首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
1. The bottom‐up factors that determine parasitoid host use are an important area of research in insect ecology. Host size is likely to be a primary cue for foraging parasitoids due to its potential influence on offspring development time, the risk of multiparasitism, and host immunocompetence. Host size is mediated in part by host‐plant traits that influence herbivore growth and potentially affect a herbivore's quality as a host for parasitoids. 2. Here, we tested how caterpillar host size and host plant species influence adult fly parasitoid size and whether host size influences wasp parasitoid sex allocation. We measured the hind tibia lengths and determined the sex of wasp and fly parasitoids reared from 11 common host species of polyphagous caterpillars (Limacodidae) that were in turn reared on foliage of seven different host plant species. 3. We also tested how host caterpillar species, host caterpillar size, and host and parasitoid phenology affect how the parasitoid community partitions host resources. We found evidence that parasitoids primarily partition their shared hosts based on size, but not by host species or phenology. One index of specialisation (d′) supports our observation that these parasitoids are quite generalised within the Limacodidae. In general, wasps were reared from caterpillars collected in early instars, while flies were reared from caterpillars collected in late instars. Furthermore, for at least one species of solitary wasp, host size influenced sex allocation of offspring by ovipositing females. 4. Host‐plant quality indirectly affected the size attained by a tachinid fly parasitoid through its direct effects on the size and performance of the caterpillar host. The host plants that resulted in the highest caterpillar host performance in the absence of enemies also yielded the largest parasitoid flies, which suggests that host plant quality can cascade up to influence the third trophic level.  相似文献   

2.
1. Parasitoids are known to utilise learning of herbivore‐induced plant volatiles (HIPVs) when foraging for their herbivorous host. In natural situations these hosts share food plants with other, non‐suitable herbivores (non‐hosts). Simultaneous infestation of plants by hosts and non‐hosts has been found to result in induction of HIPVs that differ from host‐infested plants. Each non‐host herbivore may have different effects on HIPVs when sharing the food plant with hosts, and thus parasitoids may learn that plants with a specific non‐host herbivore also contain the host. 2. This study investigated the adaptive nature of learning by a foraging parasitoid that had acquired oviposition experience on a plant infested with both hosts and different non‐hosts in the laboratory and in semi‐field experiments. 3. In two‐choice preference tests, the parasitoid Cotesia glomerata shifted its preference towards HIPVs of a plant–host–non‐host complex previously associated with an oviposition experience. It could, indeed, learn that the presence of its host is associated with HIPVs induced by simultaneous feeding of its host Pieris brassicae and either the non‐host caterpillar Mamestra brassicae or the non‐host aphid Myzus persicae. However, the learned preference found in the laboratory did not translate into parasitisation preferences for hosts accompanying non‐host caterpillars or aphids in a semi‐field situation. 4. This paper discusses the importance of learning in parasitoid foraging, and debates why observed learned preferences for HIPVs in the laboratory may cancel out under some field experimental conditions.  相似文献   

3.
Oviposition-experienced females of Opius dissitus Muesebeck, a braconid parasitoid of Liriomyza sativaeBlanchard, preferentially landed on leafminer-infested rather than uninfested lima bean (Phaseolus lunatus L.) plants in a flight tunnel assay. Both naive and oviposition-experiencedparasitoids responded strongly to odors of infested lima bean plants in a four-arm olfactometer in comparison with odors of uninfested plants, suggesting that volatile semiochemicals are used in host location. Parasitoids with an oviposition experience on lima bean (lima-experienced) spent significantly more time in the infested odor than naive individuals, however, eggplant-experienced wasps did not spend significantly more time in the infested odor field than naive wasps. When parasitoids reared on leafminers in lima bean were provided a choice between the odor of infested lima bean and the odor of infested eggplant or cotton, naive and lima-experienced wasps preferred infested lima odor. An oviposition experience on the other plant species resulted in a dramatic shift in preference. It was concluded that the experience effect was due, at least in part, to associative learning, as has been reported for other parasitoids. The parasitoids may perceive unconditioned stimuli during host contact and oviposition on an infested leaf and may associate those stimuli with volatile semiochemicals emanating from the leaf or host. Subsequently, the volatiles associated with the presence of hosts are used in directing the search for hosts.  相似文献   

