首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 437 毫秒
1.
<正>进入21世纪以来出现了多种超高分辨率荧光成像技术,打破了光学分辨率的极限,将光学分辨率提高到几十纳米的尺度,可以用来观察精细的细胞内器官的结构和位置信息,因此被广泛地应用于生物学研究中.超高分辨率荧光成像技术主要分为三大类,基于受激发射光淬灭(stimulated emission depletion,STED)技术,基于单分子开关的超高分辨率定位技术(包括光激活定位显微成像术  相似文献   

2.
全内反射荧光显微术(total internal reflection fluorescence microscopy,TIRFM)是一种灵敏、快速的单分子成像和检测技术,近年来得到迅猛发展。该技术已广泛应用于生命科学、化学、物理学等领域。本文综述了全内反射荧光显微术的原理及其在活细胞单分子检测中的应用,并对其发展前景进行了展望。  相似文献   

3.
基因表达产物蛋白质的亚细胞定位是解析基因生物学功能的重要证据之一。近年来出现的超分辨率光学成像技术已成功应用于人类和动物细胞中,预示着显微成像技术继激光共聚焦技术后的又一重要进步。由于植物细胞的特殊性和成像技术的研发取向,超分辨率光学成像技术在植物细胞蛋白质亚细胞定位的应用尚未见报道。该研究利用Delta Vision OMX显微镜技术,克服了叶绿体基粒中叶绿素自发荧光与融合蛋白荧光不易区分的缺陷,解决了受分辨率局限无法将植物细胞中蛋白质在亚细胞器内可视化精确定位的技术难题,成功地将植物蔗糖合成酶Zm SUS-SH1定位在烟草表皮细胞叶绿体基粒周围。该研究同时建立了一套基于撕片制片法的简便OMX显微镜制片方法,并针对OMX显微成像技术在植物细胞中蛋白质亚细胞定位的应用进行了讨论。  相似文献   

4.
随机光学重建显微镜(stochastic optical reconstruction microscopy,STORM)技术和受激发射损耗(stimulated emission depletion,STED)显微镜技术是近年来发展迅速的两种超分辨率荧光显微镜技术。这两种技术均提供超越传统荧光显微镜分辨率成像的功能,具有多色显像,三维成像以及活细胞内成像的潜力。在这篇综述中,我们关注两种技术荧光控制、激光强度等技术参数设定,同时结合样品制备、图像采集与处理等流程优化对比两者在分辨率、图像采集时间及具体应用中的优劣。STORM可获得更高的三维分辨率,但可能需要更长的图像采集时间。STED需要较高损耗光强度,却能在图像采集后立即生成超分辨率图像,不需要额外图像数据处理。最终,选择STORM和STED不仅取决于技术的具体应用,还取决于操作者优化各环节技术参数的能力,从而决定图像质量。  相似文献   

5.
膨胀显微成像技术(expansion microscopy,ExM)是一种新型超分辨成像技术。该技术借助可膨胀水凝胶均匀地物理放大生物样本,在常规光学成像条件下实现超分辨成像。ExM适用于细胞、组织切片等多种类型生物样本。蛋白质、核酸、脂质等生物大分子均可借助ExM进行超分辨成像。ExM可与共聚焦显微镜、光片显微镜、超高分辨显微镜联合使用,进一步提高成像分辨率。近年来,多种从基础ExM拓展而来的衍生技术进一步促进了该技术的实际应用。本文综述了ExM及其衍生技术的基本原理、ExM与不同成像技术联用的研究进展及ExM在不同类型生物样本中的应用进展,并对ExM技术的发展前景做出展望。  相似文献   

6.
激光共聚焦显微技术是一种以激光作为激发光源,通过特殊装置"针孔"来过滤离焦光线以提高光学分辨率和对比度的光学成像技术。由于大部分化石不能自发荧光,该技术在古生物学领域尚未实现大范围的应用。但若围岩能自发荧光而与化石之间具有一定衬度,或化石因含特殊成分能在特定波段激光照射下自发荧光而产生结构衬度,则可以运用激光共聚焦显微技术获得在普通光学显微镜及荧光显微镜下难以清晰观察到的信息。为推动激光共聚焦技术在古生物学领域中的应用,文中系统介绍了该技术的原理与使用方法,并以埃迪卡拉纪磷酸盐化特异埋藏的瓮安生物群微体化石为例,展示了该技术在化石成像中的若干优势。实验结果表明,瓮安生物群微体化石因富含磷灰石可自发荧光实现成像,使用激光共聚焦显微成像技术观察瓮安生物群化石薄片不仅可以获得较好衬度,而且还能提高成像的分辨率和清晰度。此外,在化石薄片的厚度范围内还可以实现化石结构三维重建。  相似文献   

