首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
Ghrelin is a gastric peptide that regulates energy homeostasis. Angiotensin II (Ang II) is known to induce body weight loss and skeletal muscle catabolism through the ubiquitin-proteasome pathway. In this study, we investigated the effects of ghrelin on body weight and muscle catabolism in mice treated with Ang II. The continuous subcutaneous administration of Ang II to mice for 6days resulted in cardiac hypertrophy and significant decreases in body weight gain, food intake, food efficiency, lean mass, and fat mass. In the gastrocnemius muscles of Ang II-treated mice, the levels of insulin-like growth factor 1 (IGF-1) were decreased, and the levels of mRNA expression of catabolic factors were increased. Although the repeated subcutaneous injections of ghrelin (1.0mg/kg, twice daily for 5days) did not affect cardiac hypertrophy, they resulted in significant body weight gains and improved food efficiencies and tended to increase both lean and fat mass in Ang II-treated mice. Ghrelin also ameliorated the decreased IGF-1 levels and the increased mRNA expression levels of catabolic factors in the skeletal muscle. IGF-1 mRNA levels in the skeletal muscle significantly decreased 24h after Ang II infusion, and this was reversed by two subcutaneous injections of ghrelin. In C2C12-derived myocytes, the dexamethasone-induced mRNA expression of atrogin-1 was decreased by IGF-1 but not by ghrelin. In conclusion, we demonstrated that ghrelin improved body weight loss and skeletal muscle catabolism in mice treated with Ang II, possibly through the early restoration of IGF-1 mRNA in the skeletal muscle and the amelioration of nutritional status.  相似文献   

2.
Anti-cachectic effect of ghrelin in nude mice bearing human melanoma cells   总被引:5,自引:0,他引:5  
Ghrelin is a novel brain-gut peptide that stimulates food intake and body weight gain. We studied the anabolic effect of ghrelin in a cancer cachexia mouse model. SEKI, a human melanoma cell line, was inoculated into nude mice to examine the effects of ghrelin on food intake and body weight. The intraperitoneal administration of ghrelin twice a day (6 nmol/mice/day) for 6 days suppressed weight loss in SEKI-inoculated mice and increased the rate of weight gain in vehicle-treated nude mice. Ghrelin administration also increased food intake in both SEKI- and vehicle-treated mice. Both the weight of white adipose tissue and the plasma leptin concentration were reduced in tumor-inoculated mice compared with vehicle-treated mice; these factors increased following ghrelin administration. The levels of both ghrelin peptide and mRNA in the stomach were upregulated in tumor-inoculated mice. The anabolic effect of ghrelin efficiently reverses the cachexia in mice bearing SEKI human melanoma. Ghrelin therefore may have a therapeutic ability to ameliorate cancer cachexia.  相似文献   

3.
Corticotropin-releasing factor overexpressing (CRF-OE) male mice showed an inhibited feeding response to a fast, and lower plasma acyl ghrelin and Fos expression in the arcuate nucleus compared to wild-type (WT) mice. We investigated whether hormones and hypothalamic feeding signals are impaired in CRF-OE mice and the influence of sex. Male and female CRF-OE mice and WT littermates (4–6 months old) fed ad libitum or overnight fasted were assessed for body, adrenal glands and perigonadal fat weights, food intake, plasma hormones, blood glucose, and mRNA hypothalamic signals. Under fed conditions, compared to WT, CRF-OE mice have increased adrenal glands and perigonadal fat weight, plasma corticosterone, leptin and insulin, and hypothalamic leptin receptor and decreased plasma acyl ghrelin. Compared to male, female WT mice have lower body and perigonadal fat and plasma leptin but higher adrenal glands weights. CRF-OE mice lost these sex differences except for the adrenals. Male CRF-OE and WT mice did not differ in hypothalamic expression of neuropeptide Y (NPY) and proopiomelanocortin (POMC), while female CRF-OE compared to female WT and male CRF-OE had higher NPY mRNA levels. After fasting, female WT mice lost more body weight and ate more food than male WT, while CRF-OE mice had reduced body weight loss and inhibited food intake without sex difference. In male WT mice, fasting reduced plasma insulin and leptin and increased acyl ghrelin and corticosterone while female WT showed only a rise in corticosterone. In CRF-OE mice, fasting reduced insulin while leptin, acyl ghrelin and corticosterone were unchanged with no sex difference. Fasting blood glucose was higher in CRF-OE with female > male. In WT mice, fasting increased hypothalamic NPY expression in both sexes and decreased POMC only in males, while in CRF-OE mice, NPY did not change, and POMC decreased in males and increased in females. These data indicate that CRF-OE mice have abnormal basal and fasting circulating hormones and hypothalamic feeding-related signals. CRF-OE also abolishes the sex difference in body weight, abdominal fat, and fasting-induced feeding and changes in plasma levels of leptin and acyl ghrelin.  相似文献   