4.
In natural populations of insect herbivores, genetic differentiation is likely to occur due to variation in host plant utilization and selection by the local community of organisms with which they interact. In parasitoids, engaging in intimate associations with their host during immature development, local variation may exist in host quality for parasitoid development. We compared the development of a gregarious endoparasitoid, Cotesia glomerata L. (Hymenoptera: Braconidae), collected in The Netherlands, in three strains and three caterpillar instars (L1–L3) of its main host, Pieris brassicae L. (Lepidoptera: Pieridae). Hosts had been collected in The Netherlands and France, and were reared in the laboratory for one generation. We also used an established Dutch laboratory strain that had not been exposed to parasitoids for at least 24 generations. Parasitoid survival to adulthood was inversely correlated with host instar at parasitism. Adult parasitoid body mass was largest when hosts were parasitized as L1 and smallest when hosts were parasitized as L3, whereas egg‐to‐adult development time was quickest on L3 hosts and slowest on L1 hosts. Higher survival and faster development of C. glomerata on French L2 hosts also showed that there is variation in host‐instar‐related suitability. Many L2 and most L3 caterpillars that were parasitized exhibited signs of pathogen infection and perished within a few days of parasitism, whereas this never happened when hosts were parasitized as L1 or in non‐parasitized control caterpillars. Our results reveal that, irrespective of the host strain, L1 hosts are optimally synchronized with C. glomerata development. By contrast, the high precocious mortality of L3 larvae may be due to stress‐induced regulation by the parasitoid in order to ‘force’ its developmental program into synchrony with the developing parasitoid larvae. Our results underscore a potentially important role played by pathogens in mediating herbivore–parasitoid interactions that are host‐instar‐dependent in their expression.  相似文献   

5.
Even for parasitoids with a wide host range, not all host species are equally suitable, and host quality often depends on the plant the host feeds on. We compared oviposition choice and offspring performance of a generalist pupal parasitoid, Pteromalus apum (Retzius) (Hymenoptera: Pteromalidae), on two congeneric hosts reared on two plant species under field and laboratory conditions. The plants contain defensive iridoid glycosides that are sequestered by the hosts. Sequestration at the pupal stage differed little between host species and, although the concentrations of iridoid glycosides in the two plant species differ, there was no effect of diet on the sequestration by host pupae. The rate of successful parasitism differed between host species, depending on the conditions they were presented in. In the field, where plant‐associated cues are present, the parasitoid used Melitaea cinxia (L.) over Melitaea athalia (Rottemburg) (Lepidoptera: Nymphalidae), whereas more M. athalia were parasitised in simplified laboratory conditions. In the field, brood size, which is partially determined by rate of superparasitism, depended on both host and plant species. There was little variation in other aspects of offspring performance related to host or plant species, indicating that the two host plants are of equal quality for the hosts, and the hosts are of equal quality for the parasitoids. Corresponding to this, we found no evidence for associative learning by the parasitoid based on their natal host, so with respect to these host species they are truly generalist in their foraging behaviour.  相似文献   