7.
利用从香菇菌丝体中克隆的启动子片段gpd-Le(613bp)和ras-Le(715bp)分别连接于报告基因gfp(绿色荧光蛋白基因)的上游,构建了启动子功能活性检测表达质粒pLg-gfp和pLr-gfp。采用PEG介导法把表达质粒pLg-gfp和pLr-gfp分别与辅助质粒pCc1001(含有trp1基因)共转化进色氨酸营养缺陷型的灰盖鬼伞粉孢子的原生质体中。经过选择培养基筛选、假定转化子的分子鉴定以及GFP荧光检测。结果表明:香菇gpd-Le启动子在灰盖鬼伞的菌丝中具有较强驱动外源gfp基因表达的活性,在荧光显微镜和共聚焦显微镜下观察到gfp基因表达的绿色荧光。而香菇ras-Le启动子没有检测到有驱动外源gfp基因表达的活性。  相似文献   

8.
利用从香菇菌丝体中克隆的启动子片段gpd-Le(613bp)和ras-Le(715bp)分别连接于报告基因gfp(绿色荧光蛋白基因)的上游,构建了启动子功能活性检测表达质粒pLg-gfp和pLr-gfp。采用PEG介导法把表达质粒pLg-gfp和pLr-gfp分别与辅助质粒pCc1001(含有trp1基因)共转化进色氨酸营养缺陷型的灰盖鬼伞粉孢子的原生质体中。经过选择培养基筛选、假定转化子的分子鉴定以及GFP荧光检测。结果表明:香菇gpd-Le启动子在灰盖鬼伞的菌丝中具有较强驱动外源gfp基因表达的活性,在荧光显微镜和共聚焦显微镜下观察到gfp基因表达的绿色荧光。而香菇ras-Le启动子没有检测到有驱动外源gfp基因表达的活性。  相似文献   

9.
目的:研究大电导、钙离子和电压激活的钾离子通道(BK通道)在HEK293细胞膜上的单分子定位及其总体空间分布情况。方法:分别用mEos2、Dronpa等荧光蛋白标记BK通道的α亚基和辅助性β2亚基,将这些质粒在HEK293细胞内瞬时转染以表达通道蛋白,然后用激光共聚焦荧光显微成像、全内反射荧光显微成像、光敏定位荧光成像等技术观察BK通道的亚细胞定位及单分子分布,并用电生理实验技术检测荧光蛋白对BK通道有影响。结果:激光共聚焦荧光显微成像和全内反射荧光显微成像技术只能在亚细胞水平定位通道蛋白,BK通道在细胞膜上聚集并形成不规则的蛋白簇,它的仅亚基和β2亚基在细胞膜上完全共定位;光敏定位荧光成像技术成功定位BK通道蛋白簇里面的单分子,虽然α和β2亚基紧紧靠在一起,它们之间依然存在空间距离;BK通道的质膜表达和功能特性不受荧光蛋白的影响。结论:BK通道蛋白簇里面包含大量的α和β2亚基的蛋白单分子,它们紧密地聚集在一起,但是并没有完全共定位,在分子水平上揭示了BK通道α和p亚基功能耦合的结构基础,为以后研究大分子蛋白质间的相互作用机制提供了很好的分子模型,光敏定位荧光成像技术作为一种全新的单分子荧光成像手段,在基因表达、信号通路、蛋白质相互作用等许多重要生命活动的研究中发挥重要作用。  相似文献   