4.
We have previously shown that growth hormone (GH) overexpression in the brain increased food intake, accompanied with increased hypothalamic agouti-related protein (AgRP) expression. Ghrelin, which stimulates both appetite and GH secretion, was injected intracerebroventricularly to GHR-/- and littermate control (+/+) mice to determine whether ghrelin's acute effects on appetite are dependent on GHR signaling. GHR-/- mice were also analyzed with respect to serum levels of lipoproteins, apolipoprotein (apo)B, leptin, glucose, and insulin as well as body composition. Central injection of ghrelin into the third dorsal ventricle increased food consumption in +/+ mice, whereas no change was observed in GHR-/- mice. After ghrelin injection, AgRP mRNA expression in the hypothalamus was higher in +/+ littermates than in GHR-/- mice, indicating a possible importance of AgRP in the GHR-mediated effect of ghrelin. Compared with controls, GHR-/- mice had increased food intake, leptin levels, and total and intra-abdominal fat mass per body weight and deceased lean mass. Moreover, serum levels of triglycerides, LDL and HDL cholesterol, and apoB, as well as glucose and insulin levels were lower in the GHR-/- mice. In summary, ghrelin's acute central action to increase food intake requires functionally intact GHR signaling. Long-term GHR deficiency in mice is associated with high plasma leptin levels, obesity, and increased food intake but a marked decrease in all lipoprotein fractions.  相似文献   

5.
Ghrelin, an acylated peptide produced in the stomach, increases food intake and growth hormone secretion, suppresses inflammation and oxidative stress, and promotes cell survival and proliferation. We investigated the pharmacological potential of ghrelin in the treatment of polyneuropathy in uncontrolled streptozotocin (STZ)-induced diabetes in mice. Ghrelin or desacyl-ghrelin was administered daily for 4 weeks after STZ-induced diabetic polyneuropathy had developed. Ghrelin administration did not alter food intake, body weight gain, blood glucose levels, or plasma insulin levels when compared with mice given saline or desacyl-ghrelin administration. Ghrelin administration ameliorated reductions in motor and sensory nerve conduction velocities in diabetic mice and normalized their temperature sensation and plasma concentrations of 8-isoprostaglandin α, an oxidative stress marker. Desacyl-ghrelin failed to have any effect. Ghrelin administration in a mouse model of diabetes ameliorated polyneuropathy. Thus, ghrelin’s effects represent a novel therapeutic paradigm for the treatment of this otherwise intractable disorder.  相似文献   

6.
During aging, decreases in energy expenditure and locomotor activity lead to body weight and fat gain. Aging is also associated with decreases in muscle strength and endurance leading to functional decline. Here, we show that lifelong deletion of ghrelin prevents development of obesity associated with aging by modulating food intake and energy expenditure. Ghrelin deletion also attenuated the decrease in phosphorylated adenosine monophosphate‐activated protein kinase (pAMPK) and downstream mediators in muscle, and increased the number of type IIa (fatigue resistant, oxidative) muscle fibers, preventing the decline in muscle strength and endurance seen with aging. Longevity was not affected by ghrelin deletion. Treatment of old mice with pharmacologic doses of ghrelin increased food intake, body weight, and muscle strength in both ghrelin wild‐type and knockout mice. These findings highlight the relevance of ghrelin during aging and identify a novel AMPK‐dependent mechanism for ghrelin action in muscle.  相似文献   