6.
Tropical plants are often more resistant to insects than temperate plants due to evolution of robust defenses to cope with a more constant insect threat. Coconut [Cocos nucifera L. (Arecaceae)] has very few chewing‐type leaf feeding insect pests and was tested for feeding suitability against two generalist leaf feeding caterpillar species, corn earworm, Helicoverpa zea (Boddie), and fall armyworm, Spodoptera frugiperda (J.E. Smith) (both Lepidoptera: Noctuidae). Feeding on leaf tissues from the most recently expanded leaves of a coconut variety caused significant mortality and reduced growth rates (as indicated by survivor weights) of S. frugiperda and H. zea compared to when they fed on leaves from a typical host, maize [Zea mays L. (Poaceae)], or the standard artificial diet. Proteins or other polymers did not appear to be responsible for the bioactivity noted against the caterpillars. Components responsible for activity were acetone extractable and separable by thin layer chromatography. Extracts from multiple areas of the thin layer chromatography (TLC) plates caused significant reductions in growth rates of S. frugiperda. The most bioactive TLC‐separated component, identified as pheophytin a, caused oxidative browning of test diets, suggesting that cytotoxicity of reactive oxygen species is a likely mode of action against H. zea and S. frugiperda.  相似文献   

7.
Koinobiont parasitoids develop in hosts that continue feeding and growing during the course of parasitism. Here, we compared development of a solitary koinobiont endoparasitoid, Meteorus pulchricornis Westmael (Hymenoptera: Braconidae), in second (L2) and fourth (L4) instars of three host species that are closely related (Lepidoptera: Noctuidae) but which exhibit large variation in growth potential. Two hosts, Mamestra brassicae L. and Spodoptera littoralis Boisduval, may reach 1 g or more when the caterpillars are fully mature, whereas Spodoptera exigua Hübner is much smaller with mature caterpillars rarely exceeding 200 mg. Parasitoid survival (to pupation) in the two host instars was much higher on the larger hosts than on S. exigua. However, other fitness correlates in M. pulchricornis were very similar in the three host species. Development time was fairly uniform in L2 and L4 hosts of the three host species, whereas wasps were larger in L4 than in L2 hosts. However, M. pulchricornis developmentally arrested each of the hosts differently. The mass of dying L2 and L4 hosts after parasitoid larval egression (i.e., when they emerge from the dying caterpillar) varied significantly, with S. littoralis being by far the largest and S. exigua the smallest. These results reveal that M. pulchricornis is able to adjust its own development in response to species‐specific differences in host resources.  相似文献   

8.
Abstract 1 Native natural enemies have the potential to control fall armyworm Spodoptera frugiperda (Smith) in tropical maize grown in Mexico, where this insect pest causes severe economic losses to farmers. It has been proposed that enhancing herbivore‐induced volatile emissions in maize plants may help to increase the effectiveness of natural enemies, which use these volatiles to locate their prey. This will only be of immediate benefit to farmers if the activity of the natural enemies results in a direct reduction in herbivory. Here we report on field surveys for the most common natural enemies in a tropical maize‐growing region in Mexico and the potential effects of these enemies on herbivory by fall armyworm. 2 Caterpillars were collected in maize fields near Poza Rica in the state of Veracruz during January and February 1999, 2000 and 2001. Plants were either naturally infested by S. frugiperda, or artificially infested with laboratory‐reared larvae. Ten species of parasitoids emerged from the collected larvae and eight species of predators that are known to feed on larvae and eggs were observed on the plants. Campoletis sonorensis (Cameron) (Hymenoptera: Ichneumonidae) was the dominant parasitoid species, in 1999 and 2001. 3 Of the nine larval parasitoids collected, six (all solitary) are known to reduce herbivory, whereas one causes the host to eat more (for two species this is not known). This implies that enhancing the effectiveness of solitary endoparasitoids may benefit subsistence farmers in developing countries by immediately reducing herbivory. The overall benefit for the plant resulting from parasitoid activity also has important implications for the evolutionary role of parasitoids in contributing to selection pressures that shape indirect defences in plants.  相似文献   

