composed of a motor protein, SecA ATPase, and a membrane-embedded channel, the SecYEG complex. The extent to which the signal peptide region of the preprotein plays a role in SecYEG interactions is unclear, in part because studies in this area typically employ the entire preprotein. Using a synthetic signal peptide harboring a photoaffinity label in its hydrophobic core, we examined this interaction with SecYEG in a detergent micellar environment. The signal peptide was found to specifically bind SecY in a saturable manner and at levels comparable to those that stimulate SecA ATPase activity. Chemical and proteolytic cleavage of cross-linked SecY and analysis of the signal peptide adducts indicate that the binding was primarily to regions of the protein containing transmembrane domains seven and two. The signal peptide-SecY interaction was affected by the presence of SecA and nucleotides in a manner consistent with the transfer of signal peptide to SecY upon nucleotide hydrolysis at SecA.  相似文献   

4.
Identification of the preprotein binding domain of SecA   总被引:1,自引:0,他引:1  
SecA, the preprotein translocase ATPase, has a helicase DEAD motor. To catalyze protein translocation, SecA possesses two additional flexible domains absent from other helicases. Here we demonstrate that one of these "specificity domains" is a preprotein binding domain (PBD). PBD is essential for viability and protein translocation. PBD mutations do not abrogate the basal enzymatic properties of SecA (nucleotide binding and hydrolysis), nor do they prevent SecA binding to the SecYEG protein conducting channel. However, SecA PBD mutants fail to load preproteins onto SecYEG, and their translocation ATPase activity does not become stimulated by preproteins. Bulb and Stem, the two sterically proximal PBD substructures, are physically separable and have distinct roles. Stem binds signal peptides, whereas the Bulb binds mature preprotein regions as short as 25 amino acids. Binding of signal or mature region peptides or full-length preproteins causes distinct conformational changes to PBD and to the DEAD motor. We propose that (a) PBD is a preprotein receptor and a physical bridge connecting bound preproteins to the DEAD motor, and (b) preproteins control the ATPase cycle via PBD.  相似文献   

5.
F Duong  W Wickner 《The EMBO journal》1997,16(10):2756-2768
Escherichia coli preprotein translocase contains a membrane-embedded trimeric complex of SecY, SecE and SecG (SecYEG) and the peripheral SecA protein. SecYE is the conserved functional 'core' of the SecYEG complex. Although sufficient to provide sites for high-affinity binding and membrane insertion of SecA, and for its activation as a preprotein-dependent ATPase, SecYE has only very low capacity to support translocation. The proteins encoded by the secD operon--SecD, SecF and YajC--also form an integral membrane heterotrimeric complex (SecDFyajC). Physical and functional studies show that these two trimeric complexes are associated to form SecYEGDFyajC, the hexameric integral membrane domain of the preprotein translocase 'holoenzyme'. Either SecG or SecDFyajC can support the translocation activity of SecYE by facilitating the ATP-driven cycle of SecA membrane insertion and de-insertion at different stages of the translocation reaction. Our findings show that each of the prokaryote-specific subunits (SecA, SecG and SecDFyajC) function together to promote preprotein movement at the SecYE core of the translocase.  相似文献   

6.
The SecYEG complex constitutes a protein conducting channel across the bacterial cytoplasmic membrane. It binds the peripheral ATPase SecA to form the translocase. When isoleucine 278 in transmembrane segment 7 of the SecY subunit was replaced by a unique cysteine, SecYEG supported an increased preprotein translocation and SecA translocation ATPase activity, and allowed translocation of a preprotein with a defective signal sequence. SecY(I278C)EG binds SecA with a higher affinity than normal SecYEG, in particular in the presence of ATP. The increased translocation activity of SecY(I278C)EG was confirmed in a purified system consisting of SecYEG proteoliposomes, while immunoprecipitation in detergent solution reveal that translocase-preprotein complexes are more stable with SecY(I278C) than with normal SecY. These data imply an important role for SecY transmembrane segment 7 in SecA binding. As improved SecA binding to SecY was also observed with the prlA4 suppressor mutation, it may be a general mechanism underlying signal sequence suppression.  相似文献   

