首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
BrdU (5-bromodeoxyuridine)-33258 Hoechst methods have been adapted for in vivo analyses of replication kinetics, sister chromatid differentiation and sister chromatid exchange (SCE) formation in mice. Sufficient in vivo BrdU substitution for cytological detection was effected with multiple intraperitoneal injections of the analogue. The combination of centromere staining asymmetry and sister chromatid differentiation at metaphase permits unambiguous determination of the number of replications in BrdU and dT (deoxythymidine) undergone by individual cells. Late-replicating regions in marrow and spermatogonial chromosomes are highlighted by bright fluorescence after sequential incorporation of BrdU followed by dT during a single DNA synthesis period. SCEs are analyzed in marrow and spermatogonial metaphases after successive complete cycles of BrdU and dT incorporation. Significant induction of SCE was observed with both mitomycin C and cyclophosphamide; the latter drug requires host-mediated activation to be effective. In meiotic metaphase cells harvested two weeks after BrdU incorporation, satellite DNA asymmetry, sister chromatid differentiation and SCE could be detected in a few chromosomes, most frequently the X and the Y.  相似文献   

2.
Four human female fibroblast strains with an i(Xq) or derivative X chromosome as a cytological marker for the inactive X chromosome were used to determine the frequency of sister chromatid exchanges (SCEs) in the active and inactive X chromosomes. No significant difference in SCE frequency between the active and inactive X chromosomes was observed. Therefore, the state of chromatin condensation and the late DNA replication in the facultative heterochromatin of the inactive X chromosome do not appear to influence the SCE frequency.  相似文献   

3.
I G Lil'p 《Genetika》1984,20(2):260-265
No differences were found in both the baseline and mitomycin C induced levels of sister chromatid exchanges (SCE) between 101/H and C57BL/6J mice differing in chromosome mutability. An increase with the age of the spontaneous and mutagen induced SCE rates was similar in the strains compared, though instability of chromosomes was much higher in old 101/H than in C57BL/6J mice. Thus, no correlation was observed between chromosomal aberration and SCE levels in these strains. As 101/H mice were recently found to be DNA repair-deficient, possible connection of SCE and repair is discussed.  相似文献   

4.
Blood lymphocyte cultures from 32 Comisana and Laticauda sheep breeds (15 males and 17 females) raised in Southern Italy were studied using sister chromatid exchange (SCE) test. Of the 932 cells studied, the SCE-mean value was 7.20 +/- 2.5 per cell for both breeds. Indeed, the SCE mean values were 7.12 +/- 2.45 and 7.28 +/- 2.55 in Comisana and Laticauda breeds, respectively, and the differences were not significant. No statistical differences were noticed between male and female cells (7.25 +/- 2.39 and 7.16 +/- 2.60, respectively). The SCE frequency distribution did not follow a Poisson distribution. The number of SCE were significantly higher than expected in chromosomes 1, 2 and 3 (p < 0.001) and significantly lower than expected in the X and remaining chromosomes (p < 0.001) on the basis of relative chromosome lengths.  相似文献   

5.
The frequency of sister chromatid exchanges (SCEs) was determined for the chromosomes (except Y2) of the Indian muntjac stained by the fluorescence plus Giemsa (FPG) or harlequin chromosome technique. The relative DNA content of each of the chromosomes was also measured by scanning cytophotometry. After growth in bromodeoxyuridine (BrdU) for two DNA replication cycles. SCEs were distributed according to the Poisson formula in each of the chromosomes. The frequency of SCE in each of the chromosomes was directly proportional to DNA content. A more detailed analysis of SCEs was performed for the three morphologically distinguishable regions of the X-autosome composite chromosome. The SCE frequency in the euchromatic long arm and short arm were proportional to the amount of DNA. In contrast, the constitutive heterochromatin in the neck of this chromosome contained far fewer SCEs than expected on the basis of the amount of DNA in this region. A high frequency of SCE, however, was observed at the point junctions between the euchromatin and heterochromatin.  相似文献   

6.
To test whether sister chromatid exchange (SCE) scores on human chromosomes have a uniform distribution, simulated SCE scores were generated and compared with observed scores using log-linear models. The analysis was performed at the level of the chromosome groups. Using this method we first tested whether the number of SCEs was distributed uniformly, i.e. proportional to the relative length of the chromosomes. Refinements of this hypothesis were made by considering a variable region around a first SCE to be inert for other SCEs and by making the occurrence of an SCE on a chromosome dependent on the occurrence of another SCE on the same chromosome. In further analyses it was tested whether the number of SCEs was proportional to the number of G bands on a chromosome, or to the DNA content of the chromosomes. None of the tested hypotheses fitted the observed data, establishing the non-uniform distribution of these events.  相似文献   

