首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 828 毫秒
1.
Question: Do soil water content and/or soil nitrogen (N) content and/or soil phosphorus (P) content affect the biomass of Vaccinium myrtillus and V. vitis‐idaea in a sub‐alpine heath? Location: Dolomites, northern Italy, 1800 m a.s.l. Methods: We determined above‐ground and below‐ground biomass of the shrubs at three sites, each on a different substrate type. At each site, we determined soil N‐ and P‐contents. We also determined leaf water potential (Psi;1), N‐ and P‐concentrations in plant tissues and litter, as well as δ13C and δ15N in mature leaves. Results: V. myrtillus biomass was highest at the silicate site, V. vitis‐idaea biomass was highest at the carbonate site. Both shrubs had low biomass at the peat site, possibly due to a toxic effect of waterlogging in wet soils. For both species, pre‐dawn Psi;1 indicated optimal hydration and midday Psi;1 did not show any sign of water stress. Water use efficiency (WUE) did not differ among sites for any species. Whole‐plant nutrient concentrations showed that, with increasing biomass, N was diluted in V. myrtillus tissues while P was diluted in V. vitis‐idaea tissues. Foliar N‐concentration was higher overall for V. myrtillus. Foliar P‐concentration in V. myrtillus peaked at the silicate site. Foliar N : P ratios suggested that V. myrtillus was primarily P‐limited and V. vitis‐idaea primarily N‐limited. Conclusions: Water content affected the distribution of the two shrubs in a similar way, higher P‐availability in the soil enhanced V. myrtillus rather than V. vitis‐idaea.  相似文献   

2.
Snow is known to have a major impact on vegetation in arctic ecosystems, but little is known about how snow affects plants in boreal forests, where the snowpack is uneven due to canopy impact. The responses of two dwarf shrubs, the evergreen Vaccinium vitis‐idaea and the deciduous V. myrtillus, to snow conditions were studied in a snow manipulation experiment in southern Finland. The thermal insulation of the snowpack was expected to decrease with partial removal or compression of the snow, while addition of snow was expected to have the opposite effect. The penetration of light was manipulated by partial removal of snow or by formation of an artificial ice layer in the snowpack. CO2 exchange measurements that were carried out at the time of maximum snow depth in late March indicated significant photosynthetic activity in the leaves of V. vitis‐idaea under snow. Net gain of CO2 was observed in the daytime on all the manipulation plots, excluding the snow addition plots, where light intensity was very low. The subnivean photosynthesis compensated for a substantial proportion (up to 80%) of the respiratory CO2 losses. Chlorophyll fluorescence measurements indicated reduced potential capacity of photosystem II in the leaves of V. vitis‐idaea on those plots where snow cover was thin. Neither V. vitis‐idaea nor V. myrtillus suffered from frost damage (assessed as electrolyte leakage) when thermal insulation was reduced by means of snow manipulations. No phenological responses were observed in V. vitis‐idaea, but in V. myrtillus bud burst, leaf unfolding and flowering were advanced by 1–3 days on the addition plots. The results of the present study show that dwarf shrubs respond to not only the thickness of snow but also the physical properties of snow, both of which are expected to change due to climatic warming.  相似文献   

3.
The Arctic is experiencing the greatest climate change in winter, including increases in freeze–thaw cycles that can result in ice encasement of vegetation. Ice encasement can expose plants to hypoxia and greater temperature extremes, but currently the impacts of icing on plants in the field remain little understood. With this in mind, a unique field manipulation experiment was established in heathland in northern Sweden with ice encasement simulated in early March 2008, 2009 and 2010 until natural thaw each spring. In the following summers we assessed the impacts on flowering, bud phenology, shoot growth and mortality and leaf damage (measured by chlorophyll fluorescence and electrolyte leakage) of the three dominant dwarf shrub species Empetrum nigrum, Vaccinium vitis‐idaea (both evergreen) and Vaccinium myrtillus (deciduous). Two consecutive winters of icing decreased V. vitis‐idaea flowering by 57%, while flowering of V. myrtillus and E. nigrum remained unaffected. Vaccinium myrtillus showed earlier budburst but shoot growth for all species was unchanged. Shoot mortality of V. myrtillus and V. vitis‐idaea increased after the first year (by 70 and 165%, respectively) and again for V. myrtillus following the third year (by 67%), while E. nigrum shoot mortality remained unaffected, as were chlorophyll fluorescence and electrolyte leakage in all species. Overall, the sub‐arctic heathland was relatively tolerant to icing, but the considerable shoot mortality of V. myrtillus contrasting with the general tolerance of E. nigrum suggests plant community structure in the longer term could change if winters continue to see a greater frequency of icing events.  相似文献   