9.
Natural enemies of herbivores function in a multitrophic context, and their performance is directly or indirectly influenced by herbivores and their host plants. Very little is known about tritrophic interactions between host plants, pests and their parasitoids, particularly when the host plants are under any stress. Herbivores and their natural enemies’ response to plants under stress are diverse and variable. Therefore, in this study we investigated how diamondback moth, Plutella xylostella (L.), reared on water‐stressed host plants (Brassica napus L. and Sinapis alba L.) influenced the development of its larval parasitoid, Diadegma insulare (Cresson). No significant differences were observed in development of Pxylostella when reared on water‐stressed host plants. However, all results indicated that water stress had a strong effect on developmental parameters of D. insulare. Development of D. insulare was delayed when the parasitoid fed on P. xylostella, reared on stressed host plants. Egg to adult development of D. insulare was faster on non‐stressed B. napus than non‐stressed S. alba followed by stressed B. napus and S. alba. Female parasitoids were heavier on non‐stressed host plants than stressed counterparts. Furthermore, the parasitoid lived significantly longer on stressed B. napus. However, body size was not affected by water treatment. Most host plant parameters measured were significantly lower for water‐stressed than non‐stressed treatments. Results suggest that development of this important and effective P. xylostella parasitoid was influenced by both water stress and host plant species.  相似文献   

10.
It is well known that parasitoids are attracted to volatiles emitted by host‐damaged plants; however, this tritrophic interaction may change if plants are attacked by more than one herbivore species. The larval parasitoid Cotesia flavipesCameron (Hymenoptera: Braconidae) has been used intensively in Brazil to control the sugarcane borer, Diatraea saccharalisFabricius (Lepidoptera: Pyralidae) in sugarcane crops, where Spodoptera frugiperda (JE Smith) (Lepidoptera: Noctuidae), a non‐stemborer lepidopteran, is also a pest. Here, we investigated the ability of C. flavipes to discriminate between an unsuitable host (S. frugiperda) and a suitable host (D. saccharalis) based on herbivore‐induced plant volatiles (HIPVs) emitted by sugarcane, and whether multiple herbivory (D. saccharalis feeding on stalk + S. frugiperda feeding on leaves) in sugarcane affected the attractiveness of HIPVs to C. flavipes. Olfactometer assays indicated that volatiles of host and non‐host‐damaged plants were attractive to C. flavipes. Even though host‐ and non‐host‐damaged plants emitted considerably different volatile blends, neither naïve nor experienced wasps discriminated suitable and unsuitable hosts by means of HIPVs emitted by sugarcane. With regard to multiple herbivory, wasps innately preferred the odor blend emitted by sugarcane upon non‐host + host herbivory over host‐only damaged plants. Multiple herbivory caused a suppression of some volatiles relative to non‐host‐damaged sugarcane that may have resulted from the unaltered levels of jasmonic acid in host‐damaged plants, or from reduced palatability of host‐damaged plants to S. frugiperda. In conclusion, our study showed that C. flavipes responds to a wide range of plant volatile blends, and does not discriminate host from non‐host and non‐stemborer caterpillars based on HIPVs emitted from sugarcane. Moreover, we showed that multiple herbivory by the sugarcane borer and fall armyworm increases the attractiveness of sugarcane plants to the parasitoids.  相似文献   

11.
The foraging behaviour of the parasitoid wasp Neotypus melanocephalus and factors affecting parasitism at the population level were studied. This specialised parasitoid attacks caterpillars of the butterfly Maculinea nausithous, which sequentially feed on the plant Sanguisorba officinalis and specific red Myrmica ants. Among M. nausithous populations, there is considerable variation in caterpillar densities. At low M. nausithous densities, foraging might be time consuming for N. melanocephalus. High host densities may not always be advantageous to foraging parasitoids due to the caterpillars’ frequent overexploitation of ant resources and subsequent density-dependent mortality. In order to disperse progeny, we hypothesised that N. melanocephalus should search in a non-random way at the level of the micro-habitat, i.e., single flower heads of S. officinalis. Our analysis of 32 natural populations in the Upper Rhine valley in Germany did not show a density-dependent relationship between M. nausithous caterpillars and parasitism. Furthermore, habitat parameters like patch size and density of the host's food plant did not affect the parasitism rate. Foraging N. melanocephalus females preferred to search on large flower heads. They probed host-occupied flower heads only, visiting non-host-exploited flower heads only briefly. Time spent on a flower head was independent of the number of caterpillars per flower head. This study indicates that N. melanocephalus increases its foraging efficiency by preferring large flower heads that were previously shown to contain more host caterpillars than small flower heads. Furthermore, oviposition increases the likelihood of continuing to search on a flower head, which is an adaptive strategy for parasitoids foraging for aggregated hosts. However, many host-occupied flower heads were not probed by N. melanocephalus. We discuss the possibility that temporal host refuges of M. nausithous caterpillars might contribute to heterogeneity of parasitism, and why spreading offspring might constitute a suitable strategy for a parasitoid of an ant-parasitic butterfly.  相似文献   

