首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
It has previously been shown that recombination between tandem repeats is not significantly affected by a recA mutation in Escherichia coli . Here, we describe the activation of a RecA-dependent recombination pathway in a hyper-recombination mutant. In order to analyse how tandem repeat deletion may proceed, we searched for mutants that affect this process. Three hyper-recombination clones were characterized and shown to be mutated in the uvrD gene. Two of the mutations were identified as opal mutations at codons 130 and 438. A uvrD  ::Tn 5 mutation was used to investigate the mechanism of deletion formation in these mutants. The uvrD -mediated stimulation of deletion was abolished by a lexAind3 mutation or by inactivation of either the recA , recF , recQ or ruvA genes. We conclude that (i) this stimulation requires SOS induction and (ii) tandem repeat recombination in uvrD mutants occurs via the RecF pathway. In uvrD + cells, constitutive expression of SOS genes is not sufficient to stimulate deletion formation. This suggests that the RecF recombination pathway activated by SOS induction is antagonized by the UvrD protein. Paradoxically, we observed that the overproduction of UvrD from a plasmid also stimulates tandem repeat deletion. However, this stimulation is RecA independent, as is deletion in a wild-type strain. We propose that the presence of an excess of the UvrD helicase favours replication slippage. This work suggests that the UvrD helicase controls a balance between different routes of tandem repeat deletion.  相似文献   

3.
The recJ gene encodes a single-strand DNA-specific exonuclease involved in homologous recombination. We have isolated a pseudorevertant strain in which recJ mutant phenotypes were alleviated. Suppression of recJ was due to at least three mutations, two of which we have identified as alterations in DNA helicase genes. A recessive amber mutation, ``uvrD517(am),' at codon 503 of the gene encoding helicase II was sufficient to suppress recJ partially. The uvrD517(am) mutation does not eliminate uvrD function because it affects UV survival only weakly; moreover, a uvrD insertion mutation could not replace uvrD517(am) as a suppressor. However, suppression may result from differential loss of uvrD function: mutation rate in a uvrD517(am) derivative was greatly elevated, equal to that in a uvrD insertion mutant. The second cosuppressor mutation is an allele of the helD gene, encoding DNA helicase IV, and could be replaced by insertion mutations in helD. The identity of the third cosuppressor ``srjD' is not known. Strains carrying the three cosuppressor mutations exhibited hyperrecombinational phenotypes including elevated excision of repeated sequences. To explain recJ suppression, we propose that loss of antirecombinational helicase activity by the suppressor mutations stabilizes recombinational intermediates formed in the absence of recJ.  相似文献   

4.
Brino L  Bronner C  Oudet P  Mousli M 《Biochimie》1999,81(10):973-980
DNA gyrase is an essential enzyme that regulates the DNA topology in bacteria. It belongs to the type II DNA topoisomerase family and is responsible for the introduction of negative supercoils into DNA at the expense of hydrolysis of ATP molecules. The aim of the present work was to study the contribution of I10, one of the most important residues responsible for the stabilization of GyrB dimer and involved in the ATP-binding step, in the ATP-hydrolysis reaction and in the DNA supercoiling mechanism. We constructed MBP-tagged GyrB mutants I10G and Delta4-14. Our results demonstrate that both mutations severely affect the DNA-dependent ATPase activity and DNA supercoiling. Mutation of Y5 residue involved in the formation of ATPase catalytic site (Y5G mutant) had only little effect on the DNA-dependent ATPase activity and DNA supercoiling. Interestingly, the DNA-relaxation activity of MBP-GyrB mutants and wild type was completely inhibited by ATP. Binding of ADPNP to MBP-tagged mutants was significantly decreased. ADPNP had no effect on DNA-relaxation activity of MBP-tagged mutants but was able to inhibit MBP-tagged wild type enzyme. Our results demonstrate that GyrB N-terminal arm, and specially I10 residue is essential for ATP binding/hydrolysis efficiency and DNA transfer through DNA gyrase.  相似文献   

