首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 359 毫秒
1.
  • Unrelated plants adapted to particular pollinator types tend to exhibit convergent evolution in floral traits. However, inferences about likely pollinators from ‘pollination syndromes’ can be problematic due to trait overlap among some syndromes and unusual floral architecture in some lineages. An example is the rare South African parasitic plant Mystropetalon thomii (Mystropetalaceae), which has highly unusual brush‐like inflorescences that exhibit features of both bird and rodent pollination syndromes.
  • We used camera traps to record flower visitors, quantified floral spectral reflectance and nectar and scent production, experimentally determined self‐compatibility and breeding system, and studied pollen dispersal using fluorescent dyes.
  • The dark‐red inflorescences are usually monoecious, with female flowers maturing before male flowers, but some inflorescences are purely female (gynoecious). Inflorescences were visited intensively by several rodent species that carried large pollen loads, while visits by birds were extremely rare. Rodents prefer male‐ over female‐phase inflorescences, likely because of the male flowers’ higher nectar and scent production. The floral scent contains several compounds known to attract rodents. Despite the obvious pollen transfer by rodents, we found that flowers on both monoecious and gynoecious inflorescences readily set seed in the absence of rodents and even when all flower visitors are excluded.
  • Our findings suggest that seed production occurs at least partially through apomixis and that M. thomii is not ecologically dependent on its rodent pollinators. Our study adds another species and family to the growing list of rodent‐pollinated plants, thus contributing to our understanding of the floral traits associated with pollination by non‐flying mammals.
  相似文献   

2.
  • Field studies integrating pollination investigations with an assessment of floral scent composition and thermogenesis in tropical aroids are rather few. Thus, this study aimed to investigate the pollination biology of nine species belonging to Schismatoglottis Calyptrata Complex Clade. The flowering mechanism, visiting insect activities, reproductive system, thermogenesis and floral scent composition were examined.
  • Anthesis for all species started at dawn and lasted 25–29 h. Colocasiomyia (Diptera, Drosophilidae) are considered the main pollinators for all the investigated species. Cycreon (Coleoptera, Hydrophilidae) are considered secondary pollinators as they are only present in seven of the nine host plants, despite the fact that they are the most effective pollen carrier, carrying up to 15 times more pollen grains than Colocasiomyia flies. However, the number of Colocasiomyia individuals was six times higher than Cycreon beetles. Chaloenus (Chrysomelidae, Galeuricinae) appeared to be an inadvertent pollinator. Atheta (Coleoptera, Staphylinidae) is considered a floral visitor in most investigated species of the Calyptrata Complex Clade in Sarawak, but a possible pollinator in S. muluensis. Chironomidae midges and pteromalid wasps are considered visitors in S. calyptrata.
  • Thermogenesis in a biphasic pattern was observed in inflorescences of S. adducta, S. calyptrata, S. giamensis, S. pseudoniahensis and S. roh. The first peak occurred during pistillate anthesis; the second peak during staminate anthesis. Inflorescences of all investigated species of Calyptrata Complex Clade emitted four types of ester compound, with methyl ester‐3‐methyl‐3‐butenoic acid as a single major VOC (volatile organic compound). The appendix, pistillate zone, staminate zone and spathe emitted all these compounds.
  • A mixed fly–beetle pollination system is considered an ancestral trait in the Calyptrata Complex Clade, persisting in Sarawak taxa, whereas the marked reduction of interpistillar staminodes in taxa from Peninsular Malaysia and especially, Ambon, Indonesia, is probably linked to a shift in these taxa to a fly‐pollinated system.
  相似文献   

