首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 432 毫秒
1.
Glucocorticoids at concentrations equal to or higher than 10?7M lead to an increase of alpha-fetoprotein production by an established cell line from Morris hepatoma 8994. These cells also secreted alphaM-fetoprotein into the culture medium but only after addition of at least 4×10?7M hydrocortisone or 5×10?8M dexamethasone. The effects on both fetoproteins were observed in spite of a decrease of cell multiplication and an increase of cell detachment.  相似文献   

2.
Masayoshi Ono  Takami Oka 《Cell》1980,19(2):473-480
The dose-response relationship between cortisol and the accumulation of the two milk proteins, casein and α-lactalbumin, was studied in organ culture of mammary gland from midpregnant mice. The accumulation of casein was low in culture with insulin but was enhanced by the further addition of prolactin. Further increases in casein were effected by the addition of cortisol in increasing concentrations up to 3 × 10?6 M, which was optimal for the accumulation of this protein. The content of α-lactalbumin in explants was similarly low in culture with insulin alone, but, in contrast, was increased to a maximal level by the addition of insulin and prolactin. The addition of cortisol up to 3 × 10?8 M with insulin and prolactin did not further increase the level of α-lactalbumin; in fact, at concentrations above 3 × 10?7 M the steroid caused progressive inhibition of the accumulation of this protein in cultured explants. Studies of the appearance of casein and α-lactalbumin in incubation medium during organ culture revealed the presence of substantial amounts of these milk proteins. During the first 2 days of culture with insulin, prolactin and 3 × 10?6 M cortisol, the amount of α-lactalbumin in culture medium was almost equal to the level found in tissue, whereas in the presence of 3 × 10?8 M cortisol, or in the absence of exogenous steroid, over 70% of total α-lactalbumin was retained in tissue. The observed difference in the amount of α-lactalbumin in culture medium can, however, only partially account for the inhibitory effect of high doses of cortisol on the accumulation of α-lactalbumin in cultured mammary explants. In contrast to α-lactalbumin, the relative amount of casein in culture medium containing insulin and prolactin was smaller—19% of total casein synthesized—and was further reduced to 16% and 11% of the total in the presence of 3 × 10?8 M and 3 × 10?6 M cortisol, respectively. The above results indicate that cortisol exerts dose-dependent differential actions on the accumulation of casein and α-lactalbumin in mouse mammary epithelium in vitro.  相似文献   

3.
α-MSH (10?9 ? 6×10?7M) potentiates the effect of ACTH (10?11 ? 5×10?9M) on adrenocortical steroidogenesis decreassng ED50 of ACTH from 220 to 183 pg/ml on zona fasciculata corticosterone-, and from 739 to 437 pg/ml on zona glomerulosa aldosterone production. α-MSH alone increases aldosterone production of zona glomerulosa cells in doses (10?9 ? 6×10?7M) that do not stimulate zona fasciculata corticosterone production. The response of zona glomerulosa aldosterone production to α-MSH can be characterized by a bi-phase dose-response curve.  相似文献   

4.
Primary cultures of parenchymal cells isolated from adult rat liver by a collagenase perfusion procedure and maintained as a monolayer in a serum-free culture medium were used to study glucoeogenesis and the role that the glucocorticoids play in the control of this pathway. These cells carried out gluconeogenesis from three-carbon precursors (alanine and lactate) in response to glucagon and dexamethasone added alone or in combination. Maximum glucose production was observed with cells pretreated for several hours with dexamethasone and glucagon prior to addition of substrate and glucagon (8- to 12-fold increase over basal glucose production). Half-maximum stimulation of gluconeogenesis was seen with 3.6 × 10?10 M glucagon and 3.6 × 10?8 M dexamethasone. Maximum stimulation was oberved with 10?7 M glucagon and 10?6 M dexamethasone. The length of time of dexamethasone pretreatment was found to be important in demonstrating the effect of glucocorticoids on glucagon-stimulated gluconeogenesis. Treeatment of cells with dexamethasone for 2 hours did not result in an increase in glucose production over identical experimental conditions in the absence of dexamethasone, wherease pretreatment for 5 hours (1.2-fold increase) or 15 hours (1.7-fold increase) did result in an increase in glucose production. The results establish that the adult rat liver parenchymal cells in primary culture are a valid model system to study hepatic gluconeogenesis. In addition, we have established directly that the glucocorticoids amplify the glucagon stimulation of gluconeogenesis.  相似文献   