5.
A thermosensitive mutant (JE386) of Escherichia coli which harbours an alteration in protein S5 of the smaller ribosomal subunit has been isolated. Genetic studies have shown that the lesion causing thermosensitivity also causes the alteration in protein S5, and that this mutation is not in the structural gene for S5 (rpsE). Hence the mutation has been termed rimJ (ribosomal modification). Protein-chemical studies of protein S5 purified from JE386 and its wild-type parent indicated an alteration in the N-terminal tryptic peptide. Amino acid sequence analysis of the N-terminal peptides showed complete homology between wild-type and mutant, suggesting that the N-terminal modification (acetylation) of the parent was absent in the mutant. Gradient transmission mapping has located the rimJ mutation at 31 minutes on the current E. coli genetic map. By constructing a derivative of the mutant heterozygous for rimJ, it has been found that the wild-type allele is dominant over the mutant one. Ts+ revertants of JE386 have been isolated which show either a wild-type ribosomal protein electrophoresis pattern, or an additional alteration in either protein S4 or S5. The mutations in S4 and S5 may compensate the lesion caused by the rimJ mutation of JE386, that is even though the N-terminus of S5 remains unacetylated, bacteria can grow at 42 °C. Furthermore, a mutation near or at strA carried by JE386 has been found to be involved in the phenotypic expression of the rimJ mutation. This mutation was also found to be present in four other strA mutants. Possible implications of the modification of ribosomal proteins in vivo are discussed.  相似文献   

6.
Nagel R  Chan A 《DNA Repair》2003,2(6):727-735
In this work the involvement of polymerase II (Pol II) in the precise excision of Tn10 stimulated by a dnaB252 thermosensitive (Ts) mutant at the permissive temperature, by a uvrD mutant, or by mitomycin C (MMC) or ultraviolet (UV) light treatment, was investigated. A deltapolB::kan mutant showed a significant decrease in the excision of Tn10 induced by the dnaB mutation, or by MMC or UV treatment, indicating the participation of Pol II in this type of deletion process. However, no effect of Pol II was evidenced in the excision of Tn10 stimulated by the uvrD mutation. The effect of the polB mutation on Tn10 precise excision induced by all these treatments was compared to that of mutations in repair-recombination genes recF and recA. The results reveal that the degree of participation of these genes varies depending on the agent that stimulates the deletion event.  相似文献   

7.
Mycobacterial UvrD2 is a DNA-dependent ATPase with 3' to 5' helicase activity. UvrD2 is an atypical helicase, insofar as its N-terminal ATPase domain resembles the superfamily I helicases UvrD/PcrA, yet it has a C-terminal HRDC domain, which is a feature of RecQ-type superfamily II helicases. The ATPase and HRDC domains are connected by a CxxC-(14)-CxxC tetracysteine module that defines a new clade of UvrD2-like bacterial helicases found only in Actinomycetales. By characterizing truncated versions of Mycobacterium smegmatis UvrD2, we show that whereas the HRDC domain is not required for ATPase or helicase activities in vitro, deletion of the tetracysteine module abolishes duplex unwinding while preserving ATP hydrolysis. Replacing each of the CxxC motifs with a double-alanine variant AxxA had no effect on duplex unwinding, signifying that the domain module, not the cysteines, is crucial for function. The helicase activity of a truncated UvrD2 lacking the tetracysteine and HRDC domains was restored by the DNA-binding protein Ku, a component of the mycobacterial NHEJ system and a cofactor for DNA unwinding by the paralogous mycobacterial helicase UvrD1. Our findings indicate that coupling of ATP hydrolysis to duplex unwinding can be achieved by protein domains acting in cis or trans. Attempts to disrupt the M. smegmatis uvrD2 gene were unsuccessful unless a second copy of uvrD2 was present elsewhere in the chromosome, indicating that UvrD2 is essential for growth of M. smegmatis.  相似文献   

8.
The lethal and mutagenic effects of nitrous acid (0,1 M NaNO2 in 0,1 M acetate buffer, pH 4.6) on prophage lambda cI857 ind- were studied in the wild-type cells of Escherichia coli and in 9 repair-deficient mutants: uvrA6, uvrA6 umuC36, uvrD3, uvrE502, polA1, recA13, lexA102, recF143 and xthA9. After treatment with HNO2, the prophage was heat-induced either immediately or after 90 min incubation in broth at 32 degrees C. The prophage survival after delayed induction was considerably higher than after immediate induction. The lethal action of HNO2 was highly expressed in uvrA- and uvrE- lysogens after delayed induction. The frequency of temperature-independent c mutants forming clear plaques at 32 degrees C reached 4% in the wild-type host after immediate induction, this value being 10-15% in uvrA, uvrA umuC, uvrD, uvrE, polA and xthA mutants, 0,8% in recF- lysogen and only 0,2-0,3% in recA and lexA mutants. Under these conditions, about 90% of c mutants are generated by recA+, lexA+-dependent repair mechanism (most probably, due to W-mutagenesis). After delayed induction, mutation frequency in the wild-type host declines considerably (down to 0,1%). Analogous phenomenon of mutation frequency decline was registered in uvrA, xthA, recF, polA, uvrE and uvrD lysogens. Under conditions of delayed induction, the frequency of HNO2-induced c mutations only slightly depends on the recA+ and lexA+ gene products and mutations are, apparently, fixed by replication.  相似文献   