3.
  • Holoparasitic plants are interesting heterotrophic angiosperms. However, carrion‐ or faeces‐mimicking is rarely described for such plants. There is no information on the pollination biology of Cynomoriaceae, despite the fact that these plants are rare and vulnerable. This is the first study to reveal pollination in a member of this family, Cynomorium songaricum, a root holoparasite with a distinctive and putrid floral odour.
  • From 2016 to 2018, we studied the floral volatiles, floral visitors and pollinators, behavioural responses of visitors to floral volatiles, breeding system, flowering phenology and floral biology of two wild populations of C. songaricum in Alxa, Inner Mongolia, China.
  • A total of 42 volatiles were identified in inflorescences of C. songaricum. Among these volatiles are compounds known as typical carrion scents, such as p‐cresol, indole, dimethyl disulphide and 1‐octen‐3‐ol. C. songaricum is pollinated by various Diptera, such as Musca domestica, M. stabulans (Muscidae), Delia setigera, D. platura (Anthomyiidae), Lucilia sericata, L. caesar (Calliphoridae), Wohlfahrtia indigens, Sarcophaga noverca, S. crassipalpis and Sarcophila meridionalis (Sarcophagidae). The inflorescence scent of C. songaricum attracted these pollinators. The plants significantly benefit from insect pollination, although wind can be a pollen vector in the absence of pollinators. C. songaricum is a cross‐pollinated, self‐incompatible plant.
  • Our findings suggest that C. songaricum releases malodorous volatiles to attract Diptera to achieve pollination. This new example lays the foundation for further comparative studies in other members of this plant group and contributes to a better understanding of fly‐pollinated, carrion mimicking plants.
  相似文献   

4.
Many insect-pollinated plants use floral scent signals to attract and guide the effective pollinators, and temporal patterns of their floral scent emission may be tuned to respond to the pollinator's activity and pollination status. In the intimate nursery pollination mutualism between monoecious Glochidion trees (Phyllanthaceae) and Epicephala moths (Gracillariidae), floral scent signals mediate species-specific interactions and influence the moth's efficient pollen-collecting and pollen-depositing behaviors on male and female flowers, respectively. We tested the hypotheses that both sexes of flowers of Epicephala-pollinated Glochidion rubrum exhibit a diel pattern of scent emission matching the activity period of the nocturnally active pollinator, and that female flowers change the chemical signal after pollination to reduce further visits and oviposition by the pollinator. We investigated the diel change of floral scent emissions during two consecutive days and the influence of pollination on the floral scent by conducting hand-pollinations in the field. The total scent emission of male and female flowers was higher at night than in the day, which would be expected from the nocturnal visitations of Epicephala moths. Some compounds exhibited a clear nocturnal emission rhythm. Hand-pollination experiments revealed that emission of two compounds, nerolidol and eugenol, drastically decreased in pollinated flowers, suggesting that these compounds may function as key attractants for the pollinator; however, the total scent emission of the female flower was not influenced by hand-pollination. The pattern of the floral scent emission of G. rubrum may be optimized to attract nocturnal pollinators and reduce oviposition.  相似文献   

5.
We studied pollination ecology of the sympatric palms Attalea allenii and Wettinia quinaria in a tropical rain forest in Colombia. Attalea has a subterranean stem and Wettinia is tall and arboreal. Both species have thermogenesis and short anthesis, and their floral scents differ in chemical composition. Inflorescences of both palms are visited by beetles, bees and flies. Pollination is diurnal, and is effected mostly by two species of Mystrops (Nitidulidae: Nitidulinae: Mystropini) each of them specific to one palm species. Both palms share few visitors and no pollinators. Differences in scent composition probably cause this isolation. We contrast their diurnal pollination with nocturnal pollination of other palms by mystropines in Amazonia and elsewhere, and relate it to precipitation regimes. The diurnal anthesis of A. allenii and W. quinaria and the diurnal activity of their specific mystropines probably coevolved as a response to the high, predominantly nocturnal rainfall in the Chocó.  相似文献   