7.
Ghrelin, an endogenous ligand of the growth hormone secretagogue receptor, has been primarily isolated from the human and rat stomach. Ghrelin has been shown to stimulate appetite and fat deposition in adult rats and humans. The aim of this study was to investigate the effect of ghrelin administration on pancreatic growth in suckling, weaned and peripubertal seven week old rats. Rats were treated with saline or ghrelin (4, 8 or 16 nmol/kg/dose) intraperitoneally twice a day: suckling rats were treated for 7 or 14 days starting from the first postnatal day, three week old weaned rats and seven weeks old rats were treated for 5 days. Treatment with ghrelin did not affect animal weight in suckling or weaned rats, whereas in young seven week old rats, ghrelin caused a significant increase in body weight. Ghrelin decreased food intake in weaned rats; whereas in seven week old rats, food intake was enhanced. In suckling rats, ghrelin decreased the pancreatic weight, pancreatic amylase content, DNA synthesis and DNA content. In contrast, ghrelin increased pancreatic weight, DNA synthesis, DNA content and amylase content in weaned or young seven week old rats. Pancreatic blood flow was not affected by ghrelin in any group of rats tested. Ghrelin increased serum level of growth hormone in all rats. This effect was weak in suckling rats, higher in weaned and the highest in seven week old animals. Ghrelin did not affect serum level of insulin-like growth factor-1 (IGF-1) in suckling rats. In weaned and in seven week old rats, treatment with ghrelin caused increase in serum level of IGF-1. We conclude that ghrelin reduces pancreatic growth in suckling rats; whereas in weaned and young seven week old animals, treatment with ghrelin increases pancreatic growth. This biphasic effect of ghrelin in young animals on pancreatic growth seems to be related to age-dependent changes of the release of anabolic IGF-1.  相似文献   

8.
The neuronal coordination of metabolic homeostasis requires the integration of hormonal signals with multiple interrelated central neuronal circuits to produce appropriate levels of food intake, energy expenditure and fuel availability. Ghrelin, a peripherally produced peptide hormone, circulates at high concentrations during nutrient scarcity. Ghrelin promotes food intake, an action lost in ghrelin receptor null mice and also helps maintain fasting blood glucose levels, ensuring an adequate supply of nutrients to the central nervous system. To better understand mechanisms of ghrelin action, we have examined the roles of ghrelin receptor (GHSR) expression in the mouse hindbrain. Notably, selective hindbrain ghrelin receptor expression was not sufficient to restore ghrelin-stimulated food intake. In contrast, the lowered fasting blood glucose levels observed in ghrelin receptor-deficient mice were returned to wild-type levels by selective re-expression of the ghrelin receptor in the hindbrain. Our results demonstrate the distributed nature of the neurons mediating ghrelin action.  相似文献   

9.
Taste perception plays an important role in regulating food preference, eating behavior and energy homeostasis. Taste perception is modulated by a variety of factors, including gastric hormones such as ghrelin. Ghrelin can regulate growth hormone release, food intake, adiposity, and energy metabolism. Octanoylation of ghrelin by ghrelin O-acyltransferase (GOAT) is a specific post-translational modification which is essential for many biological activities of ghrelin. Ghrelin and GOAT are both widely expressed in many organs including the gustatory system. In the current study, overall metabolic profiles were assessed in wild-type (WT), ghrelin knockout (ghrelin−/−), and GOAT knockout (GOAT−/−) mice. Ghrelin−/− mice exhibited decreased food intake, increased plasma triglycerides and increased ketone bodies compared to WT mice while demonstrating WT-like body weight, fat composition and glucose control. In contrast GOAT−/− mice exhibited reduced body weight, adiposity, resting glucose and insulin levels compared to WT mice. Brief access taste behavioral tests were performed to determine taste responsivity in WT, ghrelin−/− and GOAT−/− mice. Ghrelin and GOAT null mice possessed reduced lipid taste responsivity. Furthermore, we found that salty taste responsivity was attenuated in ghrelin−/− mice, yet potentiated in GOAT−/− mice compared to WT mice. Expression of the potential lipid taste regulators Cd36 and Gpr120 were reduced in the taste buds of ghrelin and GOAT null mice, while the salt-sensitive ENaC subunit was increased in GOAT−/− mice compared with WT mice. The altered expression of Cd36, Gpr120 and ENaC may be responsible for the altered lipid and salt taste perception in ghrelin−/− and GOAT−/− mice. The data presented in the current study potentially implicates ghrelin signaling activity in the modulation of both lipid and salt taste modalities.  相似文献   