9.
Over the course of thousands of generations of growth in a glucose-limited environment, 3 of 12 experimental populations of Escherichia coli spontaneously and independently evolved greatly increased mutation rates. In two of the populations, the mutations responsible for this increased mutation rate lie in the same region of the mismatch repair gene mutL. In this region, a 6-bp repeat is present in three copies in the gene of the wild-type ancestor of the experimental populations but is present in four copies in one of the experimental populations and two copies in the other. These in-frame mutations either add or delete the amino acid sequence LA in the MutL protein. We determined that the replacement of the wild-type sequence with either of these mutations was sufficient to increase the mutation rate of the wild-type strain to a level comparable to that of the mutator strains. Complementation of strains bearing the mutator mutations with wild-type copies of either mutL or the mismatch repair gene uvrD rescued the wild-type mutation rate. The position of the mutator mutations-in the region of MutL known as the ATP lid-suggests a possible deficiency in MutL's ATPase activity as the cause of the mutator phenotype. The similarity of the two mutator mutations (despite the independent evolutionary histories of the populations that gave rise to them) leads to a discussion of the potential adaptive role of DNA repeats.  相似文献   

10.
HfeTn5-(04,06) and IfeTn9 mutations increase efficiency of precise excision of Tn5, Tn10 and decrease that of Tn9. These mutations have been mapped in uvrD gene. In LFETn9 and UVRE502 mutants, the multicopy plasmid pEM61 carrying the cloned uvrD gene complements LFETn9- phenotype (Low Frequency Excision of Tn9). These results indicate that the uvrD gene product plays different role in excision of transposons with long and short inverted repeats. The mechanism of this effect is discussed.  相似文献   

11.
Site-directed mutagenesis has been employed to address the functional significance of the highly conserved aspartic and glutamic acid residues present in the Walker B (also called motif II) sequence in Escherichia coli DNA helicase II. Two mutant proteins, UvrDE221Q and UvrDD220NE221Q, were expressed and purified to apparent homogeneity. Biochemical characterization of the DNA-dependent ATPase activity of each mutant protein demonstrated a kcat that was < 0.5% of that of the wild-type protein, with no significant change in the apparent Km for ATP. The E221Q mutant protein exhibited no detectable unwinding of either partial duplex or blunt duplex DNA substrates. The D220NE221Q mutant, however, catalyzed unwinding of both partial duplex and blunt duplex substrates, but at a greatly reduced rate compared with that of the wild-type enzyme. Both mutants were able to bind DNA. Thus, the motif II mutants E221Q and D220NE221Q were able to bind ATP and DNA to the same extent as wild-type helicase II but demonstrate a significant reduction in ATP hydrolysis and helicase functions. The mutant uvrD alleles were also characterized by examining their abilities to complement the mutator and UV light-sensitive phenotypes of a uvrD deletion mutant. Neither the uvrDE221Q nor the uvrDD220NE221Q allele, supplied on a plasmid, was able to complement either phenotype. Further genetic characterization of the mutant uvrD alleles demonstrated that uvrDE221Q confers a dominant negative growth phenotype; the uvrDD220NE221Q allele does not exhibit this effect. The observed difference in effect on viability may reflect the gene products' dissimilar kinetics for unwinding duplex DNA substrates in vitro.  相似文献   

12.
We have recently described the presence of a high proportion of Pseudomonas aeruginosa isolates (20%) with an increased mutation frequency (mutators) in the lungs of cystic fibrosis (CF) patients. In four out of 11 independent P. aeruginosa strains, the high mutation frequency was found to be complemented with the wild-type mutS gene from P. aeruginosa PAO1. Here, we report the cloning and sequencing of two additional P. aeruginosa mismatch repair genes and the characterization, by complementation of deficient strains, of these two putative P. aeruginosa mismatch repair genes (mutL and uvrD). We also describe the alterations in the mutS, mutL and uvrD genes responsible for the mutator phenotype of hypermutable P. aeruginosa strains isolated from CF patients. Seven out of the 11 mutator strains were found to be defective in the MMR system (four mutS, two mutL and one uvrD). In four cases (three mutS and one mutL), the genes contained frameshift mutations. The fourth mutS strain showed a 3.3 kb insertion after the 10th nucleotide of the mutS gene, and a 54 nucleotide deletion between two eight nucleotide direct repeats. This deletion, involving domain II of MutS, was found to be the main one responsible for mutS inactivation. The second mutL strain presented a K310M mutation, equivalent to K307 in Escherichia coli MutL, a residue known to be essential for its ATPase activity. Finally, the uvrD strain had three amino acid substitutions within the conserved ATP binding site of the deduced UvrD polypeptide, showing defective mismatch repair activity. Interestingly, cells carrying this mutant allele exhibited a fully active UvrABC-mediated excision repair. The results shown here indicate that the putative P. aeruginosa mutS, mutL and uvrD genes are mutator genes and that their alteration results in a mutator phenotype.  相似文献   