6.
Traditionally, plant–pollinator interactions have been interpreted as pollination syndrome. However, the validity of pollination syndrome has been widely doubted in modern studies of pollination ecology. The pollination ecology of five Asian Buddleja species, B. asiatica, B. crispa, B. forrestii, B. macrostachya and B. myriantha, in the Sino‐Himalayan region in Asia, flowering in different local seasons, with scented inflorescences were investigated during 2011 and 2012. These five species exhibited diverse floral traits, with narrow and long corolla tubes and concealed nectar. According to their floral morphology, larger bees and Lepidoptera were expected to be the major pollinators. However, field observations showed that only larger bees (honeybee/bumblebee) were the primary pollinators, ranging from 77.95% to 97.90% of total visits. In this study, floral scents of each species were also analysed using coupled gas chromatography and mass spectrometry (GC‐MS). Although the five Buddleja species emitted differentiated floral scent compositions, our results showed that floral scents of the five species are dominated by substances that can serve as attractive signals to bees, including species‐specific scent compounds and principal compounds with larger relative amounts. This suggests that floral scent compositions are closely associated with the principal pollinator assemblages in these five species. Therefore, we conclude that floral scent compositions rather than floral morphology traits should be used to interpret plant–pollinator interactions in these Asian Buddleja species.  相似文献   

7.
  • Bees are the most important diurnal pollinators of angiosperms. In several groups of bees a nocturnal/crepuscular habit developed, yet little is known about their role in pollination and whether some plants are adapted specifically to these bees. We used a multidisciplinary approach to investigate the reproductive biology and to understand the role of nocturnal/crepuscular bees in pollination of Campomanesia phaea (Myrtaceae), popularly named cambuci.
  • We studied the floral biology and breeding system of C. phaea. We collected the floral visitors and tested the pollinators' effectiveness. We also determined the floral scents released at night and during daytime, and studied behavioural responses of crepuscular/nocturnal bees towards these scents.
  • The flowers of cambuci were self‐incompatible and had pollen as the only resource for flower visitors. Anthesis lasted around 14 h, beginning at 04:30 h at night. The flowers released 14 volatile compounds, mainly aliphatic and aromatic compounds. We collected 52 species of floral visitors, mainly bees. Nocturnal and crepuscular bees (four species) were among the most frequent species and the only effective pollinators. In field bioassays performed at night, nocturnal/crepuscular bees were attracted by a synthetic scent blend consisting of the six most abundant compounds.
  • This study describes the first scent‐mediated pollination system between a plant and its nocturnal bee pollinators. Further, C. phaea has several floral traits that do not allow classification into other nocturnal pollination syndromes (e.g. pollinator attraction already before sunrise, with pollen as the only reward), instead it is a plant specifically adapted to nocturnal bees.
  相似文献   

8.
In this study, the flowering mechanisms and pollination strategies of seven species of the highly diverse genus Homalomena (Araceae) were investigated in native populations of West Sarawak, Borneo. The floral scent compositions were also recorded for six of these species. The selected taxa belong to three out of four complexes of the section Cyrtocladon (Hanneae, Giamensis and Borneensis). The species belonging to the Hanneae complex exhibited longer anthesis (53–62 h) than those of the Giamensis and Borneensis complexes (ca. 30 h). Species belonging to the Hanneae complex underwent two floral scent emission events in consecutive days, during the pistillate and staminate phases of anthesis. In species belonging to the Giamensis and Borneensis complexes, floral scent emission was only evident to the human nose during the pistillate phase. A total of 33 volatile organic compounds (VOCs) were detected in floral scent analyses of species belonging to the Hanneae complex, whereas 26 VOCs were found in samples of those belonging to the Giamensis complex. The floral scent blends contained uncommon compounds in high concentration, which could ensure pollinator discrimination. Our observations indicate that scarab beetles (Parastasia gestroi and P. nigripennis; Scarabaeidae, Rutelinae) are the pollinators of the investigated species of Homalomena, with Chaloenus schawalleri (Chrysomelidae, Galeuricinae) acting as a secondary pollinator. The pollinators utilise the inflorescence for food, mating opportunities and safe mating arena as rewards. Flower‐breeding flies (Colocasiomyia nigricauda and C. aff. heterodonta; Diptera, Drosophilidae) and terrestrial hydrophilid beetles (Cycreon sp.; Coleoptera, Hydrophilidae) were also frequently recovered from inflorescences belonging to all studied species (except H. velutipedunculata), but they probably do not act as efficient pollinators. Future studies should investigate the post‐mating isolating barriers among syntopically co‐flowering Homalomena sharing the same visiting insects.  相似文献   