7.
Recombinational DNA repair and sister chromatid exchanges   总被引:2,自引:0,他引:2  
We show that a recombinational repair mechanism for DNA lesions can be expected to produce exactly the types of exceptions to the usually observed semiconservative segregation of newly synthetized DNA that have been reported in the literature. This removes the obstacles their occurrence appearance to present to the interpretation that the eukaryote chromosome is mononeme, containing but a single DNA double helix prior to replication. We further note that such a recombinational repair system would generate single sister chromatid exchange (SCE) events but not twin SCE events. This, along with other factors, complicates the interpretation of single: twin ratios in terms of any particular model of eukaryote chromosome structure.  相似文献   

8.
Chromosome segregation ensures the equal partitioning of chromosomes at mitosis. However, long chromosome arms may pose a problem for complete sister chromatid separation. In this paper we report on the analysis of cell division in primary cells from field vole Microtus agrestis, a species with 52 chromosomes including two giant sex chromosomes. Dual chromosome painting with probes specific for the X and the Y chromosomes showed that these long chromosomes are prone to mis-segregate, producing DNA bridges between daughter nuclei and micronuclei. Analysis of mitotic cells with incomplete chromatid separation showed that reassembly of the nuclear membrane, deposition of INner CENtromere Protein (INCENP)/Aurora B to the spindle midzone and furrow formation occur while the two groups of daughter chromosomes are still connected by sex chromosome arms. Late cytokinetic processes are not efficiently inhibited by the incomplete segregation as in a significant number of cell divisions cytoplasmic abscission proceeds while Aurora B is at the midbody. Live-cell imaging during late mitotic stages also revealed abnormal cell division with persistent sister chromatid connections. We conclude that late mitotic regulatory events do not monitor incomplete sister chromatid separation of the large X and Y chromosomes of Microtus agrestis, leading to defective segregation of these chromosomes. These findings suggest a limit in chromosome arm length for efficient chromosome transmission through mitosis.Electronic supplementary material Supplementary material is available in the online version of this article at and is accessible for authorized users.  相似文献   

9.
DNA damage and cytogenetic effects of ionizing radiation were investigated in Chinese hamster ovary (CHO) cells and unstimulated human peripheral blood lymphocytes. DNA damage and repair were analysed by alkaline elution under conditions that predominantly measured DNA single-strand breaks (ssb). X-radiation (2.5 Gy) induced ssb in both CHO cells and unstimulated lymphocytes, and the breaks were repaired within 30 and 90 min, respectively. This rapid repair was delayed by the poly(ADP-ribose) polymerase inhibitor, 3-aminobenzamide (3AB). The cytogenetic effects of the 3AB-induced delay in DNA repair were examined by analysing sister chromatid exchange (SCE) frequency in CHO cells and fragmentation of prematurely condensed chromosomes (PCC) in unstimulated human lymphocytes after 2.5 Gy of X-rays. Although 3AB delayed the rejoining of DNA ssb, this delay did not result in increased cytogenetic damage manifested as either SCE or fragmentation of PCC. These results indicate that the rapidly rejoining DNA ssb are not important in the production of chromosome damage.  相似文献   

10.
We reported previously that the homologous recombinational repair (HRR)-deficient Chinese hamster mutant cell line irs3 (deficient in the Rad51 paralog Rad51C) showed only a 50% spontaneous frequency of sister chromatid exchange (SCE) as compared to parental wild-type V79 cells. Furthermore, when irradiated with very low doses of alpha particles, SCEs were not induced in irs3 cells, as compared to a prominent bystander effect observed in V79 cells [H. Nagasawa, Y. Peng, P.F. Wilson, Y.C. Lio, D.J. Chen, J.S. Bedford, J.B. Little, Role of homologous recombination in the alpha-particle-induced bystander effect for sister chromatid exchanges and chromosomal aberrations, Radiat. Res. 164 (2005) 141-147]. In the present study, we examined additional Chinese hamster cell lines deficient in the Rad51 paralogs Rad51C, Rad51D, Xrcc2, and Xrcc3 as well as another essential HRR protein, Brca2. Spontaneous SCE frequencies in non-irradiated wild-type cell lines CHO, AA8 and V79 were 0.33SCE/chromosome, whereas two Rad51C-deficient cell lines showed only 0.16SCE/chromosome. Spontaneous SCE frequencies in cell lines defective in Rad51D, Xrcc2, Xrcc3, and Brca2 ranged from 0.23 to 0.33SCE/chromosome, 0-30% lower than wild-type cells. SCEs were induced significantly 20-50% above spontaneous levels in wild-type cells exposed to a mean dose of 1.3mGy of alpha particles (<1% of nuclei traversed by an alpha particle). However, induction of SCEs above spontaneous levels was minimal or absent after alpha-particle irradiation in all of the HRR-deficient cell lines. These data suggest that Brca2 and the Rad51 paralogs contribute to DNA damage repair processes induced in bystander cells (presumably oxidative damage repair in S-phase cells) following irradiation with very low doses of alpha particles.  相似文献   