13.
DNA helicase II, the product of the uvrD gene, has been implicated in DNA repair, replication, and recombination. Because the phenotypes of individual uvrD alleles vary significantly, we constructed deletion-insertion mutations in the uvrD gene to determine the phenotype of cells lacking DNA helicase II. Deletion mutants completely lacking the protein, as well as one which contains a truncated protein retaining the ATP-binding site, remained viable. However, they were sensitive to UV light and exhibited elevated levels of homologous recombination and spontaneous mutagenesis. In addition, mutations mapping in or near rep which allow construction of rep uvrD double mutants at a high frequency were isolated.  相似文献   

14.
Mutations in uvrD induce the SOS response in Escherichia coli.   总被引:5,自引:3,他引:2       下载免费PDF全文
We have isolated three new mutations in uvrD that increase expression of the Escherichia coli SOS response in the absence of DNA damage. Like other uvrD (DNA helicase II) mutants, these strains are sensitive to UV irradiation and have high spontaneous mutation frequencies. Complementation studies with uvrD+ showed that UV sensitivity and spontaneous mutator activity were recessive in these new mutants. The SOS-induction phenotype, however, was not completely complemented, which indicated that the mutant proteins were functioning in some capacity. The viability of one of the mutants in combination with rep-5 suggests that the protein is functional in DNA replication. We suggest that these mutant proteins are deficient in DNA repair activities (since UV sensitivity is complemented) but are able to participate in DNA replication. We believe that defective DNA replication in these mutants increases SOS expression.  相似文献   

15.
Saccharomyces cerevisiae Dna2 protein is required for DNA replication and repair and is associated with multiple biochemical activities: DNA-dependent ATPase, DNA helicase, and DNA nuclease. To investigate which of these activities is important for the cellular functions of Dna2, we have identified separation of function mutations that selectively inactivate the helicase or nuclease. We describe the effect of six such mutations on ATPase, helicase, and nuclease after purification of the mutant proteins from yeast or baculovirus-infected insect cells. A mutation in the Walker A box in the C-terminal third of the protein affects helicase and ATPase but not nuclease; a mutation in the N-terminal domain (amino acid 504) affects ATPase, helicase, and nuclease. Two mutations in the N-terminal domain abolish nuclease but do not reduce helicase activity (amino acids 657 and 675) and identify the putative nuclease active site. Two mutations immediately adjacent to the proposed nuclease active site (amino acids 640 and 693) impair nuclease activity in the absence of ATP but completely abolish nuclease activity in the presence of ATP. These results suggest that, although the Dna2 helicase and nuclease activities can be independently affected by some mutations, the two activities appear to interact, and the nuclease activity is regulated in a complex manner by ATP. Physiological analysis shows that both ATPase and nuclease are important for the essential function of DNA2 in DNA replication and for its role in double-strand break repair. Four of the nuclease mutants are not only loss of function mutations but also exhibit a dominant negative phenotype.  相似文献   

16.
Mutational damage of the ptsH gene leads to pleiotropic disturbance of sugar utilization in Escherichia coli K12. A fruS mutation suppresses the defect because of a constitutional expression of the fruB and fruA genes. FruB protein possessing a pseudo-HPr activity replaces the HPr. It was shown that wild type allele fruS+ dominates over the fruS1156 mutation in heterozygous merodiploid. The existence of thermosensitive mutations (fruS4 and fruS12) which repair the ptsH damage was also demonstrated. The fruS mutations were located in the fru operon. Fructose utilization was not disturbed in fruS1156 mutant, but fruS2 and fruS12 mutants were unable to utilize fructose. Spontaneous mutations (fruS6 and fruS13) possessing the same phenotype at any temperature similar to the thermosensitive ones under nonpermissive conditions were isolated. They were mapped using the P1vir transduction. The fruS mutations were found in the structural gene of the fructose operon. Presumably it is the fruA gene that cods for the fructose-specific multidomain protein IIB'Bc of the phosphoenolpyruvate-dependent phosphotransferase system.  相似文献   