9.
  • Opuntia (Cactaceae) is known for high rates of hybridization and ploidisation, resulting in the formation of new species. The occurrence of two sympatric and closely related species of Opuntia, O. elata and O. retrorsa, in Brazilian Chaco enabled us to test the hypothesis that pre‐zygotic reproductive isolation mechanisms operate in both species.
  • We monitored the flowering period, as well as floral biology, and compared the morphological variation of floral structures through measurements, performed intra‐ and interspecific cross‐pollination tests, and recorded the guild of floral visitors and pollinators.
  • Flowering was seasonal and highly synchronous. Floral biology exhibits similar strategies, and although floral morphology differs significantly in many of the compared structures, such morphological variation does not result in the selection of exclusive pollinators. Floral visitors and pollinators are oligolectic bees shared by both species. Opuntia elata and O. retrorsa are self‐compatible. While interspecific cross‐pollination (bidirectional) resulted in germination, the pollen tube did not penetrate the stigma.
  • Opuntia elata and O. retrorsa are closely related; however, they are isolated and do not hybridise in Brazilian Chaco. We found that both have weak pre‐pollination barriers, but that they are strongly isolated by pollen–pistil incompatibility, i.e. post‐pollination barrier.
  相似文献   

10.
Flowers or inflorescences often deploy various signals, including visual, olfactory, and gustatory cues, that can be detected by their pollinators. In many plants, these cues and their functions are poorly understood. Deciphering the interactions between floral cues and pollinators is crucial for analyzing the reproductive success of flowering plants. In this study, we examined the composition of the fetid floral scents produced by several Stemona species, including nine S. tuberosa populations from across China, using dynamic headspace adsorption, gas chromatography, and mass spectrometry techniques. We compared variations in floral phenotype, including floral longevity, nectar rewards, pollinator behavior, and flower length and color among the Stemona species. Of the 54 scent compounds identified, the major compounds include fetid dimethyl disulfide, dimethyl trisulfide, 1‐pyrroline, butyric acid, p‐cresol, isoamyl alcohol, and indole. We detected striking differentiation in floral scent at both the species and population level, and even within a population of plants with different colored flowers. Floral characteristics related to sapromyophily and deceptive pollination, including flower color mimicking livor mortis and a lack of nectar, were found in five Stemona species, indicating that Stemona is a typical sapromyophilous taxon. Species of this monocot genus might employ evolutionary tactics to exploit saprophilous flies for pollination.  相似文献   

11.
Cyclocephline scarabs and their host plants are documented as highly specialized plant–pollinator associations, with various fine‐tuned adaptations. We studied the association between Philodendron adamantinum, a species endemic to the Espinhaço Range in Minas Gerais, South‐East Brazil, and its exclusive pollinators. We focused on the pollination mechanism and reproductive success of P. adamantinum, analysed its floral scent composition, and performed field bioassays to verify the scent‐mediated attraction of pollinators. The reproductive success of P. adamantinum depends on the presence of Erioscelis emarginata (Scarabaeidae, Cyclocephalini), its sole pollinator. At dusk, the inflorescences heat up to 18 °C above the surrounding ambient air temperature and give off a strong sweet odour, from which 32 volatile compounds were isolated. Dihydro‐β‐ionone, the major constituent in the floral scent bouquet, lures individuals of E. emarginata when applied to scented artificial decoys, either alone or blended with methyl jasmonate. We attribute the low fruit set of P. adamantinum at our study sites to pollinator limitation of small and isolated populations and geitonogamic pollen flow of vegetatively generated clonal plant groups. The interaction between P. adamantinum and E. emarginata shows common traits typical of the known plant–pollinator associations involving cyclocephaline scarabs: the asymmetrical dependence of plants on their pollinators, and the scent‐mediated interaction between flowers and beetles. In addition to updating the current catalogue of active compounds of cantharophilous pollination systems, further experimental studies should elucidate the role of the specific chemical compounds that attract pollinators along different time and biogeographic scales. © 2014 The Linnean Society of London, Biological Journal of the Linnean Society, 2014, 111 , 679–691.  相似文献   

