首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The mitogen-activated protein kinase (MAPK) cascade is a key signaling pathway responsible for the transduction of signals from the cell surface to the cell interior and the nucleus. MAPKs are involved in vari-ety of physiological process including cell growth, development, meiosis, cell death and cell differentia-tion[1—3]. Typically, the components of MAPK cas-cades include the MAPK, a mitogen-activated protein kinase kinase (MAPKK) and a mitogen-activated pro-tein kinase kinase kin…  相似文献   

2.
Elicitation of Arabidopsis thaliana (L.) Heynh. suspension cultures with the bacterial protein harpin (from Pseudomonas syringae pv. syringae) induced the activation of two kinases of 39 and 44 kDa, as demonstrated by in-gel kinase assays using myelin basic protein (MBP) as a substrate. Both these kinases appeared to be tyrosine-phosphorylated upon activation, as demonstrated by treatment with tyrosine phosphatase and immunoprecipitation using an anti-phosphotyrosine monoclonal antibody. An inhibitor of mammalian mitogen-activated protein kinase (MAPK) activation, PD98059, inhibited harpin-induced MBPK activation, but did not inhibit the activity of these kinases. PD98059 also inhibited harpin-induced programmed cell death and defence gene expression, suggesting the involvement of harpin-induced MAPKs in defence responses in Arabidopsis thaliana. Received: 23 February 1999 / Accepted: 22 July 1999  相似文献   

3.
We report that two mitogen‐activated protein kinases (MAPKs), MPK9 and MPK12, positively regulate abscisic acid (ABA)‐induced stomatal closure in Arabidopsis thaliana. Yeast elicitor (YEL) induced stomatal closure accompanied by intracellular reactive oxygen species (ROS) accumulation and cytosolic free calcium concentration ([Ca2+]cyt) oscillation. In this study, we examined whether these two MAP kinases are involved in YEL‐induced stomatal closure using MAPKK inhibitors, PD98059 and U0126, and MAPK mutants, mpk9, mpk12 and mpk9 mpk12. Both PD98059 and U0126 inhibited YEL‐induced stomatal closure. YEL induced stomatal closure in the mpk9 and mpk12 mutants but not in the mpk9 mpk12 mutant, suggesting that a MAPK cascade involving MPK9 and MPK12 functions in guard cell YEL signalling. However, YEL induced extracellular ROS production, intracellular ROS accumulation and cytosolic alkalisation in the mpk9, mpk12 and mpk9 mpk12 mutants. YEL induced [Ca2+]cyt oscillations in both wild type and mpk9 mpk12 mutant. These results suggest that MPK9 and MPK12 function redundantly downstream of extracellular ROS production, intracellular ROS accumulation, cytosolic alkalisation and [Ca2+]cyt oscillation in YEL‐induced stomatal closure in Arabidopsis guard cells and are shared with ABA signalling.  相似文献   

4.
Serotonin (5-HT) stimulates superoxide release, phosphorylation, of p42/p44 mitogen-activated protein kinase (MAPK), and DNA synthesis in bovine pulmonary artery smooth muscle cells. Both p42/p44 MAPK and reactive oxygen species (ROS) generation are required for 5-HT-induced growth in SMC. Agents that block the production of ROS, or ROS scavengers, block MAPK activation by 5-HT. However, specific signal transduction by 5-HT leading to proteins that control entrance into the cell cycle are not well defined in smooth muscle cells. Here, we show by Western blot that 5-HT upregulates c-Fos, an immediate early gene product known to regulate the entrance of quiescent cells into the cell cycle. Northern blots showed that c-fos mRNA is induced by 5-HT in 30 min. This induction is blocked by PD98059, indicating that activation of MAPK is required. 5-HT-induced expression of a 350 bp c-fos promoter in a luciferase reporter is blocked by PD98059 and diphenyliodonium (DPI). The GTPases Rac1 and Ras have been implicated in growth factor-induced generation of ROS. Overexpression of either dominant negative (DN) Rac1 or DN Ras inhibited 5-HT-mediated c-fos promoter activation. 5-HT also induced expression from a truncated c-fos promoter containing an isolated serum response element. This activation was blocked by DPI and PD98059. Overexpression of activated Ras and Rac1 were additive for activation of the serum response element promoter. Regulation of cyclin D1, a protein shown to be regulated by c-fos and required for entry into the cell cycle, is upregulated by 5-HT and is blocked by DPI and PD98059. Nuclear factor-κB, which can also regulate cyclin D1, was not activated. We conclude that 5-HT stimulates c-fos and cyclin D1 expression through a ROS-dependent mechanism that requires Ras, Rac1, and MAPK.  相似文献   

