首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The theft of food items and building materials from nests of stingless bees (Hymenoptera: Apidae: Meliponini) is most commonly carried out by other Meliponini bee species, especially by those related to genus Lestrimelitta Friese, 1903. In this note, we recorded the theft of cerumen and propolis made by a species of the orchid bee, Euglossa annectans Dressler, 1982 (Apidae: Euglossini) from the nest of the stingless bee Tetragonisca angustula (Latreille, 1811). We noticed that the guard workers of T. angustula did not attack the thief bee even though it did not come sufficiently close to the entrance tube of the nest.  相似文献   

2.
1.  Guard bees of the stingless beeTrigona (Tetragonisca) angustula typically hover in very stable positions on both sides of and close to the nest entrance; for most of the time they face the flight corridor or the nest entrance (Fig. 2). Individual bees occupy a distinct airspace which they can leave for short excursions but return to afterwards (Fig. 3). When they change their position, they adjust their body-axis orientation to keep the nest entrance within their frontal visual field (Fig. 4). The accuracy of station-keeping decreases with the distance from the nest (Fig. 5).
2.  Guard bees stay tightly coupled to the nest when the whole nestbox is oscillated through 20 cm forward and sideways with respect to the direction in which the nest entrance is pointing. They hold their position and distance relative to the nest entrance by flying forward, backward and sideways while keeping the angular orientation of their body long axis constant for most of the time (Figs. 6, 7). They temporarily lag behind the nest movement when they actively change their angular orientation or when the nest moves away from them. After the movement of the nest stops, bees which have lagged behind regain hovering stations close to the nest (Fig. 8).
  相似文献   

3.
Species of migrating insects use magnetic fields as a navigational tool that is independent of current weather conditions and non-migrating species have been shown to discriminate anomalies in magnetic field from the earth's baseline. Honey bee discrimination of magnetic field has been studied in the context of associative learning, physiology, and whole hive responses. This article uses a combination of free-flight and laboratory studies to determine how small fluctuations from Earth's magnetic field affect honey bee (Apis mellifera L.) decision-making. Honey bees were tested in three experiments: (i) recruitment to an aqueous sucrose feeder, (ii) an artificial free-flight flower patch with floral color-dependent magnetic field strength, and (iii) a Y-maze with alternating colors on a stronger magnetic field. In free-flying feeder experiments, magnetic field served as a temporary cue, but when offered an equal caloric alternative with lesser magnetic field, the latter was preferred. Flower patch experiments showed initial color biases that were abandoned as a response to magnetic field induction. In laboratory experiments, bees showed a color-dependent behavioral response to the magnetic field. The results of this study indicate that bees may use small fluctuations in magnetic fields as a cue but that it is likely low-value as compared with other stimuli. Bioelectromagnetics. 2020;41:458–470. © 2020 Bioelectromagnetics Society.  相似文献   

4.
Summary We displaced a small nest box containing stingless bees (Trigona (Tetragonisca)angustula) over distances of up to 1.6 meters in different directions and counted the numbers of returning foragers to measure the effects of this manipulation on the homing ability of bees. Bees find it hard to locate the nest box when it was displaced more than about 1 m backwards, forwards or sideways relative to the direction into which the nest entrance pointed. They do not find the nest when its height above ground is changed. The bees use landmarks in the vicinity of the nest to locate it: When the nest box is displaced and landmark positions are changed so that their angular position at the new nest site is the same as at the normal nest position their homing ability is less impaired than it is without changes in landmark positions. Our results show that the bees do not use the nest box itself as a landmark until they have approached the nest position to within about 1 meter with the aid of surrounding landmarks.  相似文献   

5.
We consider the possibility that DC magnetic fields can interact in a resonant manner with endogenous AC electric fields in biological systems. Intrinsic electric-field ion cyclotron resonance (ICR) interactions would be more physically credible than models based on external AC magnetic fields and might be expected as an evolutionary response to the long-term constancy of the geomagnetic field. Bioelectromagnetics 17:85–87, 1997. © 1997 Wiley-Liss, Inc.  相似文献   