12.
Shifts in pollen vectors favour diversification of floral traits, and differences in pollination strategies between congeneric sympatric species can contribute to reproductive isolation. Divergence in flowering phenology and selfing could also reduce interspecific crossing between self‐compatible species. We investigated floral traits and visitation rates of pollinators of two sympatric Encholirium species on rocky outcrops to evaluate whether prior knowledge of floral characters could indicate actual pollinators. Data on flowering phenology, visitation rates and breeding system were used to evaluate reproductive isolation. Flowering phenology overlapped between species, but there were differences in floral characters, nectar volume and concentration. Several hummingbird species visited flowers of both Encholirium spp., but the endemic bat Lonchophylla bokermanni and an unidentified sphingid only visited E. vogelii. Pollination treatments demonstrated that E. heloisae and E. vogelii were partially self‐compatible, with weak pollen limitation to seed set. Herbivores feeding on inflorescences decreased reproductive output of both species, but for E. vogelii the damage was higher. Our results indicate that actual pollinators can be known beforehand through floral traits, in agreement with pollination syndromes stating that a set of floral traits can be associated with the attraction of specific groups of pollinators. Divergence on floral traits and pollinator assemblage indicate that shifts in pollination strategies contribute to reproductive isolation between these Encholirium species, not divergence on flowering phenology or selfing. We suggest that hummingbird pollination might be the ancestral condition in Encholirium and that evolution of bat pollination made a substantial contribution to the diversification of this clade.  相似文献   

13.
Taccarum ulei (Araceae, Spathicarpeae) is a seasonal geophytic aroid, native to north‐eastern Brazil, that flowers during two months of the rainy season. Patterns of floral thermogenesis, pollination biology, and floral traits associated with pollination syndromes were studied and compared with those of other Araceae. Two species of cyclocephaline scarabs (Scarabaeidae, Cyclocephalini) were recognized as effective pollinators: Cyclocephala celata and Cyclocephala cearae. Larvae of an unidentified species of fruit fly (Melanoloma spp., Richardiidae, Diptera) were also frequently observed in inflorescences at various maturation stages, feeding on the connectives of male florets and fruits, and thus lowering the reproductive success of individual plants. Beetles were attracted by odoriferous inflorescences in the early evening of the first day of anthesis, during the female phase. The emission of attractive volatiles was coupled with intense thermogenic activity in the entire spadix, unlike other aroids in which only certain zones of the spadix heat up. Pollen release, which marks the beginning of the male phase on the subsequent evening, was not related to floral thermogenesis. Comparative multivariate analysis of the floral traits of T. ulei points to a beetle‐pollinated aroid, although some of the observed traits of the species are not common to other taxa sharing this pollination strategy. Such incongruence might be explained by the evolutionary history of the tribe Spathicarpeae and potential pollinator shifts. © 2012 The Linnean Society of London, Biological Journal of the Linnean Society, 2012, ??, ??–??.  相似文献   

14.
Plants are expected to emit floral scent when their pollinators are most active. In the case of long‐tubed flowers specialised for pollination by crepuscular or nocturnal moths, scent emissions would be expected to peak during dawn. Although this classic idea has existed for decades, it has rarely been tested quantitatively. We investigated the timing of flower visitation, pollination and floral scent emissions in six long‐spurred Satyrium species (Orchidaceae). We observed multiple evening visits by pollinaria‐bearing moths on flowers of all study species, but rarely any diurnal visits. The assemblages of moth pollinators differed among Satyrium species, even those that co‐flowered, and the lengths of moth tongues and floral nectar spurs were strongly correlated, suggesting that the available moth pollinator fauna is partitioned by floral traits. Pollinarium removal occurred more frequently during the night than during the day in four of the six species. Scent emission, however, was only significantly higher at dusk than midday in two species. Analysis of floral volatiles using gas chromatography coupled with mass spectrometry yielded 168 scent compounds, of which 112 were species‐specific. The scent blends emitted by each species occupy discrete clusters in two‐dimensional phenotype space, based on multivariate analysis. We conclude that these long‐spurred Satyrium species are ecologically specialised for moth pollination, yet the timing of their scent emission is not closely correlated with moth pollination activity. Scent composition was also more variable than expected from a group of closely related plants sharing the same pollinator functional group. These findings reveal a need for greater understanding of mechanisms of scent production and their constraints, as well as the underlying reasons for divergent scent chemistry among closely related plants.  相似文献   