5.
Rat submandibular gland was dissociated by enzymatic digestion with collagenase and hyaluronidase, followed by mild mechanical shearing and filtration through a nylon mesh. The dissociated cell populations contained predominantly groups of acinar cells which maintained their acinar arrangement. The morphological and functional viability of the cells was confirmed by electron microscopic examination and a normal secretory response to β-adrenergic or cholinergic stimulation was observed. Both isoproterenol (IPR) and carbachol caused the fusion of secretory granules into large vacuoles which were also continuous with the lumen, and into which the secretory product was released. Secretion was assessed quantitatively from the incorporation of 14C-glucosamine into the acinar cells and its subsequent release into the culture medium as labelled glycoprotein. IPR stimulated secretion to 125% of untreated controls in the concentration range 5 × 10?5 to 5 × 10?7 M, and to 110% of controls at 5 × 10?8 M, after 40 min incubation. Carbachol stimulated secretion to 131% of controls at 5 × 10?5 M and to 115% at 5 × 10?6 M but had no effect at 5 × 10?7 or 5 × 10?8 M. The secretory response was blocked by the respective β-adrenergic and cholinergic antagonists, propranolol and atropine. These findings show that dissociated rat submandibular acinar cells provide a useful in vitro model for the study of mucus synthesis and secretion.  相似文献   

6.
Papaverine inhibited the basal renin secretion of rat kidney slices incubated in a physiological salt solution at 37°C. Inhibition was concentration-dependent; secretion was 99 ± 0.2 % inhibited by 5 × 10?4 M papaverine, and 8 × 10?5 M was the estimated ED50. In contrast, 2 × 10?4 M IBMx (3-isobutyl-1-methyl-xanthine) increased the rate of secretion from 215 ± 17 to 366 ± 30 ng hr?1mg?1/20 min (p < 0.001). Isoprotenol (4 × 10?7, 8 × 10?7, and 5 × 10?6 M) stimulated renin secretion in a concentration-dependent manner; the stimulatory effects were antagonized by papaverine but unaffected by IBMx. Thus, two known inhibitors of phosphodiesterase--IBMx and papaverine--produce sharply contrasting effects on basal and on isoproterenol-stimulated renin secretion from rat kidney slices.  相似文献   

7.
A high basal rate of prolactin (PRL) secretion (.16±.03 μg/well/hr) was produced for over four weeks by pre-confluent male rat pituitary monolayer cell cultures. When the media was changed, a rapid release of microgram quantities of PRL occurred followed by a return to the basal PRL secretory rate by seven hours. Theophylline (3.8×10?3M), but not dibutyrl cAMP (1×10?3M), produced a significant (p<.02) increase in PRL secretion, and simultaneous addition of these agents potentiated the PRL secretory rate. TRH (2×10?8M) had no effect on PRL release by six hours, whereas dopamine (4.9×10?5M) produced a significant suppression (p<.002) of PRL secretion. In addition, the effects of theophylline, TRH, and dopamine on PRL secretion were similar in cultures of various ages. Ovine prolactin in concentrations up to 50 μg per ml produced no change in PRL secretion during 72 hours of incubation suggesting that PRL feedback control of its own secretion may be transmitted via the hypothalamus. These studies show that a high rate of PRL secretion can be maintained by pre-confluent monolayer cultures for extended periods of time, permitting repeated experimentation on the same wells.  相似文献   

8.
The effect of hormone-like compounds at different concentrations: 2,4-D (2 × 10?6; 2 × 10?5; and 2 × 10?4M) and 1-NAA (2 × 10?7; 2 × 10?6; 2 × 10?5; 4 × 10?5, and 6 × 10?5 M) on the growth and production of phenolic compounds, including flavans and lignin, was investigated in callus culture of tea plant (Camellia sinensis L., a highly productive strain IFR ChS-2). The growth of the culture was vigorous, and production of phenolic compounds therein was efficient in the medium containing 2 × 10?5 M 2,4-D. Substitution of 1-NAA for 2,4-D in all the cases decelerated the growth of the culture. These changes were more pronounced when 2 × 10?7 and 2 × 10?6 M 1-NAA was used; in this case, biomass accumulation decreased by 1.5–2.0 times as compared with control material growing on the medium with 2 × 10?5 M 2,4-D. In the presence of 1-NAA, the content of total soluble phenolic compounds and flavans in the calli rose by 30% on the average as compared with control material. Accumulation of lignin remained essentially the same. Therefore, the replacement of 2,4-D with 1-NAA in the nutrient medium used for the growing of highly productive strain of tea plant callus did not induce considerable changes in its ability to produce phenolic compounds.  相似文献   