5.
We studied the mechanism of sphingosylphosphorylcholine (SPC)-induced contraction in feline ileal smooth muscle cells. Western blotting revealed that G protein subtypes of Gαi1, Gαi3 and Gαo existed in feline ileum. Gαi3 antibody penetration into permeabilized cells decreased SPC-induced contraction. In addition, incubation of [35S]guanosine 5′-O-(3-thiotriphosphate) ([35S]GTPγS) with membrane fraction increased its binding to Gαi3 subtype after SPC treatment, suggesting that the signalling pathways invoked by SPC were mediated by Gαi3 protein. MAPK kinase (MEK) inhibitor PD98059 blocked the contraction significantly, but p38 mitogen-activated protein kinase (MAPK) inhibitor SB202190 did not. Chelerythrine and neomycin also inhibited the contraction. However, cotreatment of PD98059 and chelerythrine showed no significant difference. Phosphorylation of p44/42 MAPK was increased by SPC treatment, which was reversed by pretreatment of inhibitors of signalling molecules that decreased SPC-induced contraction previously. The same result was obtained in the assay of MAPK activity.  相似文献   

6.
Singlet oxygen is a high-energy molecular oxygen species. As one of the most active intermediates involved in chemical and biochemical reactions, singlet oxygen plays essential roles in plant responses to UV and strong light. Here, we report that Cle, an elicitor derived from fungal cell walls, induces the generation of singlet oxygen in cell cultures of ginseng, Panax ginseng. Cle treatment also triggers the activation of plasma membrane NADPH oxidase and 1-aminocyclopropane-1-carboxylic acid oxidase (ACO), subsequently leading to ethylene release and increased saponin synthesis, as shown by increased mRNA expression of squalene synthase (SQS) and squalene epoxidase (SQE), and accumulation of beta-amyrin synthase (beta-AS). Suppression of Cle-induced singlet oxygen generation or inhibition of ethylene production blocks saponin synthesis, whereas treatment of ginseng cells with ethylene or singlet oxygen induces the synthesis of saponin. Together, these results indicate that Cle-induced production of both singlet oxygen and ethylene is required for saponin synthesis, and that singlet oxygen may function upstream of ethylene during Cle-induced saponin synthesis.  相似文献   

7.
8.
Escherichia coli (E. coli) infections play an important and growing role in the clinic. In the present study, we investigated the involvement of members of the mitogen-activated protein kinase (MAPK) superfamily, including extracellular signal-regulated kinase (ERK), c-Jun NH2-terminal kinase (JNK) and p38 MAPK, and caspase-3 and 9 activity in E. coli-induced apoptosis in human U937 cells. We found that E. coli induces apoptosis in U937 cell lines in a dose- and time-dependent manner, p38 MAPK and JNK were activated after 10 min of infection with E. coli. In contrast, ERK1/2 was down-regulated in a time-dependent manner. The levels of total (phosphorylation state-independent) p38 MAPK, JNK and ERK1/2 did not change in E. coli-infected U937 cells at all times examined. Moreover, exposure of U937 cells to E. coli led to caspase-3 and 9 activity. For the evaluation of the role of MAPKs, PD98059, SB203580 and SP600125 were used as MAPKs inhibitors for ERK1/2, p38 MAPK and JNK. Inhibition of ERK1/2 with PD98059 caused further enhancement in apoptosis and caspase-3 and 9 activity, while a selective p38 MAPK inhibitor, SB203580 and JNK inhibitor, SP600125 significantly inhibited E. coli-induced apoptosis and caspase-3 and 9 activity in U937 cells. The results were further confirmed by the observation that the caspase inhibitors Z-DEVD-FMK and Z-LEHD-FMK blocked E. coli-induced U937 apoptosis. Taken together, we have shown that E. coli increase p38 MAPK and JNK and decrease ERK1/2 phosphorylation and increase caspase-3 and 9 activity in U937 cells.  相似文献   