4.
Periodic measurements of gas‐exchange rates and determinations of foliar N and P concentrations were used for evaluating instantaneous water‐use efficiency and photosynthetic nutrient‐use efficiency in two co‐existing dwarf shrubs of different growth form (V. myrtillus, deciduous, and V. vitis‐idaea, evergreen) in a subalpine heath in the southern Alps of Italy. Those data were compared with cumulative assessments of water‐use efficiency and photosynthetic nutrient‐use efficiency obtained by measuring leaf carbon isotope discrimination in leaf tissues and by estimating nutrient resorption from senescing leaves. V. myrtillus presented higher dry‐weight based rates of net photosynthesis (Aweight) compared to V. vitis‐idaea. Aweight was positively correlated with foliar‐nutrient status and intercellular‐to‐ambient gradient in CO2 concentrations. Aweight was, furthermore, negatively correlated with leaf specific mass. Instantaneous photosynthetic nutrient‐use efficiency did not differ between the two species but the percentages of N and P pools resorbed from senescing leaves were somewhat higher in the deciduous species. The evergreen species showed lower P concentrations in senescing leaves which indicated a higher proficiency in resorbing phosphorus compared to the deciduous species. In addition, the evergreen species achieved a higher carbon gain per unit foliar N and P, due to a longer mean residence time of both nutrients. The two species did not differ from each other with respect to both instantaneous and long‐term water‐use efficiency. This was consistent with the climatic pattern, showing no sign of water deficiency through the growing season. Current‐year V. vitis‐idaea leaves had a significantly higher Δ13C compared to previous‐year leaves, possibly mirroring a long term acclimation of evergreen leaves, as far as they age, to the habitat conditions in the understory where evergreen species are usually confined within mixed dwarf‐shrub communities.  相似文献   

5.
Extreme weather events can have strong negative impacts on species survival and community structure when surpassing lethal thresholds. Extreme, short‐lived, winter warming events in the Arctic rapidly melt snow and expose ecosystems to unseasonably warm air (for instance, 2–10 °C for 2–14 days) but upon return to normal winter climate exposes the ecosystem to much colder temperatures due to the loss of insulating snow. Single events have been shown to reduce plant reproduction and increase shoot mortality, but impacts of multiple events are little understood as are the broader impacts on community structure, growth, carbon balance, and nutrient cycling. To address these issues, we simulated week‐long extreme winter warming events – using infrared heating lamps and soil warming cables – for 3 consecutive years in a sub‐Arctic heathland dominated by the dwarf shrubs Empetrum hermaphroditum, Vaccinium vitis‐idaea (both evergreen) and Vaccinium myrtillus (deciduous). During the growing seasons after the second and third winter event, spring bud burst was delayed by up to a week for E. hermaphroditum and V. myrtillus, and berry production reduced by 11–75% and 52–95% for E. hermaphroditum and V. myrtillus, respectively. Greater shoot mortality occurred in E. hermaphroditum (up to 52%), V. vitis‐idaea (51%), and V. myrtillus (80%). Root growth was reduced by more than 25% but soil nutrient availability remained unaffected. Gross primary productivity was reduced by more than 50% in the summer following the third simulation. Overall, the extent of damage was considerable, and critically plant responses were opposite in direction to the increased growth seen in long‐term summer warming simulations and the ‘greening’ seen for some arctic regions. Given the Arctic is warming more in winter than summer, and extreme events are predicted to become more frequent, this generates large uncertainty in our current understanding of arctic ecosystem responses to climate change.  相似文献   