15.
The flowers of the mangrove palm Nypa fruticans attracts a diverse array of potential pollinators. However, little is known about the pollination mechanism and which functional groups are the key pollinators. Inflorescences of nine nipa palms of different flowering stages were observed three times a day between sunrise and sunset in Thailand. The apparent entomofauna activity was recorded and all inflorescences were collected for extraction and identification of the beetle fauna. Beetles extracted from female inflorescences were measured for pollen load. In addition, thermogenesis was recorded over two days on two separate inflorescences. The most frequent visitors were species of nitidulid (genus Epuraea and the subfamily Cillaeinae) and curculionid beetles. Although they only carried small amounts of pollen grains, these groups of beetles were omnipresent. Thermogenesis peaked around 6.30 am with temperature elevations reaching 6° above ambient. The result obtained in this study are compared with those of previous studies conducted elsewhere in Thailand and in the Philippinies. The combined evidence strongly suggests a pivotal role in pollination of beetle visitors to the inflorescences of Nypa fruticans.  相似文献   

16.
Floral scents of male and female inflorescences of three dioeciousSalix species were collected by head-space adsorption, and analysed by GC-MS. InSalix caprea andS. cinerea 1,4-dimethoxy benzene was the main compound, and male and female scents showed a high degree of resemblance. No dominant compound was found inS. repens and malefemale scent similarity was low. Floral scent inSalix is likely a strong orientation cue, guiding pollinators between male and female plants ensuring pollen transfer and pollination. We suggest that a high degree of male-female floral scent resemblance is coupled to a high degree of insect pollination. Floral scent does not promote reproductive isolation betweenS. caprea andS. cinerea.  相似文献   

17.
Aims It is generally accepted that visual displays and floral scent play important roles in communication between flowering plants and their pollinators. However, the relative role of visual and olfactory cues in pollinator attraction is largely unknown. In this study, we determined the roles of both types of cue in attracting pollinators to Cornus capitata, a medium sized tree with each capitulum surrounded by four large, white, petaloid bracts.Methods Pollinator observations and pollination experiments were conducted in a natural population; the inflorescences' visual and olfactory signals were characterized by spectral and chemical analyses; the responses of pollinators to visual and olfactory cues were tested using dual-choice behavioural bioassays; the relative roles of visual and olfactory cues in pollinator attraction were tested by comparing the responses of pollinators to inflorescences subjected to three experimental treatments (intact, all bracts removed, and capitulum removed) within the natural population.Important findings For fruit set, C. capitata is entirely dependent on pollinators, with a bee, Anthophora sp., being the main pollinator. Bracts present high colour distance and green contrast against the leaves. Twelve volatile compounds in the floral scent were detected, most of which have previously been reported to be attractive to a broad spectrum of bee species. Behavioural bioassays showed that both, visual cues alone and olfactory cues alone, are attractive to pollinating bees. However, visual cues alone attracted significantly more approaches than olfactory cues alone, while olfactory cues alone elicited a significantly higher landing percentage than visual cues alone. The finding suggests that, in the C. capitata – Anthophora sp. interaction, visual cues are mainly used for location from long distances, while olfactory cues mainly aid landing from short distances. Our results indicate that different modalities of floral cues should be considered together to understand fully the communication between flowering plant and pollinators.  相似文献   