17.
The uvrD gene in Escherichia coli encodes a 720-amino-acid 3'-5' DNA helicase which, although nonessential for viability, is required for methyl-directed mismatch repair and nucleotide excision repair and furthermore is believed to participate in recombination and DNA replication. We have shown in this study that null mutations in uvrD are incompatible with lon, the incompatibility being a consequence of the chronic induction of SOS in uvrD strains and the resultant accumulation of the cell septation inhibitor SulA (which is a normal target for degradation by Lon protease). uvrD-lon incompatibility was suppressed by sulA, lexA3(Ind(-)), or recA (Def) mutations. Other mutations, such as priA, dam, polA, and dnaQ (mutD) mutations, which lead to persistent SOS induction, were also lon incompatible. SOS induction was not observed in uvrC and mutH (or mutS) mutants defective, respectively, in excision repair and mismatch repair. Nor was uvrD-mediated SOS induction abolished by mutations in genes that affect mismatch repair (mutH), excision repair (uvrC), or recombination (recB and recF). These data suggest that SOS induction in uvrD mutants is not a consequence of defects in these three pathways. We propose that the UvrD helicase participates in DNA replication to unwind secondary structures on the lagging strand immediately behind the progressing replication fork, and that it is the absence of this function which contributes to SOS induction in uvrD strains.  相似文献   

18.
The effect of the recA, uvrD, exrA, and recB mutations and of post-irradiation treatment with chloramphenicol on the survival and post-replication repair after ultraviolet irradiation of uvrB strains of Escherichia coli K-12 was examined. Each of these mutations or treatments was found to decrease survival and the extent of repair. The interactions of the inhibitory effects of the uvrD, exaA, and recB mutations and chloramphenicol treatment were determined by examining the survival and repair characteristics of the several multiple mutants. The survival results suggest that the post-replication repair process in uvrB strains may be subdivided into at least five different branches. These include three branches that are blocked by the exrA, recB, or uvrD mutation, a fourth branch that is blocked by any of these mutations and is also sensitive to chloramphenicol treatment, and at least one additional branch that is not sensitive to either of these mutations or to chloramphenicol treatment. The extent of post-replicational repair observed with each of the strains is in general agreement with the pathways postulated on the basis of the survival data, although there are several apparent exceptions to this correlation.  相似文献   

19.
lexA dependent recombination in uvrD strains of Escherichia coli   总被引:7,自引:0,他引:7  
Mutation of the uvrD gene of Escherichia coli is associated with an increased capacity for genetic recombination. The hyper-recombination effect is abolished by an additional mutation in lexA that limits synthesis of RecA protein and other gene products regulated by LexA repressor, and is not restored when increased synthesis of RecA protein is facilitated by a recAoc mutation. The viability of uvrD lexA strains is reduced and revertants selected on the basis of improved growth fall into three categories: those that are lexA+, or carry another mutation in lexA that directly suppresses the lexA defect; recA mutants that have lost the capacity for recombination altogether; and a third class which carry a mutation that is not in lexA or recA and which restores the hyper-rec phenotype but does not otherwise suppress the lexA defect. These results indicate that the hyper-recombination effect of a uvrD mutation is an induced response catalysed by RecA protein and at least one other lexA regulated activity.  相似文献   

20.
A temperature-sensitive uvrD mutant, HD323 uvrD4, was isolated from the uvrD mutant HD4 uvrD3. The temperature sensitivity of the uvrD4 gene product was reversible. The suppressor mutation uvrD44 which rendered the uvrD3 mutant temperature-sensitive could be separated from the uvrD3 mutation by replacing the PstI fragment, which encodes the C-terminal half of the UvrD protein. The uvrD44 mutation was found to make host bacteria lethal at non-permissive temperatures only when cloned on a low copy vector pMF3. The nucleotide sequence of the uvrD3 and uvrD4 mutant genes was determined. The nucleotide change found in the uvrD3 at +1235, GAA to AAA, only alters the amino acid sequence from Glu at 387 to Lys. The uvrD44 has another nucleotide change at +1859, GAA to AAA (Glu at 595 to Lys), which is considered to be the suppressor mutation uvrD44.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号