6.
Insulation provided by snow cover and tolerance of freezing by physiological acclimation allows Arctic plants to survive cold winter temperatures. However, both the protection mechanisms may be lost with winter climate change, especially during extreme winter warming events where loss of snow cover from snow melt results in exposure of plants to warm temperatures and then returning extreme cold in the absence of insulating snow. These events cause considerable damage to Arctic plants, but physiological responses behind such damage remain unknown. Here, we report simulations of extreme winter warming events using infrared heating lamps and soil warming cables in a sub‐Arctic heathland. During these events, we measured maximum quantum yield of photosystem II (PSII), photosynthesis, respiration, bud swelling and associated bud carbohydrate changes and lipid peroxidation to identify physiological responses during and after the winter warming events in three dwarf shrub species: Empetrum hermaphroditum, Vaccinium vitis‐idaea and Vaccinium myrtillus. Winter warming increased maximum quantum yield of PSII, and photosynthesis was initiated for E. hermaphroditum and V. vitis‐idaea. Bud swelling, bud carbohydrate decreases and lipid peroxidation were largest for E. hermaphroditum, whereas V. myrtillus and V. vitis‐idaea showed no or less strong responses. Increased physiological activity and bud swelling suggest that sub‐Arctic plants can initiate spring‐like development in response to a short winter warming event. Lipid peroxidation suggests that plants experience increased winter stress. The observed differences between species in physiological responses are broadly consistent with interspecific differences in damage seen in previous studies, with E. hermaphroditum and V. myrtillus tending to be most sensitive. This suggests that initiation of spring‐like development may be a major driver in the damage caused by winter warming events that are predicted to become more frequent in some regions of the Arctic and that may ultimately drive plant community shifts.  相似文献   

7.
Abstract. The deciduous Vaccinium myrtillus and the evergreen Vaccinium vitis‐idaea were subjected to five removal treatments of understorey layers: control, removal of the moss layer, removal of the field layer, removal of both moss and field layers and removal of moss, field and humus layers. A second factor, sowing, was included to investigate sexual reproduction after disturbance. Density of new ramets and seedlings and growth of annual shoots were studied for the first two growing seasons, whereas cover was measured for five growing seasons after disturbance treatment. Initially, vegetative production of new ramets and species cover increased rapidly in all disturbed plots, except for the most severe treatment, in which production of new ramets was virtually absent throughout the study. Full recovery following removal of the field layer only or both field and moss layers was reached after four years for V. myrtillus. V. vitis‐idaea recovered more quickly, after one year (removal of field layer only) and four years (removal of field and moss layers). The relative growth of V. myrtillus and V. vitis‐idaea increased in the latter treatment in terms of production of annual shoots and length of annual shoots, respectively. Seedling density increased after sowing in the most severe treatment. The results underscore the importance of vegetative growth for recovery of these species at moderate‐level disturbances. The high rate of sexual reproduction in the most severe treatment implies that strong mechanical disturbance is needed to enhance the establishment of new genotypes in these species.  相似文献   

8.
Question: How do N fertilization and disturbance affect the understorey vegetation, microbial properties and soil nutrient concentration in boreal forests? Location: Kuusamo (66°22′N; 29°18′E) and Oulu (65°02′N; 25°47′E) in northern Finland. Methods: We conducted a fully factorial experiment with three factors: site (two levels), N fertilization (four levels) and disturbance (two levels). We measured treatment effects on understorey biomass, vegetation structure, and plant, soil and microbial N and C concentrations. Results: The understorey biomass was not affected by fertilization either in the control or in the disturbance treatment. Fertilization reduced the biomass of deciduous Vaccinium myrtillus. Disturbance had a negative effect on the biomass of V. myrtillus and evergreen Vaccinium vitis‐idaea and decreased the relative proportion of evergreen species. Fertilization and disturbance increased the biomass of grass Deschampsia flexuosa and the relative proportion of graminoids. The amount of NH4+ increased in soil after fertilization, and microbial C decreased after disturbance. Conclusions: Our results suggest that the growth of slow‐growing Vaccinium species and soil microbes in boreal forests are not limited by N availability. However, significant changes in the proportion of dwarf shrubs to graminoids and a decrease in the biomass of V. myrtillus demonstrate the susceptibility of understorey vegetation to N enrichment. N enrichment and disturbance seem to have similar effects on understorey vegetation. Consequently, increasing N does not affect the rate or the direction of recovery after disturbance. Moreover, our study demonstrates the importance of understorey vegetation as a C source for soil microbes in boreal forests.  相似文献   