9.
脱乙酰壳多糖处理可以诱导人参细胞产生H2 O2 ,增加人参皂苷的累积 ,提高鲨烯合酶 (squalenesynthase,GSS)与鲨烯环氧酶 (squaleneepoxidase,GSE)基因的转录水平。质膜NADPH氧化酶的抑制剂DPI,H2 O2 的淬灭剂DMTU与DHC可以抑制脱乙酰壳多糖的这些效应 ,暗示脱乙酰壳多糖可以活化质膜NADPH氧化酶而产生H2 O2 ,H2 O2 进而作为第二信使诱导gss与gse基因转录以及皂苷的合成。质膜钙通道抑制剂LaCl3与内质网钙通道抑制剂RR ,以及蛋白激酶抑制剂K2 5 2a都能削弱脱乙酰壳多糖促进皂苷积累和gss、gse转录的效应 ,说明胞内Ca2 浓度的升高与蛋白质磷酸化都参与了脱乙酰壳多糖诱导的gss、gse的转录以及皂苷的合成  相似文献   

10.
11.
Basic fibroblast growth factor (bFGF) has been reported to promote the formation of axonal branches in cultured brain neurons. In the present study, we investigated whether the mitogen-activated protein kinase (MAPK) cascade was involved in this action of bFGF in cultured rat hippocampal neurons. Recombinant human bFGF (0.1-10 ng/ml) induced phosphorylation of p44/42 MAPK in a concentration and time-dependent manner. The phosphorylation of p44/42 MAPK occurred rapidly within 5 min after addition of bFGF, and lasted for 48 h. The bFGF-induced phosphorylation of p44/42 MAPK and axonal branch formation were both blocked by simultaneous addition of U0126 and PD98059, specific inhibitors of MAPK kinases. Furthermore, when U0126 and PD98059 were added 24 h after bFGF, phosphorylation of p44/42 m MAPK was decreased, and axonal branch formation was stopped. These results suggest that sustained activation of the MAPK cascade is required for bFGF-mediated axonal branch formation.  相似文献   

12.
Abstract: Nerve growth factor (NGF) induces persistent p42 and p44 mitogen-activated protein kinase (MAPK) activity in sympathetic neurones in parallel to its survival-promoting activity. To investigate whether these MAPK activities are necessary for NGF-induced survival, we have inhibited NGF-stimulated p42/p44 MAPK activity over extended periods using the compound 2-(2'-amino-3'-methoxyphenyl)-oxanaphthalen-4-one (PD98059). Despite attaining up to 95% inhibition of p42/p44 MAPK activity in cultures treated with NGF and PD98059, neuronal survival is maintained undiminished, although a decrease in the density of the neuritic network is observed. Because p21Ras activity is essential for NGF-induced survival, we conclude that p21Ras-linked activities other than p42 and p44 MAPKs are responsible for mediating NGF-dependent survival of rat sympathetic neurones.  相似文献   

13.
Angiotensin II (Ang II) plays an important role in the maintenance of bone mass and integrity by activation of the mitogen-activated protein kinases (MAPKs) and by modulation of balance between resorption by osteoclasts and formation by osteoblasts. However, the role of Ang II in the turnover of extracellular matrix (ECM) in osteoid by osteoblasts remains unclear. Therefore, we examined the effect of Ang II on the expression of matrix metalloproteinases (MMPs), plasminogen activators (PAs), and their inhibitors [i.e., tissue inhibitors of metalloproteinases (TIMPs) and PA inhibitor-1 (PAI-1)] using osteoblastic ROS17/2.8 cells. Treatment with Ang II strikingly increased the expressions of MMP-3 and -13 and promoted cell proliferation associated with reduced alkaline phosphatase activity as well as enhanced phosphorylated expression of extracellular signal-regulated kinase (ERK)1/2, p38 MAPK, and stress-activated protein kinases/c-jun N-terminal kinases (SAPK/JNK) in ROS17/2.8 cells. However, Ang II had no effect on the expression of MMP-2, -9, -14, urokinase-type PA, tissue-type PA, TIMP-1, -2, -3, and PAI-1 in cells. Losartan (AT1 receptor blocker) blocked Ang II-induced expression of MMP-3 and -13, whereas PD123319 (AT2 receptor blocker) did not completely block these responses. Losartan also blocked the Ang II-induced phosphorylation of ERK1/2, p38 MAPK, and SAPK/JNK. MAPK kinase 1/2 inhibitor PD98059 and JNK inhibitor SP600125 suppressed Ang II-induced expression of MMP-3 and -13. These results suggested that Ang II stimulated the degradation process that occurs during ECM turnover in osteoid by increasing the production of MMP-3 and -13 through MAPK signaling pathways via the AT1 receptor in osteoblasts. Furthermore, our findings suggest that Ang II does not influence the plasminogen/plasmin pathway in osteoblasts.  相似文献   