11.
Summary Treatment of human lymphocytes in vitro with trimethylpsoralen or 8-methoxypsoralen and UVA irradiation (PUVA) induced chromosome damage, mainly constrictions and gaps, but also breaks and exchanges, and increased the frequency of sister chromatid exchange (SCE). The localization of the chromosome aberrations was nonrandom. The coincidence of many PUVA hits with mercaptoenthanol hits suggests that PUVA may have other targets in the cell than the DNA, perhaps the folding proteins of the chromosomes and the nuclear membrane/chromatin attachment organelles.Caffeine increased in a synergistic way the chromosome aberration yield if added after PUVA treatment, but there was no effect when caffeine was present before and during PUVA treatment. The SCE frequency was increased in the presence of caffeine.  相似文献   

12.
Frequency of sister chromatid exchanges (SCE) were recorded separately for different chromosomes from bone marrow cells of female mice of the two genetic strains (C3H/S and C57BL/6J). SCEs were evaluated following different doses of 5-bromo-2'-deoxyuridine (BrdU) as nine hourly i.p. injections. The SCE per cell increased with increasing BrdU doses which was slightly higher in C3H/S than in the C57BL/6J. SCEs per cell were variable at every treatment-strain combination, possibly reflecting the heterogeneous nature of the bone marrow cells. In general, there is a positive correlation between SCE per chromosome and the relative chromosome length. Total SCEs on one of the large chromosomes (most likely the X chromosome), however, are significantly higher than expected on the basis of relative length alone. Most of this increase is attributable to one of the homologues of this chromosome, which is not in synchrony with the rest of the chromosomes and may represent the late-replicating X. These results when viewed in the light of replication properties of the heterochromatinized X, suggest a direct involvement of DNA replication in SCE formation and may argue against the replication point as the sole site for the SCEs.  相似文献   

13.
Lateral asymmetry in human constitutive heterochromatin   总被引:7,自引:2,他引:7  
Human lymphocytes were grown for one replication cycle in BrdU, stained with 33258 Hoechst, exposed to UV light and subsequently treated with 2 x SSC and stained with Giemsa. This technique differentially stains the constitutive heterochromatin of chromosomes 1, 9, 15, 16, and the Y. In the heterochromatin of chromosome 9 both sister chromatids stained darkly and symmetrically but in the other four chromosomes the heterochromatin showed lateral asymmetry, one chromatid being darkly stained while its sister chromatid was as pale or paler than the rest of the chromosome. The lateral asymmetry is presumed to reflect an underlying asymmetry in distribution of thymine between the two strands of the DNA duplex in the satellite DNA component of the chromosomes. In some number 1 chromosomes compound lateral asymmetry was seen; darkly staining material was present on both sister chromatids although at any given point lateral asymmetry was maintained so that if one chromatid stained darkly the corresponding point on the sister chromatid was very pale. The pattern of compound lateral asymmetry varied among the number 1 chromosomes studied but was constant for any one homologue from one individual. This technique reveals a previously unsuspected type of polymorphism within the constitutive heterochromatin of man.  相似文献   

14.
Chromosomal analysis has been carried out in 4 patients with the symptoms of hepatic coma. An analysis included lymphocytes cultured from peripheral blood. Chromosomal disorders have been assessed with two techniques: structural chromosomal aberrations test, and sister chromatid exchange (SCE) test. It has been shown that the extend of chromosomal damage in the form of the gaps, breaks, acentric chromosomes as well as the presence of ring and dicentric chromosomes, and micronuclear cells have been higher in the examined patients. Such changes may evidence DNA repair disorders, and the presence of micronuclear forms may seem an unfavourable prognosis.  相似文献   

15.
Molecular mechanisms of sister-chromatid exchange   总被引:1,自引:0,他引:1  
Sister-chromatid exchange (SCE) is the process whereby, during DNA replication, two sister chromatids break and rejoin with one another, physically exchanging regions of the parental strands in the duplicated chromosomes. This process is considered to be conservative and error-free, since no information is generally altered during reciprocal interchange by homologous recombination. Upon the advent of non-radiolabel detection methods for SCE, such events were used as genetic indicators for potential genotoxins/mutagens in laboratory toxicology tests, since, as we now know, most forms of DNA damage induce chromatid exchange upon replication fork collapse. Much of our present understanding of the mechanisms of SCE stems from studies involving nonhuman vertebrate cell lines that are defective in processes of DNA repair and/or recombination. In this article, we present a historical perspective of studies spearheaded by Dr. Anthony V. Carrano and colleagues focusing on SCE as a genetic outcome, and the role of the single-strand break DNA repair protein XRCC1 in suppressing SCE. A more general overview of the cellular processes and key protein "effectors" that regulate the manifestation of SCE is also presented.  相似文献   