9.
Polar regions are predicted to undergo large increases in winter temperature and an increased frequency of freeze–thaw cycles, which can cause ice layers in the snow pack and ice encasement of vegetation. Early or late winter timing of ice encasement could, however, modify the extent of damage caused to plants. To determine impacts of the date of ice encasement, a novel field experiment was established in sub‐arctic Sweden, with icing events simulated in January and March 2008 and 2009. In the subsequent summers, reproduction, phenology, growth and mortality, as well as physiological indicators of leaf damage were measured in the three dominant dwarf shrubs: Vaccinium uliginosum, Vaccinium vitis‐idaea and Empetrum nigrum. It was hypothesised that January icing would be more damaging compared to March icing due to the longer duration of ice encasement. Following 2 years of icing, E. nigrum berry production was 83% lower in January‐iced plots compared to controls, and V. vitis‐idaea electrolyte leakage was increased by 69%. Conversely, electrolyte leakage of E. nigrum was 25% lower and leaf emergence of V. vitis‐idaea commenced 11 days earlier in March‐iced plots compared to control plots in 2009. There was no effect of icing on any of the other parameters measured, indicating that overall these study species have moderate to high tolerance to ice encasement. Even much longer exposure under the January icing treatment does not clearly increase damage.  相似文献   

10.
Mineral Nutrient Requirements of Vaccinium vitis idaea and V. myrtillus   总被引:1,自引:0,他引:1  
The mineral nutrient requirements of Vaccinium vitis idaea L. and V. myrtillus L. have been studied. It is found that the optimum nutrient proportions are similar to those of birch seedlings except for a relatively low potassium requirement. The nitrogen sources ammonium and nitrate are both usable at low concentrations. A system with both sources present seems preferable. The ammonium uptake is then much more rapid than the nitrate uptake. The optimum total concentration falls within the low salt range and is about the same as found for birch seedlings, but the sensitivity to high salt concentrations is more pronounced in the Vaccinium species. A very marked characteristic of the nutrient absorption is the rapid calcium uptake. The results are discussed in relation to similar experiments with birch and cucumber seedlings, representing species with a wide or calcareous ecological adaptation.  相似文献   

11.
It has been hypothesized that the wide range of forms and complexities of phosphorus (P) in soil may result in resource partitioning that contributes to the maintenance of plant species diversity. Here, we test whether the graminoid, Deschampsia cespitosa, and the ericaceous shrub, Vaccinium vitis‐idaea, which often coexist, display preferences in utilization of P forms, and differ in their production of extracellular P‐degrading enzymes. We provided plants with no additional P, or P forms with decreasing lability, namely sodium phosphate (SP), D‐glucose 6 phosphate (DG6P), sodium phytate (PASS), and a combination of SP, DG6P, and PASS. We also tested if preferences for P forms affected the competitive outcomes between the two species compared between conspecifics, as indicated by shoot biomass and acquisition of nitrogen (N) and P. Both D. cespitosa and V. vitis‐idaea produced the greatest biomass when supplied with a mix of all three forms of P. Of the three forms of P tested alone, shoot biomass produced by both species was least when supplied with SP. D. cespitosa performed better when grown with PASS or a mix of all P forms compared with the performance of V. vitis‐idaea on these substrates. This was reflected by substantially greater phytase activity on the surface of its roots compared with V. vitis‐idaea. In contrast, V. vitis‐idaea produced more phosphomonoesterase to hydrolyze the simple organic P form, DG6P. Although N was kept constant in the treatments, the ability of plants to acquire it was dependent on species identity, competition, and P supply. These findings provide direct evidence for preferences toward specific forms of P and indicate a key role played by organic forms of P. The results support the idea that partitioning for soil P is one factor regulating plant competition, and ultimately, community composition. Our data also highlight the importance of the interplay between P supply and N acquisition.  相似文献   