10.
Deletion of ghrelin impairs neither growth nor appetite   总被引:29,自引:0,他引:29       下载免费PDF全文
Pharmacological studies show that ghrelin stimulates growth hormone release, appetite, and fat deposition, but ghrelin's physiological role in energy homeostasis has not been established. Ghrelin was also proposed to regulate leptin and insulin release and to be important for the normal function of stomach, heart, kidney, lung, testis, and placenta. To help determine a definable physiological role for ghrelin, we generated ghrelin-null mice. In contrast to predictions made from the pharmacology of ghrelin, ghrelin-null mice are not anorexic dwarfs; their size, growth rate, food intake, body composition, reproduction, gross behavior, and tissue pathology are indistinguishable from wild-type littermates. Fasting produces identical decreases in serum leptin and insulin in null and wild-type mice. Ghrelin-null mice display normal responses to starvation and diet-induced obesity. As in wild-type mice, the administration of exogenous ghrelin stimulates appetite in null mice. Our data show that ghrelin is not critically required for viability, fertility, growth, appetite, bone density, and fat deposition and not likely to be a direct regulator of leptin and insulin. Therefore, antagonists of ghrelin are unlikely to have broad utility as antiobesity agents.  相似文献   

11.
The aim of the study was to investigate the circannual rhythms of leptin and ghrelin in the blue fox, a variant of the endangered arctic fox, in relation to its seasonal cycles of body mass, adiposity and food intake. The effects of long-term fasting and exogenous melatonin treatment on these weight-regulatory hormones were also investigated. The leptin concentrations of the blue fox increased during the autumnal accumulation of fat and decreased during the wintertime and vernal weight loss periods. The leptin levels peaked 2-6 weeks before the maximum values were observed for the body mass indices, voluntary food intake, and body masses. The ghrelin concentrations fluctuated widely during the autumn but decreased in the winter in association with suppression of food intake. Exogenous melatonin advanced the seasonal changes in the food intake of the blue fox but did not affect the seasonal rhythms of leptin and ghrelin concentrations. The leptin concentrations did not respond to the 3-week fasting periods in a consistent way, but the ghrelin levels increased due to food deprivation. In addition to the amount of fat in the body the leptin secretion of the blue fox may be regulated also by other factors. The blue fox may also express seasonal changes in its leptin sensitivity. Our results reinforce the hypothesis that leptin does not function as an acute indicator of body adiposity in seasonal carnivores but rather as a long-term signal of nutritional status.  相似文献   

12.
Comparison of the anorexigenic activity of CRF family peptides   总被引:1,自引:0,他引:1  
Corticotropin releasing factor (CRF) family peptides have an important role in the control of food intake. We investigated the effects of CRF family peptides on food intake and body weight gain in mice. Of the CRF family peptides, including CRF, urocortin1 (Ucn1), urocortin2 (Ucn2) and urocortin3 (Ucn3), peripherally administered Ucn1 was shown to have the most potent inhibitory effect on the food intake and body weight gain of both lean and high fat fed obese mice. In addition, repeated administration of Ucn1 lowered blood glucose and acylated ghrelin, and decreased the visceral fat weight of high fat fed obese mice.  相似文献   