9.
The addition of insulin (4.0 × 10?11 M) or acetylcholine (10?6 M) to isolated hepatocytes stimulated glycogen accumulation and this stimulation was more pronounced when the medium glucose was raised from 50 to 300 mg percent. Studies with [14C]-glucose showed a two-fold stimulation in glycogen synthesis by the addition of insulin (4.0 × 10?11 M) or acetylcholine (10?6 M). A sixteen percent increase in the activity of glycogen synthase was observed in cells incubated for 10 minutes with insulin (4.0 × 10?11 M) or acetylcholine (10?6 M), whereas at one hour incubation a 40 percent increase in activity was observed with the same concentration of insulin or acetylcholine. The effects of insulin and acetylcholine were not additive.  相似文献   

10.
We studied how tryptophan methyl ester and related compounds inhibit binding of estrone to rat α-fetoprotein and find that: (a) like chymotrypsin, α-fetoprotein binds tryptophan esters with higher affinity than tryptophan or its amides; (b) the affinity of α-fetoprotein for tryptophan methyl ester is 3.7 · 10?4 M, which is close to the affinity of chymotrypsin (10?4 M); (c) α-fetoprotein binding of tryptophan methyl ester is stereoselective and pH dependent. All of these observations suggest that there is a specific interaction between α-fetoprotein and the chymotrypsin substrate, tryptophan methyl ester, and that rat α-fetoprotein contains a site with some structural similarities to the catalytic site in chymotrypsin. Since we also find that tryptophan methyl ester is a competitive inhibitor of estrone binding to α-fetoprotein, it is possible that the protease substrate binding site on α-fetoprotein is spatially close to the estrone binding site.  相似文献   

11.
Internodal segments from 6-weeks-old rape plants (Brassica napus L. cv. Zephyr) were induced to differentiate in vitro producing shoots or shoots and roots on synthetic nutrient medium under controlled conditions. Benzyladenine (BA) alone (5 × 10?6 M) induced multiple shoot formation on all stem explants. Roots were induced on shoots when recultured on nutrient medium supplemented with auxins such as naphthalene-acetic acid (NAA) or indoleacetic acid (1AA) or when planted in vermiculite. Complete plant formation was obtained when NAA (2 × 1?6, 5 × 10?6 and 10?5 M) was employed in conjunction with BA at 5 × 10?6M. At higher concentrations (10?5M) NAA retards the shoot development while 1AA suppresses it totally. Lower levels of auxins along with the cytokinin did not retard or inhibit shoot differentiation.  相似文献   

12.
SYNOPSIS. Hartmannella (Culbertson strain A-1) was found to undergo encystment (80–90% in 72 hr) on a non-nutrient agar containing 0.015 M MgCl2 and 0.02 M taurine. Encystment was completely inhibited by 1 × 10?5 M Mitomycin C, or 1 × 10?7 M cycloheximide or 1 × 10?6 M Actinomycin D. The ability of the amoebae to consume glucose increased fourfold within 24 hr incubation in this medium. The specific activities of cellulose synthetase, hexosephosphate transaminase and uridine diphosphosphoglucose pyrophosphorylase were also stimulated. Dehydrogenases mediating electron transfer from pyruvate, malate, succinate, α-ketoglutarate and α-glycerophosphate to triphenyltetrazolium and from glucose-6-phosphate to nicotinamide-adenine dinucleotide phosphate were, however, repressed during this period of incubation in the encystment medium. The results suggested that, during encystment of Hartmannella A-1, there was a metabolic switchover and the enzyme machinery of the amoeba was oriented more towards biosynthesis of cyst wall constituents than towards the aerobic breakdown of carbohydrates.  相似文献   