12.
Doris Grellmann 《Oikos》2002,98(2):190-204
This study investigated the impacts of fertilization and grazing by Norwegian lemmings (Lemmus lemmus), grey‐sided voles (Clethrionomys rufocanus), and reindeer (Rangifer tarandus) on a diverse tundra plant community dominated by deciduous shrubs. Four out of eight study areas, having a size of 2500 m2 each, were fertilized with a N‐P‐K fertilizer and four areas served as unfertilized controls. Two types of exclosures were used within each study area, one to exclude solely reindeer, and one to exclude both rodents and reindeer. Open, grazed plots served as controls. During 5 years following the fertilization event the changes in vegetation inside and outside the exclosures were monitored using a point frequency method. The densities of rodents on the fertilized and unfertilized areas were investigated by live trapping and by counting nests of overwintering individuals. Reindeer do not graze on the study area during the growing season but migrate through this area in autumn and spring. Fertilization increased the abundance of vascular plants while grazing by reindeer and rodents decreased the abundance of vascular plants significantly on both fertilized and unfertilized areas. Rodents preferred clearly the fertilized areas during winter, decreasing the abundance of Vaccinium myrtillus and Vaccinium vitis‐idaea, while very little grazing occurred during summer. Graminoids showed the strongest positive response to fertilization and dominated the plant community on ungrazed plots, while winter grazing by both reindeer and rodents significantly decreased the abundance of graminoids. Deciduous shrubs (Betula nana, Vaccinium myrtillus) increased slightly but significantly due to fertilization and evergreen dwarf shrubs showed no response to fertilization. However, the use of functional growth forms for predicting the responses of nutrient enrichment and grazing must be questioned, as responses to fertilization as well as preferences by herbivores were shown to be species‐specific rather than uniform within functional groups based on plant growth forms.  相似文献   

13.
Abstract. The relationships between biomass of dwarf shrub species and nutrient gradients of forest soils was studied under field conditions in boreal forests. The biomass-response curves of Vaccinium myrtillus and V. vitis-idaea were fitted against soil nutrient gradients using Generalized Linear Models (GLM). Ecological niches of Vaccinium myrtillus and V. vitis-idaea were evaluated, and effects of nitrogen addition (manipulation of the nutrient gradient) on response function were tested. The Vaccinium species showed statistically significant Gaussian responses along soil nitrogen, phosphorus and calcium gradients, but not along other gradients (K and Mg). Furthermore, manipulation of the nitrogen gradient seemed to have a minor effect on response functions, i.e. addition of nitrogen did not change ecological niches of these species. Ecological optima of V. myrtillus and V. vitis-idaea on the nutrient gradients were about the same. This study suggests that differences in dominance between Vaccinium myrtillus and V. vitis-idaea in boreal forest is not determined by nutrient gradients, but may rather be explained by light conditions and/or moisture availability.  相似文献   

14.
We investigated the anatomical expression of leaf traits in hybrids between evergreen Vaccinium vitis‐idaea and deciduous V. myrtillus. We compared parents from four populations with their respective F1 hybrids and tested whether (i) transgression can be the source of novel anatomical traits in hybrids; (ii) expression of transgressive traits is more probable for traits with similar values in parents and intermediate for more distinct values, as predicted by theory; and (iii) independent origin of hybrids leads to identical trait expression profiles among populations. We found that anatomical leaf traits can be divided into four categories based on their similarity to parents: intermediate, parental‐like, transgressive and non‐significant. Contrary to the common view, parental‐like trait values were equally important in shaping the hybrid profile, as were intermediate traits. Transgression was revealed in 17/144 cases and concerned mainly cell and tissue sizes. As predicted by theory, we observed transgressive segregation more often when there was little phenotypic divergence, but intermediate values when parental traits were differentiated. It is likely that cell and tissue sizes are phylogenetically more conserved due to stabilising selection, whereas traits such as leaf thickness and volume fraction of the intercellular spaces, showing a consistent intermediate pattern across populations, are more susceptible to directional selection. Hybrid populations showed little similarity in expression profile, with only three traits identically expressed across all populations. Thus local adaptation of parental species and specific genetic background may be of importance.  相似文献   

