首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 203 毫秒
1.
Studies were undertaken to determine whether immunization of humans with a herpes simplex virus type 2 (HSV-2) glycoprotein-subunit vaccine would result in the priming of both HSV-specific proliferating cells and cytotoxic T cells. Peripheral blood lymphocytes (PBL) from all eight vaccines studied responded by proliferating after stimulation with HSV-2, HSV-1, and glycoprotein gB-1. The PBL of five of these eight vaccines proliferated following stimulation with gD-2, whereas stimulation with gD-1 resulted in relatively low or no proliferative responses. T-cell clones were generated from HSV-2-stimulated PBL of three vaccinees who demonstrated strong proliferative responses to HSV-1 and HSV-2. Of 12 clones studied in lymphoproliferative assays, 9 were found to be cross-reactive for HSV-1 and HSV-2. Of the approximately 90 T-cell clones isolated, 14 demonstrated HSV-specific cytotoxic activity. Radioimmunoprecipitation-polyacrylamide gel electrophoresis analyses confirmed that the vaccinees had antibodies only to HSV glycoproteins, not to proteins which are absent in the subunit vaccine, indicating that these vaccinees had not become infected with HSV. Immunization of humans with an HSV-2 glycoprotein-subunit vaccine thus results in the priming of T cells that proliferate in response to stimulation with HSV and its glycoproteins and T cells that have cytotoxic activity against HSV-infected cells. Such HSV-specific memory T cells were detected as late as 2 years following the last boost with the subunit vaccine.  相似文献   

2.
Human cytotoxic T cell (CTL) clones specific for herpes simplex virus (HSV) type 1- and type 2-infected cells were generated and were analyzed with regard to the viral glycoproteins they recognize on autologous HSV-infected cells. By use of target cells infected with wild-type HSV strains, a gC deletion mutant of HSV-1, and HSV-1 X HSV-2 intertypic recombinants, some HSV-1-specific CTL clones were found to be directed against L region-encoded gA/B-1, and others against S region-encoded glycoproteins (gD-1 or gE-1). Some HSV-2-specific clones were found to be directed against L region-encoded gC-2, whereas others were directed against S region-encoded glycoproteins (gD-2, gE-2, or gG). These findings provide direct evidence that several HSV glycoproteins that are expressed on the surface of HSV-infected cells serve as recognition structures for human HSV-specific CTL.  相似文献   

3.
Human cytotoxic T lymphocyte (CTL) clones directed against herpes simplex virus (HSV)-infected cells were generated after stimulation of peripheral blood lymphocytes (PBL) with HSV type 1 (HSV-1) and HSV type 2 (HSV-2). These CTL clones were studied with regard to HSV type specificity and with regard to whether they also express helper cell activity. Some clones, generated after stimulation with HSV-1, were cytotoxic for autologous cells infected with either HSV-1 or HSV-2 ("HSV type common clones"), whereas other clones lysed HSV-1-infected cells only ("type-specific clones"). Similarly, after HSV-2 stimulation, both HSV-2 specific and HSV type common clones were obtained, indicating the heterogeneity of human cytotoxic T cells to HSV. All CTL clones tested were found to be bifunctional in that they also proliferated in response to stimulation with HSV. The HSV type specificity of the proliferative response was identical to that of the cytotoxic activity of the clones. An HSV type common clone, when stimulated with either HSV-1 or HSV-2, and an HSV-1 specific clone, when stimulated with HSV-1 but not with HSV-2, produced a factor, presumably interleukin 2 (IL 2), which induced proliferation of CTLL, an IL 2-dependent T cell line, providing evidence that our HSV-directed CTL clones also express helper cell activity. CTL clones that we previously reported were restricted in cytotoxic activity by HLA class II DR-1 or MB-1 antigens were found, in this study, to be restricted in proliferative response to HSV by these same HLA antigens. These results suggest that our bifunctional T cell clones directed against HSV may recognize the same viral antigenic determinants and the same HLA antigens for both cytotoxic and virus-induced proliferative activities. This is the first demonstration of human HSV type specific and HSV type common T cell clones and HSV specific T cell clones with both cytotoxic and helper cell activities.  相似文献   