13.
In primary cultures of adult rat hepatocytes, dexamethasone (10?5M) induced tyrosine aminotransferase (TAT) 24 h after its addition. Glucagon (10?7M) alone had no effect, but strongly enhanced the induction by dexamethasone. Glucagon could be replaced by butyryl cyclic-AMP (10?4M), which caused about 20-fold increase in activity. In contrast to many previous reports that insulin induced TAT activity invivo and invitro, it inhibited the inductions of TAT by dexamethasone and dexamethasone plus glucagon 24 h after its addition. However, insulin significantly induced TAT activity in the early pahse, 4 h after its addition. Dose-response curves of the effect of insulin on TAT activity showed reverse relations to activity in early and late phase. These results show that TAT activity is regulated by insulin in a two phase fashion.  相似文献   

14.
Hepatocytes of 14-day-old rats have no detectable glucokinase activity invivo, but it was induced by insulin (10?8M) in primary cultures of these hepatocytes. The glucokinase induced by insulin was separated by electrophoresis on a cellulose acetate membrane and identified by its low affinity for glucose. This precocious induction of glucokinase was completely prevented by the presence of either actinomycin D or cycloheximide. Glucagon also inhibited its induction by insulin. Dexamethasone and testosterone, which alone had no inductive effect, strongly enhanced the induction by insulin. When hepatocytes of 14-day-old rats were cultured with 10?7M insulin, 10?6M dexamethasone and 10?7M testosterone for 48 hr, their glucokinase activity increased to the non-induced level in hepatocytes of adult rats. Estrogen, thyroxine or growth hormone did not induce glucokinase precociously. Testosterone did not enhance induction of glucokinase by insulin in cultured hepatocytes of adult rats.  相似文献   

15.
This study aimed at determining whether in vitro secretion of two neuropeptides, arginine vasotocin (AVT) and isotocin (IT), from pituitary cells of gilthead sea bream Sparus aurata was affected by cortisol and urotensin (UI). Pituitary cells were exposed to 1·4 × 10?8, 1·4 × 10?7 and 0·4 × 10?6 M cortisol and 10?12, 10?10 and 10?8 M UI for 6, 24 and 48 h, respectively. AVT and IT contents were determined in the culture media by high‐performance liquid chromatography (HPLC). An increase in AVT secretion and a decrease in IT secretion were observed at all cortisol doses. UI increased AVT secretion after 6 h of incubation at all doses. After 24 h, however, only the highest dose of UI still displayed an effect. IT secretion was not influenced by UI. It was thus demonstrated that cortisol does influence AVT and IT secretion from S. aurata pituitary cells, while UI regulates AVT secretion, as a component of hypothalamic–pituitary–interrenal (HPI) axis in this species.  相似文献   

16.
The MgATP-stimulated accumulation of (-)-3H-nor- epinephrine (NE) by rat brain neuronal storage vesicles has been characterized in a new medium based upon polyacrylic acid (avg. MW 5,000). The medium allows careful regulation of K+ concentration (140 mM), has a large buffer capacity, and is non-permeant to membranes. Light scattering measurements have confirmed the osmotic stability of vesicles suspended in this medium. Vesicular accumulation of (-)-3 H-NE (Km 1 × 10?6 M) in this system (37°) was examined under saturating (10?5 M) and non-saturating (2 × 10?7 M) concentrations of NE. At 10?5 M NE, uptake saturated at 5 min and remained stable for periods up to one hour, with maximal uptake levels (pmol/mg protein) of 15.7±0.30 (37°), 3.0±0.49 (0°), 4.4±0.22 (reserpine pretreated invivo) and 6.0±0.79 (without MgATP). At 2×10?7 M NE uptake was biphasic with maximal uptake levels (pmol/mg protein) of 4.04±0.14 (37°), 0.19±0.01 (0°), 0.95±0.01 (reserpine) and 0.83±0.08 (without MgATP). Vesicle preparations refrigerated in this medium for 24 hrs displayed properties quite similar to those measured acutely (NE = 2.2x10?7 M).  相似文献   

17.
The formaldehyde method was used to examine the interaction of PGE1 with morphine, β-endorphin and Met-enkephalin on rat mast cells by their effects on IgE-mediated 14C-serotonin release. PGE1 (2×10?8?2×10?5 M) caused a dose-related inhibition of the mediator release 1 min after an antigen challenge, and morphine (3×10?7?3×10?5 M) reversed this PGE1 effect dose-dependently and stereospecifically; naloxone (2×10?4 M) antagonized this action of morphine. β-Endorphin (3×10?7?10?5 M) and Met-enkephalin (3×10?6?10?4 M) mimicked this morphine action dose-dependently and were antagonized by naloxone (2×10?4 M). These results suggest that morphine and endorphins modulate immunological mediator release from rat mast cells through opioid receptors.  相似文献   