14.
The evolutionarily-conserved protein phosphatase 1 (PP1) plays a central role in dephosphorylation of phosphoproteins during the M phase of the cell cycle. We demonstrate here that the PP1 inhibitor inhibitor-2 protein (Inh-2) induces an M-phase arrest in Xenopus cycling egg extracts. Interestingly, the characteristics of this M-phase arrest are similar to those of mitogen-activated protein kinase (p42MAPK)-induced M-phase arrest. This prompted us to investigate whether Inh-2-induced M-phase arrest was dependent on activation of the p42MAPK pathway. We demonstrate here that MAPK activity is required for Inh-2-induced M-phase arrest, as inhibition of MAPK by PD98059 allowed cycling extracts to exit M phase, despite the presence of Inh-2. We next investigated whether Inh-2 phosphorylation by the MAPK pathway was required to induce an M-phase arrest. We discovered that while p90Rsk (a MAPK protein required for M-phase arrest) is able to phosphorylate Inh-2, this phosphorylation is not required for Inh-2 function. Overall, our results suggest a novel mechanism linking p42MAPK and PP1 pathways during M phase of the cell cycle.  相似文献   

15.
We previously showed that the aggregated form of Hsp27 in cultured cells becomes dissociated as a result of phosphorylation with various types of stress. In order to clarify the signal transduction cascade involved, the effects of various inhibitors of protein kinases and dithiothreitol on the dissociation of Hsp27 were here examined by means of an immunoassay after fractionation of cell extracts by sucrose density gradient centrifugation. The dissociation of Hsp27 induced by exposure of U251 MG human glioma cells to metals (NaAsO2 and CdCl2), hypertonic stress (sorbitol and NaCl), or anisomycin, an activator of p38 mitogen–activated protein (MAP) kinase, was completely suppressed by the presence of SB 203580 or PD 169316, inhibitors of p38 MAP kinase, but not by PD 98059 and Uo 126, inhibitors of MAP kinase kinase (MEK), nor by staurosporine, Go 6983, and bisindolylmaleimide I, inhibitors of protein kinase C. Phorbol ester (PMA)–induced dissociation of Hsp27 was completely suppressed by staurosporine, Go 6983, or bisindolylmaleimide I and partially suppressed by SB 203580, or PD 169316 but not by PD 98059 or Uo 126, indicating mediation by 2 cascades. The presence of 1 mM dithiothreitol in the culture medium during exposure to chemicals suppressed the dissociation of Hsp27 induced by arsenite and CdCl2 but not by other chemicals. These results suggest that the phosphorylation of Hsp27 is catalyzed by 2 protein kinases, p38 MAP kinase–activated protein (MAPKAP) kinase- 2/3 and protein kinase C. In addition, metal-induced signals are sensitive to reducing power.  相似文献   

16.
17.
Nitric oxide (NO) is a diffusible, gaseous signaling molecule. In plants, NO influences growth and development, and it can also affect plant responses to various stresses. Because NO induces root differentiation and interacts with reactive oxygen species, we examined the temporal effect of NO elicitation on root growth, saponin accumulation and antioxidant defense responses in the adventitious roots of mountain ginseng (Panax ginseng). The observations revealed that NO is involved in root growth and saponin production. Elicitation with sodium nitroprusside (SNP) activated O2 -generating NADPH oxidase (NOX) activity, which most probably subsequently enhanced growth of adventitious roots of mountain ginseng. A severe inhibition of NOX activity and decline in dry weight of SNP elicited adventitious roots in the presence of NOX inhibitor (diphenyl iodonium, DPI), which further supports involvement of NOX in root growth. Enhanced activities of antioxidant enzymes by SNP appear to be responsible for low H2O2, less lipid peroxidation, and modulation of ascorbate and non-protein thiol statuses in the adventitious roots of mountain ginseng. Dry mass, saponin content and NOX activity was related with NO content present in adventitious roots of mountain ginseng.  相似文献   

18.
OBJECTIVE: To investigate regulation of angiotensin converting enzyme (ACE) by tumour necrosis factor alpha (TNF-alpha) in differentiating human peripheral blood monocytes (PBM). METHODS: Human PBM were allowed to differentiate to macrophages for 0-7 days and ACE amount was measured during differentiation. Experiments with TNF-alpha were performed after 2 days of differentiation. Cell cultures were incubated with TNF-alpha (0.5-10ng/ml) without or with SB 202190 (5microM), or PD 98059 (40microM). ACE amounts were measured by an inhibitor binding assay (IBA) and ACE mRNA levels by RNase protection assay (RPA). Activated p44/42 and p38 MAP kinases were measured by Western Blot analysis using phospho-p44/42 and -p38 MAPK antibodies. RESULTS: ACE amount increased by 40-fold along with macrophage differentiation. TNF-alpha caused dose dependent suppression of the amount of ACE and decreased levels of ACE mRNA. TNF-alpha activated p44/42 and p38 MAP kinases, which was inhibited by the specific inhibitors of these kinases, PD98059 or SB202190, respectively. Pretreatment of the cells with SB 202190, or PD 98059 both partly reversed TNF-alpha induced ACE suppression. CONCLUSIONS: TNF-alpha downregulated ACE, which effect was probably mediated by both p44/42 and p38 MAPK pathways. Local downregulation of ACE by TNF-alpha may be a counterbalancing mechanism in inflammatory processes.  相似文献   