4.
5.
Human cytotoxic T-cell (CTL) clones that lyse autologous cells infected with herpes simplex virus (HSV) type 1 or 2 were generated by stimulating lymphocytes with a recombinant vaccinia virus (recombinant vaccinia-gD-1 virus) that expresses HSV type 1 glycoprotein D (gD-1). Furthermore, CTL clones generated with HSV type 1 or with cloned gD-1 lysed autologous cells infected with the recombinant vaccinia-gD-1 virus. Our findings thus showed that gD serves as a target antigen for human CTLs and that a recombinant vaccinia-gD virus activates HSV-specific human CTL.  相似文献   

6.
Impaired cell-mediated immunity predisposes individuals to severe systemic HSV infections. A potential approach for enhancing antiviral immunity is to alter the specificity of T cells and NK cells so that they become cytotoxic against HSV. We describe here the use of heteroconjugate antibodies to augment the killing of HSV-infected cells. Two different types of heteroconjugate antibodies were used: 1) CD3-specific mAb, covalently linked to HSV-specific mAb (e.g., anti-CD3 x anti-HSV-1 glycoprotein C); 2) FcR-specific mAb linked to HSV-specific mAb (e.g., anti-Fc gamma RIII x anti-HSV-1 glycoprotein D). Whereas freshly isolated, PBL were not cytotoxic against HSV-infected target cells in a 5-h 51Cr-release assay, co-incubation with either heteroconjugate resulted in significant cytotoxicity. In vitro activated PBL (anti-CD3 + IL-2) also became more potent killers of HSV-infected cells in the presence of each heteroconjugate. The specificity of anti-CD3 x anti-HSV-1 and anti-Fc gamma RIII x anti-HSV-1 gD for enhancing T cell and NK cell immunity, respectively, was confirmed by using cloned, homogeneous human T cell and NK cell lines as effectors. Kinetic analysis demonstrated that as soon as the infected cells began to express HSV glycoproteins on their surface they became susceptible to this enhanced killing. Prolonged culture of HSV-infected cells with heteroconjugate antibodies and effector cells also decreased the amount of viral replication that occurred, as measured in a plaque inhibition assay. These results suggest that heteroconjugate antibodies are potent immunotherapeutic tools that enhance anti-HSV immunity.  相似文献   

7.
The specific immune alterations associated with HSV recurrences are ill defined although it appears that alterations in cell-mediated immune mechanisms are more likely associated with recurrent disease than humoral immunity. Immunization with HSV glycoproteins B and D (gBgD) after primary HSV infection has reportedly reduced the frequency of recurrences but the mechanisms remain unidentified. We therefore evaluated the effects of immunization with cloned gBgD on selected cell-mediated immune responses and their relationship to recurrent disease by using the guinea pig model of genital HSV-2 infection. In two experiments, immunization with gBgD + CFA on days 21 and 42 after HSV-2 inoculation significantly decreased the number of subsequent recurrent lesion days observed whereas CFA alone had no effect. Immunization with gBgD + CFA increased the lymphoproliferative and in vitro IL-2 response to gBgD more than to whole HSV-2 Ag preparations. Peak responses were observed 2 wk after the second immunization. The HSV-specific cytolytic response was also persistently increased beginning 1 wk after the first immunization. Analysis including both untreated and gBgD-immunized animals revealed that recurrent lesion days were inversely correlated to the IL-2 response to whole HSV-2 Ag (p less than 0.0001), the IL-2 response to gBgD (p = 0.0004), and the HSV-specific cytolytic response (p = 0.005 and 0.003 in two experiments, respectively). When the untreated group was analyzed separately, only the IL-2 response to whole HSV-2 Ag correlated to recurrences (p = 0.007). HSV glycoprotein immunization may increase IL-2 or other cytokines secreted by HSV-sensitized T cells increasing critical immune responses, such as NK- or lymphokine-activated killer-mediated cytolysis, that could eliminate the reactivated virus before the development of clinically apparent lesions.  相似文献   