12.
Determining the impact of genetically modified (GM) crops on beneficial organisms is an important aspect of the environmental risk assessment of GM crops. In the present study, the impact of Bt maize expressing Cry1Ab on the development and behaviour of the parasitoid Campoletis sonorensis was compared to individuals reared on hosts fed conventionally bred plants partially resistant to the European corn borer (Ostrinia nubilalis Hübner) and on susceptible maize hybrids. Adult parasitoids reared on Bt maize-fed Spodoptera frugiperda larvae were significantly smaller (15–30%) than those reared in hosts fed either of the conventional maize hybrids. The magnitude of this effect was dependent on the size of the host at oviposition and its subsequent growth rate. The development time of C. sonorensis was not affected by the maize treatment. In choice tests, female parasitoids displayed no preference for hosts fed a specific maize hybrid. No Cry1Ab was detected within adult parasitoids.  相似文献   

13.
The diet breadth of insect herbivores influences their response to variation in plant quality, and these bitrophic interactions have implications for the higher‐level trophic interactions between herbivores and their natural enemies. In this comparative study, we examined the role of host plant species and plant secondary chemistry on the potential interactions between three species of nymphaline caterpillars and their natural enemies. The caterpillar species (all Lepidoptera: Nymphalidae) varied in their degree of specialization: the buckeye, Junonia coenia Hübner, is a specialist on plants that contain iridoid glycosides (IGs); the white peacock, Anartia jatrophae L., feeds on plants in five families, some of which contain IGs and some of which do not; and the painted lady, Vanessa cardui L., is a generalist, feeding on plants in at least 15 families. Each species was reared on leaves of an introduced host plant, Plantago lanceolata L. (Plantaginaceae), which produces two IGs, aucubin and catalpol, and on another plant species that is a common host plant. These alternate host plants were Plantago major L. (Plantaginaceae) for J. coenia, Bacopa monnieri (L.) Pennell (Plantaginaceae) for A. jatrophae, and Malva parviflora L. (Malvaceae) for V. cardui. We examined growth, sequestration, and immune response of these caterpillars on the different host plant species. Junonia coenia developed more rapidly and sequestered higher IG concentrations when reared on P. lanceolata, whereas both other species grew more slowly on P. lanceolata. Host plant did not influence immune response of J. coenia or A. jatrophae, whereas V. cardui immune response was weaker when reared on P. lanceolata. Junonia coenia was most efficient at IG sequestration and A. jatrophae was least efficient, when all three species were reared on P. lanceolata. These results indicate that diet breadth may play an important role in structuring tritrophic interactions, and this role should be further explored.  相似文献   