7.
The multimeric membrane protein complex translocase mediates the transport of preproteins across and integration of membrane proteins into the inner membrane of Escherichia coli. The translocase consists of the peripheral membrane-associated ATPase SecA and the heterotrimeric channel-forming complex consisting of SecY, SecE and SecG. We have investigated the quaternary structure of the SecYEG complex in proteoliposomes. Fluorescence resonance energy transfer demonstrates that SecYEG forms oligomers when embedded in the membrane. Freeze-fracture techniques were used to examine the oligomeric composition under non-translocating and translocating conditions. Our data show that membrane-embedded SecYEG exists in a concentration-dependent equilibrium between monomers, dimers and tetramers, and that dynamic exchange of subunits between oligomers can occur. Remarkably, the formation of dimers and tetramers in the lipid environment is stimulated significantly by membrane insertion of SecA and by the interaction with translocation ligands SecA, preprotein and ATP, suggesting that the active translocation channel consists of multiple SecYEG complexes.  相似文献   

8.
Terminal residues in SecA, the dimeric ATPase motor of bacterial preprotein translocase, were proposed to be required for function and dimerization. To test this, we generated truncation mutants of the 901aa long SecA of Escherichia coli. We now show that deletions of carboxy-terminal domain (CTD), the extreme CTD of 70 residues, or of the N-terminal nonapeptide or of both, do not compromise protein translocation or viability. Deletion of additional C-terminal residues upstream of CTD compromised function. Functional truncation mutants like SecA9-861 are dimeric, conformationally similar to SecA, fully competent for nucleotide and SecYEG binding and for ATP catalysis. Our data demonstrate that extreme terminal SecA residues are not essential for SecA catalysis and dimerization.  相似文献   

9.
F Duong  W Wickner 《The EMBO journal》1999,18(12):3263-3270
prlA mutations in the gene encoding the SecY subunit of the membrane domain of the Escherichia coli preprotein translocase confer many phenotypes: enhanced translocation rates, increased affinity for SecA, diminished requirement for functional leader sequences, reduced proton-motive force (PMF) dependence of preprotein translocation and facilitated translocation of preproteins with folded domains. We now report that both prlA and prlG mutations weaken the associations between the SecY, SecE and SecG subunits of the translocase. This loosened association increases the initiation of translocation by facilitating the insertion of SecA with its bound preprotein but reduces the stimulatory effect of the PMF during the initial step of translocation. Furthermore, the originally isolated prlA4 mutant, which possesses a particularly labile SecYEG complex, acquired a secondary mutation that restored the stability while conserving the flexibility of the complex. Combinations of certain prlA and prlG mutations, known to cause synthetic lethality in vivo, dramatically loosen subunit association and lead to complete disassembly of SecYEG. These findings underscore the importance of the loosened SecYEG association for the Prl phenotypes. We propose a model in which each of the PrlA and PrlG phenotypes derive from this enhanced SecYEG conformational flexibility.  相似文献   

10.
Bacteria, Archaea and Eukaryotes have evolved a plethora of mechanisms to translocate proteins across their various membranes. The bacterial Sec pathway is ubiquitous and essential for cell viability and is used by most proteins destined for the inner membrane, the periplasm or beyond. In bacteria, Sec system components include the heterotrimers SecY/SecE/SecG and SecD/SecF/YajC and the peripherally associated ATPase motor SecA. SecA in solution is mainly dimeric. Unexpectedly, structures of SecA dimers from different or even the same bacterium do not have a consistent dimerization interface. Analysis of the functional assembled translocase complexes blurs the picture even further as the functional quaternary state of the SecYEG channel is also disputed. Several experimental approaches tried to define the oligomeric state of SecA during preprotein ‘pushing’ through SecYEG. One high‐resolution SecA–SecYEG complex has been visualized. This snapshot might be a step closer to the actual translocating machinery. Nevertheless, because of the use of detergent, the true quartenary state of the translocase might have been disturbed. Hence, even after this and other studies, several issues remain puzzling. New approaches must be combined with current tools to gain insight into the functionally relevant quartenary states of SecA and SecYEG during preprotein translocation.  相似文献   

11.
In Escherichia coli, precursor proteins are translocated across the cytoplasmic membrane by translocase. This multisubunit enzyme consists of a preprotein-binding and ATPase domain, SecA, and the SecYEG complex as the integral membrane domain. PrlA4 is a mutant of SecY that enables the translocation of preproteins with a defective, or missing, signal sequence. Inner membranes of the prlA4 strain efficiently translocate Delta8proOmpA, a proOmpA derivative with a non-functional signal sequence. Owing to the signal sequence mutation, Delta8proOmpA binds to the translocase with a lowered affinity and the recognition is not restored by the prlA4 SecY. At the ATP-dependent initiation of translocation, the binding affinity of SecA for SecYEG is lowered causing the premature loss of bound preproteins from the translocase. The prlA4 membranes, however, bind SecA with a much higher affinity than the wild-type, and during initiation, the SecA and preprotein remain bound at the translocation site allowing an improved efficiency of translocation. It is concluded that the prlA4 strain prevents the rejection of defective preproteins from the export pathway by stabilizing SecA at the SecYEG complex.  相似文献   