6.
Tetragonisca angustula is one of the most widespread stingless bees in the Neotropics. This species swarms frequently and is extremely successful in urban environments. In addition, it is one of the most popular stingless bee species for beekeeping in Latin America, so nest transportation and trading is common. Nest transportation can change the genetic structure of the host population, reducing inbreeding and increasing homogenization. Here, we evaluate the genetic structure of 17 geographic populations of T. angustula in southern Brazil to quantify the level of genetic differentiation between populations. Analyses were conducted on partially sequenced mitochondrial genes and 11 microsatellite loci of 1002 workers from 457 sites distributed on the mainland and on 3 islands. Our results show that T. angustula populations are highly differentiated as demonstrated by mitochondrial DNA (mtDNA) and microsatellite markers. Of 73 haplotypes, 67 were population‐specific. MtDNA diversity was low in 9 populations but microsatellite diversity was moderate to high in all populations. Microsatellite data suggest 10 genetic clusters and low level of gene flow throughout the studied area. However, physical barriers, such as rivers and mountain ranges, or the presence or absence of forest appear to be unrelated to population clusters. Factors such as low dispersal, different ecological conditions, and isolation by distance are most likely shaping the population structure of this species. Thus far, nest transportation has not influenced the general population structure in the studied area. However, due to the genetic structure we found, we recommend that nest transportation should only occur within and between populations that are genetically similar.  相似文献   

7.
Social insect colonies are high-value foraging targets for insectivores, prompting the evolution of complex colony defensive adaptations as well as specialized foraging tactics in social insect predators. Predatory ants that forage on other social insects employ a diverse range of behaviors targeted at specific prey species. Here, we describe a solitary foraging strategy of the ant Ectatomma tuberculatum, on nest guards of the stingless bee Tetragonisca angustula. We observed multiple instances of E. tuberculatum ambushing and successfully capturing the hovering and standing guards of T. angustula near nest entrances. The unique hovering behavior of the guard caste of this bee species, an adaptation to frequent cleptoparasitism by other stingless bees, may make these guards particularly vulnerable to ground-based, ambush attacks by E. tuberculatum. Likewise, the behavior of the foraging ants appears to adaptively exploit the defensive formations and activity patterns of these bees. These observations suggest an adaptive and targeted predatory strategy aimed at gathering external guard bees as prey from these heavily fortified nests.  相似文献   

8.
Stingless bee males (Hymenoptera: Apidae) aggregate themselves for reproductive purposes. The knowledge of relatedness among the males attending the aggregations and the distance that they disperse from their natal nests to aggregations may provide important data to effectively conserve these bees. Here, we estimated these properties for Tetragonisca angustula (Latreille, 1811) males. Microsatellite molecular markers were used to genotype bees sampled from local nests and in mating swarms in order to identify the nests of origin of males and maternal genotypes of concerning queens. The distances from assigned nests to the mating swarms allowed us to estimate the distances travelled by males. A genetic relationship analysis was conducted to verify whether T. angustula males were closely related to nests where they aggregated. A pairwise relatedness analysis was also performed among all T. angustula males in each mating swarm. Our results demonstrated that T. angustula mating swarms received dozens to hundreds of males from several colonies (up to 70). Only two of the five mating swarms contained any males that were closely related to the bees from the new nests in construction. The relatedness among males was also extremely low. Yet, dispersal distance of T. angustula males ranged hundreds of meters up to 1.6 km, with evidence of reaching 2.25 km according to their flight radius obtained from their foraging area for locality. These data indicate a highly efficient mating system with minimal inbreeding in this bee species, with a great dispersal capability not previously found for stingless bee males.  相似文献   

9.
Guard bees of the stingless bee Tetragonisca angustula (Apidae: Meliponinae) hover in stable positions in front of the nest to protect the flight corridor leading to the nest entrance against insect intruders. To unravel the visual control of station keeping, we exposed these hovering guards to expanding and contracting patterns at the nest front. The bees fly away from an expanding pattern and towards the centre of a contracting pattern along a line connecting their initial position and the centre of expansion regardless of where in the visual field they view the pattern. The response of bees to a spinning radial pattern is different: they fly parallel to the pattern, up and down or forward and backward depending on whether they initially hover to the side, above or below the centre of rotation. The bees respond to horizontal and to vertical expansion and contraction. They also adjust their distance relative to a rotating spiral which produces a realistic flow field and thus allowed us to test to what extent the bees minimize image motion speed. We find that guard bees indeed move in the appropriate direction to minimize the image motion speed they experience. A comparison of bees hovering at different distances from the nestfront at the onset of pattern motion and experiencing very different image velocities shows that the dynamics of the reaction is quite uniform. At the pattern velocities tested, we did not find evidence that guard bees use image motion to control their flight speed. The bees' response rather suggests that the underlying mechanism might be insensitive to the size of motion vectors. Accepted: 2 April 1997  相似文献   