8.
To determine which viral molecule(s) is recognized by herpes simplex virus (HSV)-specific cytotoxic T lymphocytes (CTL), target cells were constructed which express individual HSV glycoproteins. A mouse L cell line, Z4/6, which constitutively expressed high levels of HSV type 2 (HSV-2) gD (gD-2) was isolated and characterized previously (D. C. Johnson and J. R. Smiley, J. Virol. 54:682-689, 1985). Despite the expression of gD on the surface of Z4/6 cells, these cells were not killed by anti-HSV-2 CTL generated following intravaginal infection of syngeneic mice. In contrast, parental Z4 or Z4/6 cells infected with HSV-2 were lysed. Furthermore, unlabeled Z4/6 cells were unable to block the lysis of HSV-2-infected labeled target cells. Cells which express HSV-1 gB (gB-1) were isolated by transfecting L cells with the recombinant plasmid pSV2gBneo, which contains the HSV-1 gB structural sequences and the neomycin resistance gene coupled to the simian virus 40 early promoter and selecting G418-resistant cell lines. One such cell line, Lta/gB15, expressed gB which was detected by immunoprecipitation and at the cell surface by immunofluorescence. Additionally, cells expressing HSV-1 gC (gC-1) or gE (gE-1) were isolated by transfecting Z4 cells, which are L cells expressing ICP4 and ICP47, with either the recombinant plasmid pGE15neo, which contains the gE structural sequences and the neomycin resistance gene, or pDC17, which contains the gC structural gene coupled to the gD-1 promoter. A number of G418-resistant cell lines were isolated which expressed gC-1 or gE-1 at the cell surface. Anti-HSV-1 CTL generated following footpad infection of syngeneic mice were unable to lyse target cells expressing gB-1 or gE-1. In contrast, target cells expressing very low levels of gC-1 were killed as well as HSV-1-infected target cells. Furthermore, infection of gC-1-transformed target cells with wild-type HSV-1 or a strain of HSV-1 that does not express gC did not result in a marked increase in susceptibility to lysis. These results suggest that murine class I major histocompatibility complex-restricted anti-HSV CTL recognize gC-1 but do not recognize gB, gD, or gE as these molecules are expressed in transfected syngeneic target cells. The results are discussed in terms of recent evidence concerning the specificity of antiviral CTL.  相似文献   

9.
We have established a limited dilution assay to estimate the frequency of herpes simplex virus type 1 (HSV)-specific, interleukin 2 (IL 2)-producing helper T lymphocyte precursors (HTL-P). The estimated frequency of such cells in suspensions of local lymph node (LN) cells 5 days after in vivo virus infection was 1:2470 to 1:5800. Frequencies of HTL-P in cells from uninfected mice were below levels of detection of our system and were judged to be below 1:100,000. Removal of Lyt-2+ cells from responder LN cells before culture increases HTL-P frequency twofold to threefold, indicating the likely operation of some form of suppression in unseparated cultures. The demonstration of HSV-specific HTL-P required that cells from virus-primed mice be reexposed in vitro to viral antigen. In addition, clones expanded during a 9-day culture period failed to generate IL 2 unless reexposed to specific viral antigen or cross-reactivate HSV-2. Thus, HSV-specific HTL-P were strictly antigen dependent. No evidence was obtained for antigen-independent subpopulations of HTL-P as occurs with viral-specific cytotoxic T lymphocyte precursors. The clonal progeny of HTL-P were of the Thy-1+ Lyt+2- phenotype. Priming in vivo for the subsequent in vitro detection of HTL-P required that mice be exposed to infectious virus. Thus neither UV-inactivated nor heat-inactivated nor extracted viral glycoproteins could prime for HTL-P detection. The relevance of these findings for the future use of subunit vaccines against HSV is briefly discussed.  相似文献   

10.
The herpes simplex virus type 1 (HSV-1) glycoprotein B (gB-1) gene, deleted of 639 nucleotides that encode the transmembrane anchor sequence and reconstructed with the extramembrane and intracytoplasmic domains, was cloned under control of the Rous sarcoma virus long terminal repeat in the episomal replicating vector pRP-RSV, which contains the origin of replication and early region of the human papovavirus BK as well as a cDNA for a mutant mouse dihydrofolate reductase that is resistant to methotrexate. gB-1 (0.15 to 0.25 pg per cell per 24 h) was constitutively secreted into the culture medium of pRP-RSV-gBs-transformed human 293 cells. Treatment of transformed cells with methotrexate at high concentrations (0.6 to 6 microM) increased gB-1 production 10- to 100-fold, because of an amplification of the episomal recombinant. Mice immunized with secreted gB-1 produced HSV-1- and HSV-2-neutralizing antibodies and were protected against HSV-1 lethal, latent, and recurrent infections. Constitutive expression of secreted gB-1 in human cells may establish a system to develop diagnostic material and a subunit vaccine for HSV infections.  相似文献   