14.
1. Temperature strongly influences the rates of physiological processes in insects, including the herbivore Manduca sexta and its larval endoparasitoid Cotesia congregata. Parasitisation by C. congregata decreases the growth and consumption of food by larval M. sexta. However, the effects of temperature on parasitised caterpillars and the developing wasp larvae are largely unknown. 2. In this study, parasitised and unparasitised caterpillars were reared at three constant temperatures (20, 25 and 30 °C) throughout larval development. Caterpillar mass gain and consumption were monitored daily until wandering (unparasitised control group) or wasp emergence (parasitised group) was observed. Development time and survival to emergence were measured as metrics of parasitoid performance. 3. Parasitised M. sexta developed more slowly than unparasitised controls, but had similar cumulative consumption until the terminal instar. Parasitised caterpillars with relatively large parasitoid loads had higher rates of consumption and growth than those with smaller loads. Both temperature and parasitoid load strongly affected wasp success. Mean development time to wasp emergence increased with low temperatures and with large loads. The combination of warm temperature and large parasitoid loads greatly reduced wasp survival. 4. These results demonstrate the interactive effects of rearing temperature and parasitisation on host consumption and growth rates throughout larval development. In addition, wasp performance was affected by the interaction of temperature and parasitoid load size. High temperatures alter the dynamics of the interaction between the parasitoid and its caterpillar host, which could have far-reaching impacts as the global temperatures continue to rise.  相似文献   

15.
Plant volatiles function as important signals for herbivores, parasitoids, predators, and neighboring plants. Herbivore attack can dramatically increase plant volatile emissions in many species. However, plants do not only react to herbivore-inflicted damage, but also already start adjusting their metabolism upon egg deposition by insects. Several studies have found evidence that egg deposition itself can induce the release of volatiles, but little is known about the effects of oviposition on the volatiles released in response to subsequent herbivory. To study this we measured the effect of oviposition by Spodoptera frugiperda (J.E. Smith) (Lepidoptera: Noctuidae) moths on constitutive and herbivore-induced volatiles in maize (Zea mays L.). Results demonstrate that egg deposition reduces the constitutive emission of volatiles and suppresses the typical burst of inducible volatiles following mechanical damage and application of caterpillar regurgitant, a treatment that mimics herbivory. We discuss the possible mechanisms responsible for reducing the plant’s signaling capacity triggered by S. frugiperda oviposition and how suppression of volatile organic compounds can influence the interaction between the plant, the herbivore, and other organisms in its environment. Future studies should consider oviposition as a potential modulator of plant responses to insect herbivores.  相似文献   

16.
Campoletis sonorensis is an important native parasitoid of herbivore Spodoptera frugiperda that produces significant losses in maize agroecosystems. Here we evaluated the influence of C. sonorensis male presence during parasitization and the influence of S. frugiperda larvae diet (native maize, hybrid maize, the castorbean and a semisynthetic diet) on the performance of the parasitoid. The sex ratio of C. sonorensis progeny and the percentage of parasitism were similar both with and without the presence of the male. Larvae of S. frugiperda fed on native maize were parasitized to a greater extent. The semisynthetic diet produced larger C. sonorensis cocoons. No significant differences were found in the longevity of the descendants, the duration of the developmental stages of C. sonorensis or the mortality of the parasitized larvae of S. frugiperda on the different diet treatments. To ensure optimal reproduction of C. sonorensis in the laboratory, we recommend parasitization without the male, feeding S. frugiperda with native maize.  相似文献   

17.
Fall armyworm (FAW), Spodoptera frugiperda (J.E. Smith), is a major polyphagous pest with the potential to seriously damage various crops. A better understanding of FAW's performance on different hosts may help to predict which plants will be attacked when the preferred host is absent, and facilitate the development of effective pest management practices. We compared the larval performance of FAW fed on maize with that of FAW fed on potato and tobacco, which are important crops in China, using an age-stage two-sex life table and adult female oviposition preference experiments. In cage experiments with potato, tobacco, or maize as the host, FAW reared on maize exhibited the strongest performance with shorter developmental time in the larval stage, longer longevity, and a higher reproductive rate in adults. Females oviposited on maize in preference to potato or tobacco. Compared with larvae fed on maize, those fed on potato and tobacco exhibited significantly lower survival, with only 31.61% and 8.13% developing to the adult stage, respectively. Several life table parameters, including the mean generation time (T), net reproductive rate (R0), finite rate of increase (λ), and intrinsic rate of natural increase (r) were negatively affected in FAW fed on potato and tobacco. Our results support the preference–performance hypothesis, that is, that herbivore females maximize fitness by choosing host plants associated with strong larval performance. Although larvae and adults performed poorly on potato and tobacco, their offspring will be capable of establishing populations on them, posing a potential threat to these crops in China.  相似文献   