13.
Ghrelin is a stomach hormone that stimulates growth hormone (GH) secretion, adiposity, and food intake. Gastric ghrelin production and secretion are regulated by caloric intake; ghrelin secretion increases during fasting, decreases with refeeding, and is reduced by diet-induced obesity. The aim of the present study was to test the hypotheses that 1) an increase in body adiposity will play an inhibitory role in the reduction of gastric ghrelin synthesis and secretion during chronic ingestion of a high-fat (HF) diet and 2) chronic ingestion of an HF diet will suppress the rise in circulating ghrelin levels in response to acute fasting. Adult male Sprague-Dawley rats were fed a standard AIN-76A (approximately 5-12% of calories from fat) or an HF (approximately 45% of calories from fat) diet. The effect of increased adiposity on gastric ghrelin homeostasis was assessed by comparison of stomach ghrelin production and plasma ghrelin levels in obese and nonobese rats fed the HF diet. HF diet-fed, nonobese rats were generated by administration of triiodothyronine to lower body fat accumulation. Our findings indicate that an increased fat mass per se does not exert an inhibitory effect on ghrelin homeostasis during ingestion of the HF diet. Additionally, the magnitude of change in plasma ghrelin in response to fasting was not blunted, indicating that a presumed, endogenous signal for activation of ingestive behavior remains intact, despite excess stored calories in HF-fed rats.  相似文献   

14.
15.
Prior data demonstrated differential roles for cholecystokinin (CCK)1 receptors in maintaining energy balance in rats and mice. CCK1 receptor deficiency results in hyperphagia and obesity of Otsuka Long-Evans Tokushima Fatty (OLETF) rats but not in mice. To ascertain the role of CCK1 receptors in high-fat-diet (HFD)-induced obesity, we compared alterations in food intake, body weight, fat mass, plasma glucose, and leptin levels, and patterns of hypothalamic gene expression in OLETF rats and mice lacking CCK1 receptors in response to a 10-wk exposure to HFD. Compared with Long-Evans Tokushima Otsuka (LETO) control rats, OLETF rats on HFD had sustained overconsumption over the 10-wk period. High fat feeding resulted in greater increases in body weight and plasma leptin levels in OLETF than in LETO rats. In situ hybridization determinations revealed that, while HFD reduced neuropeptide Y (NPY) mRNA expression in both the arcuate nucleus (Arc) and the dorsomedial hypothalamus (DMH) of LETO rats, HFD resulted in decreased NPY expression in the Arc but not in the DMH of OLETF rats. In contrast to these results in OLETF rats, HFD increased food intake and induced obesity to an equal degree in both wild-type and CCK1 receptor(-/-) mice. NPY gene expression was decreased in the Arc in response to HFD, but was not detectable in the DMH in both wild-type and CCK1 receptor(-/-) mice. Together, these data provide further evidence for differential roles of CCK1 receptors in the controls of food intake and body weight in rats and mice.  相似文献   

16.
The stomach hormone ghrelin is the endogenous ligand for the growth hormone secretagogue receptor (GHS-R). Systemic administration of ghrelin will cause elevations in growth hormone (GH) secretion, food intake, adiposity, and body growth. Ghrelin also affects insulin secretion, gastric acid secretion, and gastric motility. Several reports indicate that repeated or continuous activation of GHS-R by exogenous GHSs or ghrelin results in a diminished GH secretory response. The purpose of this study was to examine the extent to which the acute stimulation of food intake by exogenous ghrelin is altered by chronic hyperghrelinemia in transgenic mice that overexpress the human ghrelin gene. The present findings show that the orexigenic action of exogenous ghrelin is not diminished by a chronic hyperghrelinemia and indicate that the food ingestive pathway of the GHS-R is not susceptible to desensitization. In contrast, the epididymal fat pad growth response, like the GH response, to exogenous ghrelin is blunted in ghrelin transgenic mice with chronic hyperghrelinemia.  相似文献   

17.
《Journal of lipid research》2017,58(12):2324-2333
Diacylglycerol kinases (DGKs) regulate the balance between diacylglycerol (DAG) and phosphatidic acid. DGKζ is highly abundant in skeletal muscle and induces fiber hypertrophy. We hypothesized that DGKζ influences functional and metabolic adaptations in skeletal muscle and whole-body fuel utilization. DAG content was increased in skeletal muscle and adipose tissue, but unaltered in liver of DGKζ KO mice. Linear growth, body weight, fat mass, and lean mass were reduced in DGKζ KO versus wild-type mice. Conversely, male DGKζ KO and wild-type mice displayed a similar robust increase in plantaris weight after functional overload, suggesting that DGKζ is dispensable for muscle hypertrophy. Although glucose tolerance was similar, insulin levels were reduced in high-fat diet (HFD)-fed DGKζ KO versus wild-type mice. Submaximal insulin-stimulated glucose transport and p-Akt Ser473 were increased, suggesting enhanced skeletal muscle insulin sensitivity. Energy homeostasis was altered in DGKζ KO mice, as evidenced by an elevated respiratory exchange ratio, independent of altered physical activity or food intake. In conclusion, DGKζ deficiency increases tissue DAG content and leads to modest growth retardation, reduced adiposity, and protection against insulin resistance. DGKζ plays a role in the control of growth and metabolic processes, further highlighting specialized functions of DGK isoforms in type 2 diabetes pathophysiology.  相似文献   