10.
摘要目的:研究大电导、钙离子和电压激活的钾离子通道(BK通道)在HEK293 细胞膜上的单分子定位及其总体空间分布情况。 方法:分别用mEos2、Dronpa 等荧光蛋白标记BK通道的α亚基和辅助性β2 亚基,将这些质粒在HEK293 细胞内瞬时转染以表 达通道蛋白,然后用激光共聚焦荧光显微成像、全内反射荧光显微成像、光敏定位荧光成像等技术观察BK通道的亚细胞定位及 单分子分布,并用电生理实验技术检测荧光蛋白对BK通道有影响。结果:激光共聚焦荧光显微成像和全内反射荧光显微成像技 术只能在亚细胞水平定位通道蛋白,BK 通道在细胞膜上聚集并形成不规则的蛋白簇,它的α亚基和β2 亚基在细胞膜上完全共 定位;光敏定位荧光成像技术成功定位BK通道蛋白簇里面的单分子,虽然α和β2 亚基紧紧靠在一起,它们之间依然存在空间 距离;BK通道的质膜表达和功能特性不受荧光蛋白的影响。结论:BK通道蛋白簇里面包含大量的α和β2 亚基的蛋白单分子, 它们紧密地聚集在一起,但是并没有完全共定位,在分子水平上揭示了BK通道α和β亚基功能耦合的结构基础,为以后研究大 分子蛋白质间的相互作用机制提供了很好的分子模型,光敏定位荧光成像技术作为一种全新的单分子荧光成像手段,在基因表 达、信号通路、蛋白质相互作用等许多重要生命活动的研究中发挥重要作用。  相似文献   

11.
Super-resolution microscopy is a series of imaging techniques that bypass the diffraction limit of resolution. Since the 1990s, optical approaches, such as single-molecular localization microscopy, have allowed us to visualize biological samples from the sub-organelle to the molecular level. Recently, a chemical approach called expansion microscopy emerged as a new trend in super-resolution microscopy. It physically enlarges cells and tissues, which leads to an increase in the effective resolution of any microscope by the length expansion factor. Compared with optical approaches, expansion microscopy has a lower cost and higher imaging depth but requires a more complex procedure. The integration of expansion microscopy and advanced microscopes significantly pushed forward the boundary of super-resolution microscopy. This review covers the current state of the art in expansion microscopy, including the latest methods and their applications, as well as challenges and opportunities for future research.  相似文献   

12.
冷冻超分辨光电融合成像技术近年来发展迅速,该技术结合了荧光显微镜特异性标记与冷冻电镜超高分辨率的优势,成为细胞原位结构研究的新手段,有望发展成为下一代成像技术.本文从发展背景、应用领域等几个方面,介绍了冷冻超分辨光电融合成像技术的概况及未来发展前景.  相似文献   

13.
Understanding the highly plastic nature of neurons requires the dynamic visualization of their molecular and cellular organization in a native context. However, due to the limited resolution of standard light microscopy, many of the structural specializations of neurons cannot be resolved. A recent revolution in light microscopy has given rise to several super-resolution light microscopy methods yielding 2-10-fold higher resolution than conventional microscopy. We here describe the principles behind these techniques as well as their application to the analysis of the molecular architecture of the synapse. Furthermore, we discuss the potential for continued development of super-resolution microscopy as necessary for live imaging of neuronal structure and function in the brain.  相似文献   

14.
Fluorescence microscopy has become an essential tool for biological research because it can be minimally invasive, acquire data rapidly, and target molecules of interest with specific labeling strategies. However, the diffraction-limited spatial resolution, which is classically limited to about 200 nm in the lateral direction and about 500 nm in the axial direction, hampers its application to identify delicate details of subcellular structure. Extensive efforts have been made to break diffraction limit for obtaining high-resolution imaging of a biological specimen. Various methods capable of obtaining super-resolution images with a resolution of tens of nanometers are currently available. These super-resolution techniques can be generally divided into three primary classes: (1) patterned illumination- based super-resolution imaging, which employs spatially and temporally modulated illumination light to reconstruct sub-diffraction structures; (2) single-molecule localization-based super-resolution imaging, which localizes the profile center of each individual fluo- rophore at subdiffraction precision; (3) bleaching/blinking-based super-resolution imaging. These super-resolution techniques have been utilized in different biological fields and provide novel insights into several new aspects of life science. Given unique technical merits and commercial availability of super-resolution fluorescence microscope, increasing applications of this powerful technique in life science can be expected.  相似文献   