12.
Tang Y  Pan X  Chen Y  Tai PC  Sui SF 《PloS one》2011,6(1):e16498
The Sec translocase mediates the post-translational translocation of a number of preproteins through the inner membrane in bacteria. In the initiatory translocation step, SecB targets the preprotein to the translocase by specific interaction with its receptor SecA. The latter is the ATPase of Sec translocase which mediates the post-translational translocation of preprotein through the protein-conducting channel SecYEG in the bacterial inner membrane. We examined the structures of Escherichia coli Sec intermediates in solution as visualized by negatively stained electron microscopy in order to probe the oligomeric states of SecA during this process. The symmetric interaction pattern between the SecA dimer and SecB becomes asymmetric in the presence of proOmpA, and one of the SecA protomers predominantly binds to SecB/proOmpA. Our results suggest that during preprotein translocation, the two SecA protomers are different in structure and may play different roles.  相似文献   

13.
The SecA ATPase is a protein translocase motor and a superfamily 2 (SF2) RNA helicase. The ATPase catalytic core ('DEAD motor') contains the seven conserved SF2 motifs. Here, we demonstrate that Motif III is essential for SecA-mediated protein translocation and viability. SecA Motif III mutants can bind ligands (nucleotide, the SecYEG translocase 'channel', signal and mature preprotein domains), can catalyse basal and SecYEG-stimulated ATP hydrolysis and can be activated for catalysis. However, Motif III mutation specifically blocks the preprotein-stimulated 'translocation ATPase' at a step of the reaction pathway that lies downstream of ligand binding. A functional Motif III is required for optimal ligand-driven conformational changes and kinetic parameters that underlie optimal preprotein-modulated nucleotide cycling at the SecA DEAD motor. We propose that helicase Motif III couples preprotein binding to the SecA translocation ATPase and that catalytic activation of SF2 enzymes through Motif-III-mediated action is essential for both polypeptide and nucleic-acid substrates.  相似文献   

14.
SecA, the dimeric ATPase subunit of protein translocase, contains a DEAD helicase catalytic core that binds to a regulatory C-terminal domain. We now demonstrate that IRA1, a conserved helix-loop-helix structure in the C-domain, controls C-domain conformation through direct interdomain contacts. C-domain conformational changes are transmitted to the DEAD motor and alter its conformation. These interactions establish DEAD motor/C-domain conformational cross-talk that requires a functional IRA1. IRA1-controlled binding/release cycles of the C-domain to the DEAD motor couple this cross-talk to protein translocation chemistries, i.e. DEAD motor affinities for ligands (nucleotides, preprotein signal peptides, and SecYEG, the integral membrane component of translocase) and ATP turnover. IRA1-mediated global co-ordination of SecA catalysis is essential for protein translocation.  相似文献   

15.
Translocase mediates preprotein translocation across the Escherichia coli inner membrane. It consists of the SecYEG integral membrane protein complex and the peripheral ATPase SecA. Here we show by functional assays, negative-stain electron microscopy and mass measurements with the scanning transmission microscope that SecA recruits SecYEG complexes to form the active translocation channel. The active assembly of SecYEG has a side length of 10.5 nm and exhibits an approximately 5 nm central cavity. The mass and structure of this SecYEG as well as the subunit stoichiometry of SecA and SecY in a soluble translocase-precursor complex reveal that translocase consists of the SecA homodimer and four SecYEG complexes.  相似文献   

16.
Recent studies introduced a novel view that the SecYEG translocon functions as a monomer and interacts with the dimeric SecA ATPase, which fuels the preprotein translocation reaction. Here, we used nanodisc-reconstituted SecYEG to characterize the functional properties of single copies of the translocon. Using a method based on intermolecular Förster resonance energy transfer, we show for the first time that isolated nanodisc-reconstituted SecYEG monomers support preprotein translocation. When several copies of SecYEG were co-reconstituted within a nanodisc, no change in translocation kinetics was observed, suggesting that SecYEG oligomers do not facilitate enhanced translocation. In contrast, nanodisc-reconstituted monomers of the PrlA4 variant of SecYEG showed increased translocation rates. Experiments based on intramolecular Förster resonance energy transfer within the nanodisc-isolated monomeric SecYEG demonstrated a nucleotide-dependent opening of the channel upon interaction with SecA. In conclusion, the nanodisc-reconstituted SecYEG monomers are functional for preprotein translocation and provide a new prospect for single-molecule analysis of dynamic aspects of protein translocation.  相似文献   