11.
During the course of investigating T cell responses to HSV among volunteers entering trials of investigational genital herpes vaccines, 6 of the 24 immunocompetent subjects with no prior history of oral/labial or genital herpes possessed HSV-specific T cell immunity but, by multiple determinants of even the most sensitive serological assays, remained seronegative to HSV-1 and -2. Of these six immune seronegative (IS; HSV-seronegative with HSV-specific T cell responses) subjects, two had transient HSV-specific T cell responses, while four had CD4(+) and CD8(+) T cell responses directed at HSV that persisted for up to 4 years. CD4(+) T cell clones were isolated that recognized and had high binding affinities to epitopes in HSV-2 tegument proteins. All six IS subjects had potential sexual exposure to an HSV-2-infected sexual partner. Oral and genital mucosal secretions were sampled and tested for the presence of infectious HSV and HSV DNA. No evidence of HSV was detected in >1500 samples obtained from these IS subjects. The identification of persistent T cell responses to HSV in seronegative subjects is a novel finding in the herpesvirus field and suggests either undetected infection or acquired immunity in the absence of infection. Understanding the basis of these acquired immune responses may be critical in developing effective vaccines for genital herpes.  相似文献   

12.
Herpes simplex virus (HSV) envelope glycoproteins are the prime targets of adaptive antiviral immunity. Previous investigation identified a protective, neutralizing, glycoprotein B1 (gB-1)-reactive monoclonal antibody (MAb B6) and localized the linear epitope recognized by the MAb to residue 84 of gB-1. Three overlapping peptides (two 20-mers and one 18-mer), together spanning amino acids 63 to 110 of the wild-type sequence of gB-1, were synthesized and analyzed for their ability to stimulate immunity which cross-reacts with HSV-1. All stimulated some level of response. Two peptides, the gB 18-mer and 20.1-mer, were recognized by MAb B6 and HSV-immune antibody but were unable to stimulate virus-neutralizing antibody or serum able to protect against zosteriform spread in vivo. The 20.2-mer peptide, however, which was not recognized by MAb B6 or HSV-generated immune antibody, stimulated the production of neutralizing antibody and serum able to protect against zosteriform spread. Immunization with all of the peptides was able to enhance viral clearance of a low dose of HSV-1 in an ear challenge model and induce antibody reactive in antibody-dependent complement-mediated lysis of HSV-1-infected cells in vitro. These results are the first report of HSV immunity induced by peptides corresponding to gB and indicate that the best immunogen, in terms of stimulating neutralizing antiserum able to protect in vivo against HSV-1, was a peptide not recognized by HSV-immune mechanisms or by the MAb used to localize it.  相似文献   

13.
Herpes virus entry mediator (HVEM) is one of two principal receptors mediating herpes simplex virus (HSV) entry into murine and human cells. It functions naturally as an immune signaling co-receptor, and may participate in enhancing or repressing immune responses depending on the natural ligand used. To investigate whether engagement of HVEM by HSV affects the in vivo response to HSV infection, we generated recombinants of HSV-2(333) that expressed wild-type gD (HSV-2/gD) or mutant gD able to bind to nectin-1 (the other principal entry receptor) but not HVEM. Replication kinetics and yields of the recombinant strains on Vero cells were indistinguishable from those of wild-type HSV-2(333). After intravaginal inoculation with mutant or wild-type virus, adult female C57BL/6 mice developed vaginal lesions and mortality in similar proportions, and mucosal viral titers were similar or lower for mutant strains at different times. Relative to HSV-2/gD, percentages of HSV-specific CD8(+) T-cells were similar or only slightly reduced after infection with the mutant strain HSV-2/gD-Δ7-15, in all tissues up to 9 days after infection. Levels of HSV-specific CD4(+) T-cells five days after infection also did not differ after infection with either strain. Levels of the cytokine IL-6 and of the chemokines CXCL9, CXCL10, and CCL4 were significantly lower in vaginal washes one day after infection with HSV-2/gD compared with HSV-2/gD-Δ7-15. We conclude that the interaction of HSV gD with HVEM may alter early innate events in the murine immune response to infection, without significantly affecting acute mortality, morbidity, or initial T-cell responses after lethal challenge.  相似文献   