18.
19.
Ghrelin is a gastric hormone increased during caloric restriction and fat depletion. A role of ghrelin in the regulation of lipid and energy metabolism is suggested by fat gain independent of changes in food intake during exogenous ghrelin administration in rodents. We investigated the potential effects of peripheral ghrelin administration (two times daily 200-micrograms [DOSAGE ERROR CORRECTED] sc injection for 4 days) on triglyceride content and mitochondrial and lipid metabolism gene expression in rat liver and muscles. Compared with vehicle, ghrelin increased body weight but not food intake and circulating insulin. In liver, ghrelin induced a lipogenic and glucogenic pattern of gene expression and increased triglyceride content while reducing activated (phosphorylated) stimulator of fatty acid oxidation, AMP-activated protein kinase (AMPK, all P < 0.05), with unchanged mitochondrial oxidative enzyme activities. In contrast, triglyceride content was reduced (P < 0.05) after ghrelin administration in mixed (gastrocnemius) and unchanged in oxidative (soleus) muscle. In mixed muscle, ghrelin increased (P < 0.05) mitochondrial oxidative enzyme activities independent of changes in expression of fat metabolism genes and phosphorylated AMPK. Expression of peroxisome proliferator-activated receptor-gamma, the activation of which reduces muscle fat content, was selectively increased in mixed muscle where it paralleled changes in oxidative capacities (P < 0.05). Thus ghrelin induces tissue-specific changes in mitochondrial and lipid metabolism gene expression and favors triglyceride deposition in liver over skeletal muscle. These novel effects of ghrelin in the regulation of lean tissue fat distribution and metabolism could contribute to metabolic adaptation to caloric restriction and loss of body fat.  相似文献   

20.
Ghrelin, an endogenous ligand for the growth-hormone-secretagogue receptor, is a 28-amino acid peptide with a post-translational acyl modification necessary for its activity. It has central nervous system actions that affect appetite, body mass and energy balance. An intracerebroventricular (ICV) injection protocol of sub-nanomolar doses of ghrelin, known to alter the morphology of ACTH and GH producing pituicytes and plasma levels of these hormones, was used to provide an overview of metabolic changes linked to energy metabolism. Variables measured were: food intake (FI), water intake (WI), fecal mass, urine volume, body weight (BW), retroperitoneal (RP) and epididymal (EPI) white adipose tissue (WAT), and changes in serum leptin, insulin, triglycerides, cholesterol, and glucose. Five injections of rat ghrelin or PBS (n = 8 per group) were given ICV every 24 h (1 μg/5 μL PBS) to adult male rats. Ghrelin had a positive and cumulative effect on FI, WI and BW (p < 0.05), but not feces mass or urine volume (p > 0.05). Centrally applied ghrelin clearly increased RP WAT (by 235%, p < 0.001), EPI WAT (by 85%, p < 0.05) and serum insulin levels (by 43%, p < 0.05), and decreased serum leptin levels (by 77%, p < 0.05) without (p > 0.05) evoking changes in blood triglyceride cholesterol, or glucose levels.

These data and the available literature clearly document that exposure of the brain of normal rats, over time, to sub-nanomolar doses of ghrelin results in metabolic dysregulation culminating in increased body mass, consummatory behavior, and lipid stores as well as changes in blood leptin/insulin levels. Thus, modulation of central ghrelin receptors may represent a pharmacological approach for controlling multiple factors involved in energy balance and obesity.  相似文献   


设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号