17.
SecA is the preprotein translocase ATPase subunit and a superfamily 2 (SF2) RNA helicase. Here we present the 2 A crystal structures of the Escherichia coli SecA homodimer in the apo form and in complex with ATP, ADP and adenosine 5'-[beta,gamma-imido]triphosphate (AMP-PNP). Each monomer contains the SF2 ATPase core (DEAD motor) built of two domains (nucleotide binding domain, NBD and intramolecular regulator of ATPase 2, IRA2), the preprotein binding domain (PBD), which is inserted in NBD and a carboxy-terminal domain (C-domain) linked to IRA2. The structures of the nucleotide complexes of SecA identify an interfacial nucleotide-binding cleft located between the two DEAD motor domains and residues critical for ATP catalysis. The dimer comprises two virtually identical protomers associating in an antiparallel fashion. Dimerization is mediated solely through extensive contacts of the DEAD motor domains leaving the C-domain facing outwards from the dimerization core. This dimerization mode explains the effect of functionally important mutations and is completely different from the dimerization models proposed for other SecA structures. The repercussion of these findings on translocase assembly and catalysis is discussed.  相似文献   

18.
Escherichia coli preprotein translocase comprises a membrane-embedded trimeric complex of SecY, SecE and SecG. Previous studies have shown that this complex forms ring-like assemblies, which are thought to represent the preprotein translocation channel across the membrane. We have analyzed the functional state and the quaternary structure of the SecYEG translocase by employing cross-linking and blue native gel electrophoresis. The results show that the SecYEG monomer is a highly dynamic structure, spontaneously and reversibly associating into dimers. SecG-dependent tetramers and higher order SecYEG multimers can also exist in the membrane, but these structures form at high SecYEG concentration or upon overproduction of the complex only. The translocation process does not affect the oligomeric state of the translocase and arrested preproteins can be trapped with SecYEG or SecYE dimers. Dissociation of the dimer into a monomer by detergent induces release of the trapped preprotein. These results provide direct evidence that preproteins cross the bacterial membrane, associated with a translocation channel formed by a dimer of SecYEG.  相似文献   

19.
Translocation of precursor proteins across the cytoplasmic membrane in bacteria is mediated by a multi-subunit protein complex termed translocase, which consists of the integral membrane heterotrimer SecYEG and the peripheral homodimeric ATPase SecA. Preproteins are bound by the cytosolic molecular chaperone SecB and targeted in a complex with SecA to the translocation site at the cytoplasmic membrane. This interaction with SecYEG allows the SecA/preprotein complex to insert into the membrane by binding of ATP to the high affinity nucleotide binding site of SecA. At that stage, presumably recognition and proofreading of the signal sequence occurs. Hydrolysis of ATP causes the release of the preprotein in the translocation channel and drives the withdrawal of SecA from the membrane-integrated state. Hydrolysis of ATP at the low-affinity nucleotide binding site of SecA converts the protein into a compact conformational state and releases it from the membrane. In the absence of the proton motive force, SecA is able to complete the translocation stepwise by multiple nucleotide modulated cycles. Received: 4 August 1995 / Accepted: 9 October 1995  相似文献   

20.
Bacterial protein secretion is catalysed by the SecYEG protein-conducting channel complexed with the SecA ATPase motor. To gain insight into the SecA-SecYEG interaction we used peptide arrays, thermodynamic quantification, mutagenesis and functional assays. Our data reveal that: (i) SecA binds with low affinity on several, peripheral, exposed SecYEG sites. This largely electrostatic association is modulated by temperature and nucleotides. (ii) Binding sites cluster in five major binding 'regions': three that are exclusively cytoplasmic and two that reach the periplasm. (iii) Both the N-terminal and c-terminal regions of SecA participate in binding interactions and share some sites. (iv) Several of these sites are essential for translocase catalysis. Our data provide residue-level dissection of the SecYEG-SecA interaction. Two models of assembly of SecA on dimeric SecYEG are discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号