14.
The frequency and fine specificity of herpes simplex virus (HSV)-reactive cytotoxic T lymphocytes (CTL) of C57BL/6 mice was investigated in limiting dilution culture. The reactivity patterns of virus-specific CTL were assayed on target cells infected with HSV type 1, strain KOS, HSV type 2, strain Mueller, and mutants of HSV-1 (KOS) antigenically deficient or altered in glycoproteins gC or gB, two of the four major HSV-1-encoded cell surface glycoprotein antigens. Most CTL clones recognized type-specific determinants on target cells infected with the immunizing HSV serotype. In addition, the majority of HSV-1-specific CTL did not cross-react with cells infected with syn LD70, a mutant of HSV-1 (KOS) deficient for the presentation of cell surface glycoprotein gC. These data are the first demonstration of the clonal specificity of HSV-1-reactive CTL, and they identify gC as the immunodominant antigen. The fine specificity of gC-specific CTL clones was analyzed on target cells infected with mutant viruses altered in the antigenic structure of gC. These mutants were selected by resistance to neutralization with monoclonal antibodies, referred to as monoclonal antibody-resistant (mar) mutants. Most mar mutations in gC did not affect recognition by the majority of CTL clones. This indicated that most epitopes recognized by CTL are distinct from those defined by antibodies. The finding, however, that one mar mutation in gC affected both CTL and antibody recognition of this antigen may help to define antigenic sites important to both humoral and cell-mediated immunity to herpesvirus infection.  相似文献   

15.
One hundred thirteen HSV-specific CD4+ T cell clones were established from the PBL of a healthy person and their functional heterogeneity was investigated. All clones proliferated in response to stimulation with HSV in the presence of autologous APC. Among those, 48 clones showed cytotoxic activity to HSV-infected autologous EBV-transformed lymphoblastoid cell line, but not to HSV-infected autologous fibroblasts, HSV-infected allogeneic cells, or K562 cells (group 1). Five clones showed cytotoxicity against HSV-infected autologous cells as well as HSV-infected allogeneic cells and K562 cells (group 2). The cytotoxicity of these clones was found to be mediated by the direct killing but not by the "innocent bystander" killing of target cells. Sixty clones showed no cytotoxic activity, however, among these, 23 revealed HLA-unrestricted and nonspecific cytotoxicity in the presence of PHA in culture (group 3), and the remaining 37 did not show any cytotoxic activity even in the presence of PHA (group 4). The cytotoxic patterns of these clones did not change in activated and resting phases, suggesting that the difference in cytotoxic ability does not depend on cell cycles. The cytotoxic activity of group 1 was inhibited by addition of anti-HLA-DR or anti-CD3 mAb to the culture, whereas these mAb had no effect on the cytotoxicity of group 2. All four groups of clones had helper activity for anti-HSV antibody production by autologous B cells. Moreover it was found that all groups of clones simultaneously produced IL-2, IL-4, and IFN-gamma after culture with APC followed by HSV Ag stimulation. The surface phenotype of all clones was uniformly CD2+, CD3+, CD4+, CD8-, CD29+, CD45RA-, but expression of Leu 8 was varied. These data therefore indicate that HSV-specific human CD4+ T cells are classified into at least four groups according to the presence and specificity of cytotoxicity, i.e., Th cells with HSV-specific and HLA-class II-restricted cytotoxicity, Th cells with HLA-unrestricted and nonspecific cytotoxicity, Th cells with lectin-dependent cytotoxicity, and Th cells without cytotoxic activity. The present finding of functional heterogeneity among virus-specific human CD4+ T cells might shed light on the pathogenesis of CD4+ T cell immunodeficiency, such as human retrovirus infections.  相似文献   

16.
Glycoproteins homologous to gB of herpes simplex virus (HSV) constitute the most highly conserved family of herpesvirus glycoproteins. All gB homologs analyzed so far have been shown to play essential roles in penetration and direct viral cell-to-cell spread. In studies aimed at assessing whether the high sequence homology is also indicative of functional homology, we analyzed the ability of the gB-homologous glycoprotein (former designation gII) of pseudorabies virus (PrV) to complement a gB- HSV type 1 (HSV-1) mutant and vice versa. The results show that a PrV gB-expressing cell line phenotypically complemented the lethal defect in gB- HSV-1 whereas reciprocal complementation of a gB- PrV mutant by HSV-1 gB was not observed.  相似文献   