16.
Cell survival, single and double DNA strand breaks formation and removal, spontaneous and induced chromosome aberrations and sister chromatid exchange (SCE) levels in gamma-irradiated cells of patients with ataxia-telangiectasia (AT) were studied. Except SCE all of the above indexes of AT cells sensitivity, were higher, than in normal human cells, but lower, than it is commonly characteristic of AT cells in literature. A conclusion is that the analysed AT cells belong to the AT-variant form. Possible mechanisms of high radiosensitivity of AT cells, accompanied by radioresistance of DNA replication, are discussed. The authors suppose that the DNA repair defect in AT cells is not primary.  相似文献   

17.
N. Kanda 《Chromosoma》1981,84(2):257-263
Selective differential staining of sister chromatids for the facultative heterochromatic X chromosome in the female mouse has been achieved by the combination of two differential staining techniques; one for the heterochromatic X chromosome and the other for sister chromatids. Thermal hypotonic treatment moderately destroyed the chromosome structure except for the heterochromatic X in BrdU labelled metaphase cells, resulting in the selective sister chromatid differentiation of this X with Giemsa stain. This technique enables us to know the exact frequency of the spontaneous sister chromatid exchanges in the heterochromatic X without using 3H-TdR labelling for detecting the late DNA replication. The results indicate that the sister chromatid exchange frequency of the heterochromatic X chromosome is not affected by its late DNA replication during S phase, or by the genetic inactivation and the resulting heterochromatinization.  相似文献   

18.
Bobbed lethal (bbl) chromosomes carry too few ribosomal genes for homozygous flies to be viable. Reversion of bbl chromosomes to bb or nearly bb+ occurs under magnifying conditions at a low frequency in a single generation. These reversions occur too rapidly to be accounted for by single unequal sister chromatid exchanges and seem unlikely to be due to multiple sister strand exchanges within a given cell lineage. Analysis of several one-step revertants indicates that they are X-Y recombinant chromosomes which probably arise from X-Y recombination at bb. The addition of ribosomal genes from the Y chromosome to the bbl chromosome explains the more rapid reversion of the bbl chromosome than is permitted by single events of unequal sister chromatid exchange. Analysis of stepwise bbl magnified chromosomes, which were selected over a period of 4-9 magnifying generations, shows ribosomal gene patterns that are closely similar to each other. Similarity in rDNA pattern among stepwise magnified products of the same parental chromosome is consistent with reversion by a mechanism of unequal sister strand exchange.  相似文献   

19.
Genotoxicity testing of fluconazole in vivo and in vitro   总被引:1,自引:0,他引:1  
The genotoxic effects of the antifungal drug fluconazole (trade name triflucan) were assessed in the chromosome aberration (CA) test in mouse bone-marrow cells in vivo and in the chromosome aberration, sister chromatid exchange (SCE) and micronucleus (MN) tests in human lymphocytes. Fluconazole was used at concentrations of 12.5, 25.0 and 50.0 mg/kg for the in vivo assay and 12.5, 25.0 and 50.0 microg/ml were used for the in vitro assay. In both test systems, a negative and a positive control (MMC) were also included. Six types of structural aberration were observed: chromatid and chromosome breaks, sister chromatid union, chromatid exchange, fragments and dicentric chromosomes. Polyploidy was observed in both the in vivo and in vitro systems. In the in vivo test, fluconazole did not significantly increase the frequency of CA. In the in vitro assays, CA, SCE and MN frequencies were significantly increased in a dose-dependent manner compared with the negative control. The mitotic, replication and cytokinesis-block proliferation indices (CBPI) were not affected by treatments with fluconazole. According to these results, fluconazole is clastogenic and aneugenic in human lymphocytes, but these effects could not be observed in mice. Further studies should be conducted in other test systems to evaluate the full genotoxic potential of fluconazole.  相似文献   

20.
Equal sister chromatid exchange (SCE) has been thought to be an important mechanism of double-strand break (DSB) repair in eukaryotes, but this has never been proven due to the difficulty of distinguishing SCE products from parental molecules. To evaluate the biological relevance of equal SCE in DSB repair and to understand the underlying molecular mechanism, we developed recombination substrates for the analysis of DSB repair by SCE in yeast. In these substrates, most breaks are limited to one chromatid, allowing the intact sister chromatid to serve as the repair template; both equal and unequal SCE can be detected. We show that equal SCE is a major mechanism of DSB repair, is Rad51 dependent, and is stimulated by Rad59 and Mre11. Our work provides a physical analysis of mitotically occurring SCE in vivo and opens new perspectives for the study and understanding of DSB repair in eukaryotes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号