19.
Grepafloxacin is an asymmetric fluoroquinolone derivative which possesses high tissue penetrability as well as strong, broad-spectrum antimicrobial activities. We recently found that grepafloxacin induced a priming effect on neutrophil respiratory burst induced by N-formylmethionylleucylphenylalanine. In this report, we elucidate the precise mechanism of the priming by grepafloxacin. The R(+) enantiomer of grepafloxacin induced a more potent priming effect than did S(-)-grepafloxacin. R(+)-Grepafloxacin also produced a more potent translocation of both p47- and p67-phox proteins to membrane fractions of neutrophils. Grepafloxacin-induced primed superoxide generation was significantly inhibited by pretreatment with PD169316 and SB203580, p38 mitogen-activated protein kinase (MAPK) inhibitors, but not with PD98059, a specific inhibitor of the upstream kinase that activates p44/42 MAPK, or SP600125, an inhibitor of stress-activated protein kinase/c-Jun N-terminal kinase (JNK). Grepafloxacin strongly phosphorylated p38 MAP kinase but not p44/42 MAPK or JNK. R(+)-Grepafloxacin showed more potent phosphorylation of p38 MAPK than did S(-)-grepafloxacin, in a time- and concentration-dependent manner. PD169316 significantly inhibited R(+)-grepafloxacin-induced translocation of p47-phox protein to the membrane fraction. Interestingly, grepafloxacin stereospecifically bound to the membrane fractions of neutrophils. These results strongly suggest that grepafloxacin stereospecifically primes neutrophil respiratory burst, and p38 MAPK activation is closely related to the grepafloxacin priming.  相似文献   

20.
We have previously reported that prostaglandin F2 alpha (PGF2 alpha) activates p44/p42 mitogen-activated protein kinase (MAPK) through protein kinase C (PKC) in osteoblast-like MC3T3-E1 cells. In the present study, we investigated the mechanism of vascular endothelial growth factor (VEGF) synthesis induced by PGF2 alpha and the effect of incadronate on the VEGF synthesis in these cells. PGF2 alpha significantly stimulated the VEGF synthesis in a dose-dependent manner between 1 pm and 10 microm. Cycloheximide reduced the PGF2 alpha effect. PGF2 alpha increased the levels of mRNA for VEGF. Cloprostenol, a PGF2 alpha-sensitive receptor agonist, potently induced the VEGF synthesis. Indomethacin, an inhibitor of cyclooxygenase, significantly reduced the PGF2 alpha-induced VEGF synthesis. Bisindolylmaleimide, an inhibitor of PKC, reduced the PGF2 alpha-induced VEGF synthesis. The VEGF synthesis induced by PGF2 alpha was significantly attenuated in the PKC down-regulated cells. PGF2 alpha elicited the translocation of PKC beta I from cytosol to membrane fraction. PD98059 or U0126, inhibitors of MEK, suppressed the VEGF synthesis induced by PGF2 alpha. Farnesyltransferase inhibitor failed to affect the PGF2 alpha-induced VEGF synthesis. Incadronate enhanced the synthesis of VEGF induced by PGF2 alpha. NaF-induced VEGF synthesis was also amplified by incadronate. PD98059 suppressed the enhancement by incadronate of PGF2 alpha-induced VEGF synthesis. Incadronate markedly enhanced the phosphorylation of Raf-1, MEK1/2, and p44/p42 MAPK induced by PGF2 alpha or 12-O-tetradecanoylphorbol-13-acetate, a PKC activator. Incadronate significantly enhanced the cloprostenol-increased level of VEGF concentration in mouse plasma in vivo. These results strongly suggest that PGF2 alpha stimulates VEGF synthesis through the PKC-dependent activation of p44/p42 MAPK in osteoblasts and that the incadronate enhances the VEGF synthesis at the point between PKC and Raf-1.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号