18.
Glucokinase, the organ specific key enzyme of glucose metabolism in liver, was studied in primary cultures of adult rat hepatocytes during the first two days after cell preparation. In the presence of dexamethasone low concentrations of insulin (10?9 mol/l) prevented the observed time dependent decrease of glucokinase activity while higher insulin concentrations (10?8 and 10?7 mol/l) led to a twofold increase of enzyme activity. The enhancement of glucokinase activity was completely blocked by either actinomycin D or cycloheximide. The degree of this insulin dependent induction was correlated with the concentration of added dexamethasone, which seemed to perform a permissive function. The induction of glucokinase activity could be prevented by addition of glucagon (2 × 10?7 mol/l).  相似文献   

19.
In the presence of 2 × 10?6 M Ca2+ in Tris-buffered medium 0.5 × 10?6 M, oestradiol-17β or corticosterone significantly increased the head-to-head association of washed bull spermatozoa; in the same concentration, testosterone and 5α-dihydrotestosterone had no significant effects, whereas progesterone significantly dissociated the associated spermatozoa. At 8 × 10?6 M Ca2+ in the same medium, all five hormones increased the association to about the same level. In Tyrode solution with a Ca2+ concentration of 1.4 × 10?3 M, oestradiol-17β and corticosterone acted as above, whereas progesterone and the two testosterones effected dissociation. In Tyrode solution each of the dissociating hormones was combined with oestradiol-17β. In each case a sum of the effects of the two hormones was obtained without any stimulation or inhibition. All five hormones still produced significant effects at 5 × 10?7 M in Tyrode solution. A corresponding value for ATP was found at 1 × 10?5 M.  相似文献   

20.
Significant differences in the glucocorticoid- and cyclic nucleotide-mediated regulation of the secretory glycoproteins, α-fetoprotein and transferrin, have been observed to develop in a mouse hepatoma cell line, Hepa-2, after many passages in culture. Treatment of low-passage cells with hydrocortisone (10?6m), N6,O2-dibutyryl cyclic AMP (10?3m), or 8-bromo-cyclic AMP (10?3m) results in 1.5-, 2- to 4-, and 5.5- to 6-fold increases, respectively, in the rates of synthesis and secretion of α-fetoprotein. As expected of secretory proteins, the ratio of synthesis to secretion is 1 and remains unaltered when treatment with hydrocoritsone, N6,O2-dibutyryl cyclic AMP, and 8-bromo-cyclic AMP causes a stimulation of synthesis and secretion. Similar studies showing that albumin and transferrin synthesis and secretion are also balanced in these low-passage cells have been published and indicate that the regulation of synthesis and secretion remains coupled in these low-passage cells. In high-passage Hepa-2 cells, however, we have shown that the relative rate of α-fetoprotein synthesis is higher than its rate of secretion and that the ratio of synthesis to secretion is 4. Similarly, the ratio of transferrin synthesis to secretion is 3.6, whereas it remains unaltered for albumin. When the high-passage cells are treated with N6,O2-dibutyryl cyclic AMP, there is a greater increase in the rate of secretion for both glycoproteins, resulting in a reduction of the ratio of synthesis to secretion from 4 to 1.63 for α-fetoprotein and from 3.6 to 2.3 for transferrin. This effect on the secretion of α-fetoprotein and transferrin is specific for the cyclic nucleotides and occurs only in high-passage cells. Hydrocortisone treatment causes an increase in α-fetoprotein synthesis and secretion. However, the ratio of synthesis to secretion increases from 3.96 in control to 5.5 in treated cells. Our studies show, therefore, that there is an increase in this ratio because of a slightly greater effect on synthesis which is not reflected in secretion. Similarly, hydrocortisone exerts a greater increase in transferrin synthesis than secretion and causes the ratio of synthesis to secretion to increase from 3.6 to 6.2. We propose that during continued subculturing a Hepa-2 variant is selected in which the regulation of serum glycoprotein synthesis and secretion is uncoupled. Furthermore, this effect is specific for secretory glycoproteins since the regulation of albumin synthesis and secretion by hydrocortisone and cyclic nucleotides remained unaltered.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号