10.
We recorded stingless bee colony abundance and nesting habits in three sites with different anthropogenic activities in the Soconusco region of Chiapas, Mexico: (1) agroforestry (7 hacacao crop), (2) grassland (12?ha), and (3) urban area (3?ha). A total of 67 nests were found, representing five stingless bee species, Tetragonisca angustula angustula (Lepeletier), Trigona fulviventris (Guérin), Scaptotrigona mexicana (Guérin), Scaptotrigona pectoralis (Dalla Torre), and Oxytrigona mediorufa (Cockerell). The most abundant stingless bee in each site was T. angustula angustula (>50%). The primary tree species used by the bees were Ficus spp. (Moraceae, 37.8%) and Cordia alliodora (Boraginaceae, 13.5%). The nest entrance height of T. angustula angustula (96?±?19?cm) was different than the other species, and this bee was the only one that used all different nesting sites. Volatiles analyzed by gas chromatography from pollen collected by the stingless bees differed between bee species, but were highly similar in respect to the fragrances of the pollen collected by the same species at any site. Our data indicate that T. angustula angustula experienced low heterospecific and high intraspecific foraging overlap especially in the urban site. We observed cluster spatial distribution in grassland and in agroforestry sites. In the urban site, T. angustula angustula presented random distribution tended to disperse. Trigona fulviventris was the only overdispersed and solitary species.  相似文献   

11.
Studied two types of mate-orientation behavior in ♂♂ of the sweat bee, Lasioglossum rohweri: microterritoriality and patrolling. Observations were made in both the laboratory and the field. These ♂♂ behave uniquely for Hymenoptera in that 2–5 of them establish microterritories immediately around the same nest entrance. Some ♂♂ are exclusively patrollers, flying about flowers and nest sites. Rendezvous places (locations where animals are likely to find mates) in bees are: flowers, nesting sites, vegetative parts of plants, nest entrances, air, and nests. Territoriality in male bees may have arisen independently in 7 of the 9 families of bees.  相似文献   

12.
Most work on magnetic field effects focuses on AC fields. The present study demonstrates that exposure to medium-strength (10 mT-0.1 T) static magnetic fields can alter the early embryonic development of two species of sea urchin embryos. Batches of fertilized eggs from two species of urchin were exposed to fields produced by permanent magnets. Samples of the continuous cultures were scored for the timing of the first two cell divisions, time of hatching, and incidence of exogastrulation. It was found that static fields delay the onset of mitosis in both species by an amount dependent on the exposure timing relative to fertilization. The exposure time that caused the maximum effect differed between the two species. Thirty millitesla fields, but not 15 mT fields, caused an eightfold increase in the incidence of exogastrulation in Lytechinus pictus, whereas neither of these fields produced exogastrulation in Strongylocentrotus purpuratus. Bioelectromagnetics 18:255–263, 1997. © 1997 Wiley-Liss, Inc.  相似文献   

13.
Homing rates and initial orientations after release from different directions were investigated in the solitary bee Dasypoda altercator. Homing rates and the proportion of individuals returning on the day of release declined with distance, implying that homing from greater distances is not based solely on the use of landmarks. A long duration of return (often not on the same day) and high efficiency of homing (four bees out of 10 returned from a 4 km distance over the lake), as well as an increase in average return speed ? 10 m/min) with distance of bees homing on the same day suggest that homing is also not based upon radial scatter as the sole tactic. This is supported by the observation that the initial orientations of the bees were not equally probable. Departures towards the sun greatly exceeded those away from the sun and the bees also tended to depart in cardinal geographical (or geomagnetic) directions, preferring meridional directions (especially southward) to parallel ones (of which east was preferred). Departure directions did not depend on wind direction but did depend, to some extent, on the landscape features of release sites. However, bees neither tended to depart in the direction of the nest, nor did homing success correlate with the direction of departure in relation to that of the nest.  相似文献   

14.
Electroreception and magnetoreception in simple and complex organisms   总被引:2,自引:0,他引:2  
A considerable body of evidence now indicates that electromagnetic and geomagnetic detection systems exist in both simple, unicellular organisms and in more complex species such as avians, bees, and marine animals. A major challenge that faces researchers in this field is the identification of physiological mechanisms through which the detection of weak fields provides significant somatosensory cues for direction finding, foraging, and predation. Many of the anatomical, physiological, and biophysical approaches that are being taken in studies of this nature are described in the series of review articles that appear in this issue of Bioelectromagnetics.  相似文献   