18.
Aspects of the pollination ecology of Browneopsis disepala, including floral scent composition, were studied. Floral scent was collected with head space techniques and analyzed by coupled gas chromatography-mass spectrometry. Inflorescence and flower development were followed, and amount and concentration of nectar measured. Flower-visiting animals were observed nocturally and diurnally. Inflorescences of B. disepala emit a floral scent that is typical of neither moth- nor bat-pollinated plants, but contains some compounds related to both pollination types. Nectar is produced in quantities and with sugar concentrations falling within a range typical of both moth- and bat-pollinated plants. The inflorescences are visited by both moths and bats, but the behavior of the bats suggests that they are the more efficient pollinators. Browneopsis disepala has a mixed pollination system and is dependent on animals for pollination.  相似文献   

19.
Pollination of Neotropical dioecious trees is commonly related to generalist insects. Similar data for non‐tree species with separated genders are inconclusive. Recent studies on pollination of dioecious Chamaedorea palms (Arecaceae) suggest that species are either insect‐ or wind‐pollinated. However, the wide variety of inflorescence and floral attributes within the genus suggests mixed pollination mode involving entomophily and anemophily. To evaluate this hypothesis, we studied the pollination of Chamaedorea costaricana, C. macrospadix, C. pinnatifrons and C. tepejilote in two montane forests in Costa Rica. A complementary morphological analysis of floral traits was carried out to distinguish species groups within the genus according to their most probable pollination mechanism. We conducted pollinator exclusion experiments, field observations on visitors to pistillate and staminate inflorescences, and trapped airborne pollen. A cluster analysis using 18 floral traits selected for their association with wind and insect pollination syndromes was carried out using 52 Chamaedorea species. Exclusion experiments showed that both wind and insects, mostly thrips (Thysanoptera), pollinated the studied species. Thrips used staminate inflorescences as brood sites and pollinated pistillate flowers by deception. Insects caught on pistillate inflorescences transported pollen, while traps proved that pollen is wind‐borne. Our empirical findings clearly suggest that pollination of dioecious Chamaedorea palms is likely to involve both insects and wind. A cluster analysis showed that the majority of studied species have a combination of floral traits that allow for both pollination modes. Our pollination experiments and morphological analysis both suggest that while some species may be completely entomophilous or anemophilous, ambophily might be a common condition within Chamaedorea. Our results propose a higher diversity of pollination mechanisms of Neotropical dioecious species than previously suggested.  相似文献   

20.
  • Although common among orchids, pollination by perfume‐gathering male euglossine bees is quite rare in other Neotropical families. In Gesneriaceae, for example, it is reported in two genera only, Drymonia and Gloxinia. Flowers of G. perennis are known to emit perfume, thereby attracting male euglossine bees as pollinators. However, detailed reports on the pollination ecology, as well as on chemistry of floral perfume of individuals in natural populations, are still missing. In this study, we report on the pollination ecology of G. perennis, focusing on the ecological significance of its floral perfume.
  • In natural populations in Peru, we documented the floral biology and breeding system of G. perennis, as well as its interaction with flower visitors. We also characterised the chemical composition of floral perfume, as well as its timing of emission.
  • Gloxinia perennis is self‐compatible and natural pollination success is high. Spontaneous self‐pollination occurs as a ‘just in case strategy’ when pollinators are scarce. Perfume‐collecting males of Eulaema cingulata and Elmeriana were identified as pollinators. The perfume bouquet of G. perennis consists of 16 compounds. (E)‐Carvone epoxide (41%) and limonene (23%) are the major constituents. Perfume emission is higher at 09:00 h, matching the activity peak of Eulaema pollinators.
  • Flowers of G. perennis have evolved a mixed strategy to ensure pollination (i.e. self‐ and cross‐pollination), but cross‐pollination is favoured. The size and behaviour of Eulaema males enables only these bees to successfully cross‐pollinate G. perennis. Furthermore, G. perennis floral perfume traits (i.e. chemistry and timing of emission) have evolved to optimise the attraction of these bees.
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号