15.
Phoenix  G.K.  Gwynn-Jones  D.  Lee  J.A.  Callaghan  T.V. 《Plant Ecology》2000,146(1):67-75
The effects of ultraviolet-B radiation on regeneration after disturbance of a natural sub-arctic heathland have been investigated. Areas of pristine dwarf shrub heath were denuded of all above ground biomass in 1992 and exposed to enhanced UV-B (simulating a 15% depletion of the ozone layer). The resulting regenerated stem and leaf growth parameters were measured after four years on three dwarf shrubs, Vaccinium myrtillus, V. uliginosum and V. vitis-idaea and the grass Calamagrostis lapponica; leaves of the three dwarf shrubs were also analysed for UV-absorbing compounds and carbohydrates. Regeneration irrespective of treatment was slow, with Empetrum hermaphroditum failing to regenerate at all. Vaccinium myrtillus showed the most rapid regeneration attaining much of its original biomass in four years. There was a significant interaction between UV-B and year of regeneration in V. myrtillus; annual stem length increment showed an initial stimulation of 75% under enhanced UV-B in the first year of regeneration while a reduction of 16% was observed in the fourth year. Both V. uliginosum and V. vitis-idaea showed a reduction in annual stem length increment as regeneration progressed with a greater than 50% reduction in stem increment in the fourth year of regeneration compared to the first. Vaccinium uliginosum also showed an initial reduction in stem length increment of 40% under enhanced UV-B. None of the species were affected by enhanced UV-B in terms of total regenerated stem and leaf biomass or UV-absorbing compounds in regenerated leaf tissue. Total leaf carbohydrate and the ethanol/water soluble fraction in V. uliginosum were significantly increased by 29% and 31% respectively under enhanced UV-B. This suggests either a stimulation of photosynthesis or a reduction in sink size for photo-assimilates. Results are discussed in the context of the extremely slow regeneration of sub-arctic heath communities and the implications of contrasting UV-B effects on the regenerative ability of different species.  相似文献   

16.
In northern Fennoscandia, the spatial and temporal grazing practices of semi-domesticated reindeer (Rangifer tarandus tarandus) vary, which implies different grazing effects dependent on natural conditions as well as management regime (i.e., timing and intensity of grazing). We compared density and biomass of main plant groups in semi-dry mountain birch forests exposed to either long-term summer or winter grazing in three reindeer herding districts in the northernmost Finland. Percent plant cover, height, and biomass of reindeer lichens (Cladonia spp.) and dwarf shrubs (Vaccinium uliginosum, Calluna vulgaris, and Betula nana) were lower on summer ranges compared with winter ranges. The biomass of other dwarf shrubs (Vaccinium myrtillus and V. vitis-idaea), and graminoids and herbs, and the % cover of non-vegetated bare soil and litter were, however, higher on summer ranges than on winter ranges. Young mountain birch shoots (Betula pubescens ssp. czerepanovii) were less frequent on summer ranges than on winter ranges. The total leaf biomass under the browsing height of reindeer (<1.5 m) was also lower on summer ranges compared with winter ranges. Especially in drier and nutrient poor mountain birch forests, intensive summer grazing reduces the quantity of lichens and total plant biomass which affects the ecological state and productivity of these forests and also reduces especially their winter grazing value for reindeer. Therefore, in addition to regulating the maximum sustained numbers of reindeer, pasture rotation systems that effectively protect dry and nutrient poor vegetation from summer grazing and trampling should be encouraged.  相似文献   

17.
Abstract. Humus profiles were sampled along an altitudinal gradient in the Macot‐La‐Plagne Forest (France, northern Alps) to investigate variation occurring under carpets of Vaccinium myrtillus present within Picea abies forests. The vertical distribution of subterranean organs of V. myrtillus was compared with (1) that of P. abies roots and other accompanying vegetation and (2) other components of humus profiles, in particular humified organic matter mainly consisting of animal faeces. It was shown that V. myrtillus roots were mostly concentrated in mineral horizons, while P. abies roots and V. myrtillus rhizomes occupied litter horizons. This was interpreted in terms of competition for nutrient capture between P. abies and V. myrtillus. The effects of altitude were (1) a change in the vegetation accompanying V. myrtillus in dense V. myrtillus carpets, bryophytes at the montane level being replaced by forbs at the sub‐alpine level and (2) a decrease in the thickness of ecto‐organic horizons. This was interpreted as a shift from a moder system characterized by recalcitrant litter (moss) processed by an active faunal community (stabilized in the form of animal faeces) to a mor system characterized by low animal abundance but with litter of better quality which is easily leached in the absence of prominent faunal activity.  相似文献   