15.
The aim of this study was to investigate the effect of static magnetic fields (SMF) on reactive oxygen species induced by X‐ray radiation. The experiments were performed on lymphocytes from male albino Wistar rats. After exposure to 3 Gy X‐ray radiation (with a dose rate of 560 mGy/min) the measurement of intracellular reactive oxygen species in lymphocytes, using a fluorescent probe, was done before exposure to the SMF, and after 15 min, 1 and 2 h of exposure to the SMF or a corresponding incubation time. For SMF exposure, 0 mT (50 µT magnetic field induction opposite to the geomagnetic field) and 5 mT fields were chosen. The trend of SMF effects for 0 mT was always opposite that of 5 mT. The first one decreased the rate of fluorescence change, while the latter one increased it. Bioelectromagnetics 34:333–336, 2013. © 2012 Wiley Periodicals, Inc.  相似文献   

16.
The effect of static magnetic fields on the budding of single yeast cells was investigated using a magnetic circuit that was capable of generating a strong magnetic field (2.93 T) and gradient (6100 T2 m?1). Saccharomyces cerevisiae yeast cells were grown in an aqueous YPD agar in a silica capillary under either a homogeneous or inhomogeneous static magnetic field. Although the size of budding yeast cells was only slightly affected by the magnetic fields after 4 h, the budding angle was clearly affected by the direction of the homogeneous and inhomogeneous magnetic fields. In the homogeneous magnetic field, the budding direction of daughter yeast cells was mainly oriented in the direction of magnetic field B. However, when subjected to the inhomogeneous magnetic field, the daughter yeast cells tended to bud along the axis of capillary flow in regions where the magnetic gradient, estimated by B(dB/dx), were high. Based on the present experimental results, the possible mechanism for the magnetic effect on the budding direction of daughter yeast cells is theoretically discussed. Bioelectromagnetics 31:622–629, 2010. © 2010 Wiley‐Liss, Inc.  相似文献   

17.
Magnetotactic bacteria produce nanometer‐size intracellular magnetic crystals. The superior crystalline and magnetic properties of magnetosomes have been attracting much interest in medical applications. To investigate effects of intense static magnetic field on magnetosome formation in Magnetospirillum magneticum AMB‐1, cultures inoculated with either magnetic or non‐magnetic pre‐cultures were incubated under 0.2 T static magnetic field or geomagnetic field. The results showed that static magnetic field could impair the cellular growth and raise Cmag values of the cultures, which means that the percentage of magnetosome‐containing bacteria was increased. Static magnetic field exposure also caused an increased number of magnetic particles per cell, which could contribute to the increased cellular magnetism. The iron depletion in medium was slightly increased after static magnetic field exposure. The linearity of magnetosome chain was also affected by static magnetic field. Moreover, the applied intense magnetic field up‐regulated mamA, mms13, magA expression when cultures were inoculated with magnetic cells, and mms13 expression in cultures inoculated with non‐magnetic cells. The results implied that the interaction of the magnetic field created by magnetosomes in AMB‐1 was affected by the imposed magnetic field. The applied static magnetic field could affect the formation of magnetic crystals and the arrangement of the neighboring magnetosome. Bioelectromagnetics 30:313–321, 2009. © 2009 Wiley‐Liss, Inc.  相似文献   

18.
19.
Behavioral researchers have attached magnets to birds during orientation experiments, assuming that such magnets will disrupt their ability to obtain magnetic information. Here, we investigate the effect of an attached magnet on the ability to derive directional information from a radical-pair based compass mechanism. We outline in some detail the geometrical symmetries that would allow a bird to identify magnetic directions in a radical-pair based compass. We show that the artificial field through an attached magnet will quickly disrupt the birds' ability to distinguish pole-ward from equator-ward headings, but that much stronger fields are necessary to disrupt their ability to detect the magnetic axis. Together with estimates of the functional limits of a radical-pair based compass, our calculations suggest that artificial fields of comparable size to the geomagnetic field are not generally sufficient to render a radical-pair based compass non-functional.  相似文献   

20.
The effect of magnetic fields (50 Hz, 100 μTrms sinusoidal magnetic field combined with a 55 μT geomagnetic-like field) and/or gamma rays of 60 Cobalt on the expression of the c-jun and c-fos proteins was investigated in primary rat tracheal epithelial cells and two related immortalized cell lines. Quite similar patterns and amplitudes of induction of these proteins were evidenced after either ionizing radiation or magnetic field exposure. No synergism after both treatments was observed. These findings suggest that magnetic fields explored in the present study may be considered as an insult at the cellular level. Bioelectromagnetics 19: 112–116, 1998. © 1998 Wiley-Liss, Inc.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号