15.
Super-resolution microscopy encompasses a suite of cutting edge microscopy methods able to surpass the resolution limits of light microscopy. The recent commercial availability of super-resolution microscopy is advancing many fields of biology. In this crystal ball forward look, we briefly examine the perspectives of combining super-resolution microscopy and fluorescence in situ hybridization (FISH). We strongly believe, based on first evidence presented here, that using super-resolution microscopy in environmental microbiology has the potential to reshape the way we analyze the results obtained with FISH, by improving both the localization and quantification of target molecules.  相似文献   

16.
超分辨显微成像技术(super-resolution microscopy,SRM)可以绕过光学衍射极限对成像分辨率的限制,让以前观察不到的纳米级结构实现可视化,这一重大研究进展推动了现代生命科学和生物医学研究的进步与发展. 细胞是生物体的基本组成单位,对活细胞内部的细微结构和动力学过程进行研究是掌握生命本质必不可少的途径. 但由于成像原理或条件的限制,早期的SRM技术在活细胞成像应用方面受到了不同程度的限制. 近几年来,随着SRM和相关技术的发展,SRM在活细胞成像研究中的应用也越来越多. 本文简要介绍目前常见的几种SRM技术的基本原理和特点,并在此基础上着重阐述它们在活细胞成像应用中所取得的最新研究进展和发展方向.  相似文献   

17.
Imaging of biological samples using fluorescence microscopy has advanced substantially with new technologies to overcome the resolution barrier of the diffraction of light allowing super-resolution of live samples. There are currently three main types of super-resolution techniques – stimulated emission depletion (STED), single-molecule localization microscopy (including techniques such as PALM, STORM, and GDSIM), and structured illumination microscopy (SIM). While STED and single-molecule localization techniques show the largest increases in resolution, they have been slower to offer increased speeds of image acquisition. Three-dimensional SIM (3D-SIM) is a wide-field fluorescence microscopy technique that offers a number of advantages over both single-molecule localization and STED. Resolution is improved, with typical lateral and axial resolutions of 110 and 280 nm, respectively and depth of sampling of up to 30 µm from the coverslip, allowing for imaging of whole cells. Recent advancements (fast 3D-SIM) in the technology increasing the capture rate of raw images allows for fast capture of biological processes occurring in seconds, while significantly reducing photo-toxicity and photobleaching. Here we describe the use of one such method to image bacterial cells harboring the fluorescently-labelled cytokinetic FtsZ protein to show how cells are analyzed and the type of unique information that this technique can provide.  相似文献   

18.
Visualization of subcellular structures and their temporal evolution is of utmost importance to understand a vast range of biological processes. Optical microscopy is the method of choice for imaging live cells and tissues; it is minimally invasive, so processes can be observed over extended periods of time without generating artifacts due to intense light irradiation. The use of fluorescence microscopy is advantageous because biomolecules or supramolecular structures of interest can be labeled specifically with fluorophores, so the images reveal information on processes involving only the labeled molecules. The key restriction of optical microscopy is its moderate resolution, which is limited to about half the wavelength of light (~200 nm) due to fundamental physical laws governing wave optics. Consequently, molecular processes taking place at spatial scales between 1 and 100 nm cannot be studied by regular optical microscopy. In recent years, however, a variety of super-resolution fluorescence microscopy techniques have been developed that circumvent the resolution limitation. Here, we present a brief overview of these techniques and their application to cellular biophysics.  相似文献   

19.
Live-cell fluorescence light microscopy has emerged as an important tool in the study of cellular biology. The development of fluorescent markers in parallel with super-resolution imaging systems has pushed light microscopy into the realm of molecular visualization at the nanometer scale. Resolutions previously only attained with electron microscopes are now within the grasp of light microscopes. However, until recently, live-cell imaging approaches have eluded super-resolution microscopy, hampering it from reaching its full potential for revealing the dynamic interactions in biology occurring at the single molecule level. Here we examine recent advances in the super-resolution imaging of living cells by reviewing recent breakthroughs in single molecule localization microscopy methods such as PALM and STORM to achieve this important goal.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号