17.
Three HSV type 1 (HSV-1) and HSV type 2 (HSV-2) common ("HSV-type common") and three HSV-1 specific CTL clones, which were CD3+, CD4+, CD8-, 4B4+, and 2H4-, were established. These clones proliferated in response to stimulation with HSV in the presence of autologous APC. The HSV type specificity of the proliferative response was identical with that of the cytotoxic activity of the clones. The cytotoxic activity and the proliferative response were both inhibited by addition of anti-HLA-DR mAb to the culture. After culture of these CTL clones with autologous B cells and macrophages followed by HSV Ag stimulation, anti-HSV antibody was detected in the culture supernatant. The HSV type specificity of the helper function for antibody production was identical with that of the cytotoxicity, i.e., HSV-type common clones, upon stimulation with either HSV-1, or HSV-2, and HSV-1-specific clones, upon stimulation with HSV-1 but not with HSV-2, showed helper activity for anti-HSV antibody production by autologous B cells. Moreover, it was found that these clones produced humoral factors which help autologous B cells to produce antibody. The helper factors were produced by T cell clones in an HSV-type-specific manner. These data suggest that some CD4+ T cells can simultaneously manifest both specific cytotoxicity and helper activity for Ag-specific antibody production by B cells, and that these multifunctional T cells might play an important role in protection against viral infection.  相似文献   

18.
Herpes simplex virus type 2 (HSV-2) glycoprotein B (gB-2) gene segments were expressed as recombinant proteins in Escherichia coli. gB-2 recombinant proteins were reacted with human serum immunoglobulin G (IgG) antibodies in Western immunoblot assays. Initially, samples were tested for the presence of HSV-1-specific antibodies and HSV-2-specific antibodies by using HSV-infected cell lysates as antigen targets in Western blot assays. Serum samples that contained HSV-2-specific IgG (n = 58), HSV-1-specific IgG (n = 33), or no detectable HSV antibodies (n = 31) were tested for reactivities with the gB-2 recombinant proteins. In 58 of 58 samples that contained HSV-2-specific IgG, antibodies were present that reacted strongly with a gB-2 amino-proximal segment between amino acids (aa) 18 and 75. Three of 33 serum samples that contained HSV-1- and not HSV-2-specific IgG (as defined by the HSV lysate Western blot assay) reacted with this segment. Both HSV-2 antibodies and HSV-1 antibodies reacted strongly with a carboxy-terminal gB-2 segment between aa 819 and 904; a second minor cross-reactive region was mapped to a gB-2 segment between aa 564 and 626. The gB-2 segment from aa 18 to 75 may constitute a useful reagent for the virus type-specific serodiagnosis of HSV-2 infections. Further studies will be required to determine the relative sensitivities and specificities of the assay for gB-2 aa 18 to 75, HSV gG assays, and HSV lysate Western blot assays for detecting virus type-specific antibody responses in acute and chronic HSV-2 infections.  相似文献   

19.
We studied the effect of the temporal regulation of herpes simplex virus (HSV) type 1 glycoprotein D (gD-1) expression in Ia+ epidermal cells (EC) and macrophages on virus specific immunity and protection from HSV-2 challenge. gD-1 was expressed on the surface of cells infected with a vaccinia recombinant containing gD-1 under the control of an early vaccinia virus promoter (VP176). It was not expressed in cells infected with a recombinant (VP254) in which gD-1 is controlled by a late vaccinia virus promoter. BALB/c mice immunized with both recombinants seroconverted to HSV-2 as determined by neutralization. However, HSV specific delayed type hypersensitivity (DTH) responses were significantly (p<0.025) higher in VP176 than VP254 immunized animals. Both VP176 and VP254 immunized mice were protected from severe neurological disease due to HSV-2 challenge at 14 days post immunization, but long term protection was observed only in VP176 immunized mice.  相似文献   

20.
We showed that the expression of a single protein, glycoprotein D (gD-1), specified by herpes simplex virus type 1 (HSV-1) renders cells resistant to infection by HSV but not to infection by other viruses. Mouse (LMtk-) and human (HEp-2) cell lines containing the gene for gD-1 under control of the human metallothionein promoter II expressed various levels of gD-1 constitutively and could be induced to express higher levels with heavy metal ions. Radiolabeled viruses bound equally well to gD-1-expressing and control cell lines. Adsorbed viruses were unable to penetrate cells expressing sufficient levels of gD-1, based on lack of any cytopathic effects of the challenge virus and on failure to detect either the induction of viral protein synthesis or the shutoff of host protein synthesis normally mediated by a virion-associated factor. The resistance to HSV infection conferred by gD-1 expression was not absolute and depended on several variables, including the amount of gD-1 expressed, the dosage of the challenge virus, the serotype of the challenge virus, and the properties of the cells themselves. The interference activity of gD-1 is discussed in relation to the role of gD-1 in virion infectivity and its possible role in permitting escape of progeny HSV from infected cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号