18.
Boreal coniferous forests are characterized by fairly open canopies where understory vegetation is an important component of ecosystem C and N cycling. We used an ecophysiological approach to study the effects of N additions on uptake and partitioning of C and N in two dominant understory shrubs: deciduous Vaccinium myrtillus in a Picea abies stand and evergreen Vaccinium vitis-idaea in a Pinus sylvestris stand in northern Sweden. N was added to these stands for 16 and 8 years, respectively, at rates of 0, 12.5, and 50 kg N ha?1 year?1. N addition at the highest rate increased foliar N and chlorophyll concentrations in both understory species. Canopy cover of P. abies also increased, decreasing light availability and leaf mass per area of V. myrtillus. Among leaves of either shrub, foliar N content did not explain variation in light-saturated CO2 exchange rates. Instead photosynthetic capacity varied with stomatal conductance possibly reflecting plant hydraulic properties and within-site variation in water availability. Moreover, likely due to increased shading under P. abies and due to water limitations in the sandy soil under P. sylvestris, individuals of the two shrubs did not increase their biomass or shift their allocation between above- and belowground parts in response to N additions. Altogether, our results indicate that the understory shrubs in these systems show little response to N additions in terms of photosynthetic physiology or growth and that changes in their performance are mostly associated with responses of the tree canopy.  相似文献   

19.
Question: Can the distribution and abundance of Vaccinium myrtillus be reasonably predicted with soil nutritional and climatic factors? Location: Forests of France. Methods: We used Braun‐Blanquet abundance/dominance information for Vaccinium myrtillus on 2905 forest sites extracted from the phyto‐ecological database EcoPlant, to characterize the species ecological response to climatic and edaphic factors and to predict its cover/abundance at the national scale. The link between cover/abundance of the species and climatic (65 monthly and annual predictors concerning temperature, precipitation, radiation, potential evapotranspiration, water balance) and edaphic (two predictors: soil pH and C:N ratio) factors was investigated with proportional odds models. We evaluated the quality of our model with 9830 independent relevés extracted from Sophy, a large phytosociological database for France. Results: In France, Vaccinium myrtillus is at the southern limit of its European geographic range and three environmental factors (mean annual temperature, soil pH and C:N ratio) allow prediction of its distribution and abundance in forests with high success rates. The species reveals a preference for colder sites (especially mountains) and nutritionally poor soils (low pH and high C:N ratio). A predictive map of its geographic range reveals that the main potential habitats are mountains and northwestern France. The potential habitats with maximal expected abundance are the Vosges and the Massif central mountains, which are both acidic mountains. Conclusions: Complete niche models including climate and soil nutritional conditions allow an improvement of the spatial prediction of plant species abundance at a broad scale. The use of soil nutritional variables in distribution models further leads to an improvement in the prediction of plant species habitats within their geographical range.  相似文献   

20.
Climate warming is strongly altering the timing of season initiation and season length in the Arctic. Phenological activities are among the most sensitive plant responses to climate change and have important effects at all levels within the ecosystem. We tested the effects of two experimental treatments, extended growing season via snow removal and extended growing season combined with soil warming, on plant phenology in tussock tundra in Alaska from 1995 through 2003. We specifically monitored the responses of eight species, representing four growth forms: (i) graminoids (Carex bigellowii and Eriophorum vaginatum); (ii) evergreen shrubs (Ledum palustre, Cassiope tetragona, and Vaccinium vitis‐idaea); (iii) deciduous shrubs (Betula nana and Salix pulchra); and (iv) forbs (Polygonum bistorta). Our study answered three questions: (i) Do experimental treatments affect the timing of leaf bud break, flowering, and leaf senescence? (ii) Are responses to treatments species‐specific and growth form‐specific? and (iii) Which environmental factors best predict timing of phenophases? Treatment significantly affected the timing of all three phenophases, although the two experimental treatments did not differ from each other. While phenological events began earlier in the experimental plots relative to the controls, duration of phenophases did not increase. The evergreen shrub, Cassiope tetragona, did not respond to either experimental treatment. While the other species did respond to experimental treatments, the total active period for these species did not increase relative to the control. Air temperature was consistently the best predictor of phenology. Our results imply that some evergreen shrubs (i.e., C. tetragona) will not capitalize on earlier favorable growing conditions, putting them at a competitive disadvantage relative to phenotypically plastic deciduous shrubs. Our findings also suggest that an early onset of the growing season as a result of decreased snow cover will not necessarily result in greater tundra productivity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号