18.
Understanding of the ecological factors that shape intraspecific variation of insect microbiota in natural populations is relatively poor. In Lepidopteran caterpillars, microbiota is assumed to be mainly composed of transient bacterial symbionts acquired from the host plant. We sampled Glanville fritillary (Melitaea cinxia) caterpillars from natural populations to describe their gut microbiome and to identify potential ecological factors that determine its structure. Our results demonstrate high variability of microbiota composition even among caterpillars that shared the same host plant individual and most likely the same genetic background. We observed that the caterpillars harboured microbial classes that varied among individuals and alternated between two distinct communities (one composed of mainly Enterobacteriaceae and another with more variable microbiota community). Even though the general structure of the microbiota was not attributed to the measured ecological factors, we found that phylogenetically similar microbiota showed corresponding responses to the sex and the parasitoid infection of the caterpillar and to those of the host plant's microbial and chemical composition. Our results indicate high among-individual variability in the microbiota of the M. cinxia caterpillar and contradict previous findings that the host plant is the major driver of the microbiota communities of insect herbivores.  相似文献   

19.
Plants are able to activate direct and indirect defences against egg deposition by herbivorous insects. A known indirect defence is the production of synomones to help egg‐ and egg‐larval parasitoids to locate their hosts. The wasp Ascogaster reticulata Watanabe (Hymenoptera: Braconidae) is a solitary egg‐larval parasitoid of the moth Adoxophyes honmai Yasuda (Lepidoptera: Tortricidae), which lays eggs and feeds as caterpillars on the leaves of the tea plant Camellia sinensis (L.) Kuntze (Theaceae). Here, we studied whether or not oviposition by A. honmai induces tea plants to produce synomones that help the parasitoid to locate its host. An olfactometer bioassay suggested that synomones produced by the infested plants did not attract the parasitoid over a short range. However, a contact bioassay showed that tea leaves were induced to arrest the parasitoid 24 h after egg deposition and remained induced until the host‐egg masses were no more attractive to the parasitoids. Wing scales and deposits of adult moths and the contents of the egg masses did not induce the tea leaves to arrest the parasitoid, but the contents of the female moth's reproductive system did. Synomone induction was systemic: uninfested leaves in the vicinity of egg‐laden leaves also arrested the parasitoid.  相似文献   

20.
The optimal oviposition theory predicts that oviposition preferences of phytophagous insects should correlate with host suitability for their offspring. As plant host suitability depends not only on its quality as food, but also on its provision of enemy‐free space, we examined the relationship between adult host preference and offspring performance for the leafminer Liriomyza huidobrensis (Blanchard) (Diptera: Agromyzidae) on various host plants, considering also the interaction with natural enemies. Preference and offspring performance were assessed through observational field data and laboratory experiments in central Argentina. Field data suggested a positive host preference – performance linkage, as the leafminer attained larger body size on the crops where it was more abundant. Laboratory trials supported these results: Vicia faba L. (Fabaceae) was the preferred host in the laboratory as well as in the field, performance of L. huidobrensis being also best on this host, with highest survival rates and shortest development time. The actively feeding larval stage showed the largest plant‐related effects. Higher overall parasitism rates were found on plants from which smaller leafminers were reared, reinforcing the preference–performance linkage. On the other hand, the main parasitoid Phaedrotoma scabriventris Nixon (Hymenoptera: Braconidae) reached larger body size, and caused higher mortality rates on crops where the leafminer was larger. Changes in abundance of particular parasitoid species could thus modify overall parasitism trends.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号