首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
The imperial bromeliad Alcantarea imperialis grows naturally on rocky outcrops (‘inselbergs’) in regions where daily temperatures vary from 5 to 40°C. As carbohydrate metabolism is altered in response to cold, it could lead to reprogramming of the metabolic machinery including the increase in levels of metabolites that function as osmolytes, compatible solutes, or energy sources in order to maintain plant homeostasis. The aim of this study was to evaluate the effects of different temperatures on plant growth and non-structural carbohydrates in plants of A. imperialis adapted to low temperature. Seedlings of A. imperialis were grown in vitro under a 12-h photoperiod with four different day/night temperature cycles: 5/5°C, 15/15°C, 15/30°C (dark/light) and 30/30°C. Plants were also cultivated at 26°C in ex vitro conditions for comparison. The results showed an inverse relationship between temperature and germination time and no differences in the percentage of germination. Plants maintained for 9 months at 15°C presented a reduced number of leaves and roots, and a dry mass four times lower than plants grown at 30°C. Sugar content was higher in plants grown at 15°C than at 30°C. However, the highest amount of total sugar was found in plants growing under warm day/cold night conditions. Myo-inositol, glucose, fructose and sucrose were found predominantly under high temperatures, while under low temperatures, sucrose was apparently replaced by trehalose, raffinose and stachyose. Starch content was highest in plants grown under high temperatures. The lowest starch content was detected under low temperatures, suggesting its conversion into soluble carbohydrates to protect the plants against cold. These results indicated that low temperature retarded growth of A. imperialis and increased sugar levels, mainly trehalose, thus suggesting that these sugar compounds could be involved in cold tolerance.  相似文献   

2.
A direct correlation was found between soil water stress and resistance of E. occidentalis leaves to extreme temperatures. A distinct seasonal rhythm of heat and cold resistance of the leaves was recorded. Maximal tolerance was observed towards the end of the dry season, when the resistance value, that is, the temperature injuring 50% of the leaf area at Ilanot was –5.8°C for cold resistance and 51.0°C for heat resistance. The minimal tolerance to extreme temperatures was recorded in the middle of the rainy (winter) season. Irrigation of the trees during the summer reduced both heat and cold resistance.  相似文献   

3.
Low and high temperatures are known as most important factors influencing plant performance and distribution. Plants of Lantana camara L. coming from two distinct geographical populations (Iberian Peninsula and Galápagos Islands) were cultivated in a common garden experiment, and their leaves were subjected to thermal treatments (from +20.0 to ?7.5°C during the winter and from +20.0 to +50.0°C during the summer) in a programmable water bath in darkness. Their photosynthetic performance and their recovery capacity after the thermal treatment were evaluated by measuring chlorophyll fluorescence, net photosynthesis rate, and leaf necrosis. In general, L. camara photosynthetic apparatus showed a wide range of temperature tolerance in darkness, showing optimal functioning of its photosystem II just after exposure to temperatures between ?2.5 and +35.0°C for the Iberian population and between +10.0 and +25.0°C for the Galápagos population. Just after exposure to low and high temperatures, gradual cold and heat-induced photoinhibition was recorded for both populations. After 24 h, leaves of L. camara demonstrated a great recovery capacity from ?2.5 to +42.5°C. However, leaves of the treatments from ?5.0°C down and +47.50°C up showed permanent damages to the photosynthetic apparatus and to the leaf tissues. Slight interpopulation differences were found only at extreme temperatures.  相似文献   

4.
Arabidopsis plants show an increase in freezing tolerance in response to exposure to low nonfreezing temperatures, a phenomenon known as cold acclimation. In the present study, we evaluated the physiological and morphological responses of various Arabidopsis ecotypes to continuous growth under chilling (14°C) and cold (6°C) temperatures and evaluated their basal freezing tolerance levels. Seedlings of Arabidopsis plants were extremely sensitive to low growth temperatures: the hypocotyls and petioles were much longer and the angles of the second pair of true leaves were much greater in plants grown at 14°C than in those grown at 22°C, whereas just intermediate responses were observed under the cold temperature of 6°C. Flowering time was also markedly delayed at low growth temperatures and, interestingly, lower growth temperatures were accompanied by longer inflorescences. Other marked responses to low temperatures were changes in pigmentation, which appeared to be both ecotype specific and temperature dependent and resulted in various visual phenotypes such as chlorosis, necrosis or enhanced accumulation of anthocyanins. The observed decreases in chlorophyll contents and accumulation of anthocyanins were much more prominent in plants grown at 6°C than in those grown at 14°C. Among the various ecotypes tested, Mt‐0 plants markedly accumulated the highest levels of anthocyanins upon growth at 6°C. Freezing tolerance examination revealed that among 10 ecotypes tested, only C24 plants were significantly more sensitive to subzero temperatures. In conclusion, Arabidopsis ecotypes responded differentially to cold (6°C), chilling (14°C) and freezing temperatures, with specific ecotypes being more sensitive in particular traits to each low temperature.  相似文献   

5.
High‐temperature tolerance in plants is important in a warming world, with extreme heat waves predicted to increase in frequency and duration, potentially leading to lethal heating of leaves. Global patterns of high‐temperature tolerance are documented in animals, but generally not in plants, limiting our ability to assess risks associated with climate warming. To assess whether there are global patterns in high‐temperature tolerance of leaf metabolism, we quantified Tcrit (high temperature where minimal chlorophyll a fluorescence rises rapidly and thus photosystem II is disrupted) and Tmax (temperature where leaf respiration in darkness is maximal, beyond which respiratory function rapidly declines) in upper canopy leaves of 218 plant species spanning seven biomes. Mean site‐based Tcrit values ranged from 41.5 °C in the Alaskan arctic to 50.8 °C in lowland tropical rainforests of Peruvian Amazon. For Tmax, the equivalent values were 51.0 and 60.6 °C in the Arctic and Amazon, respectively. Tcrit and Tmax followed similar biogeographic patterns, increasing linearly (?8 °C) from polar to equatorial regions. Such increases in high‐temperature tolerance are much less than expected based on the 20 °C span in high‐temperature extremes across the globe. Moreover, with only modest high‐temperature tolerance despite high summer temperature extremes, species in mid‐latitude (~20–50°) regions have the narrowest thermal safety margins in upper canopy leaves; these regions are at the greatest risk of damage due to extreme heat‐wave events, especially under conditions when leaf temperatures are further elevated by a lack of transpirational cooling. Using predicted heat‐wave events for 2050 and accounting for possible thermal acclimation of Tcrit and Tmax, we also found that these safety margins could shrink in a warmer world, as rising temperatures are likely to exceed thermal tolerance limits. Thus, increasing numbers of species in many biomes may be at risk as heat‐wave events become more severe with climate change.  相似文献   

6.
The significance of leaf rosette closure for survival of drought and heat under high irradiation on alpine rock sites was investigated in the cushion forming rosette plant, Saxifraga paniculata Mill. With decreasing water content the leaves fold over the rosette centre reducing reversibly the evaporative leaf surface area by 80%. Internal water redistribution driven by an osmotic gradient from older to younger leaves occurs. The oldest leaves dry out to promote the survival of the individual. Leaf temperatures above 45 °C (which match heat tolerance limits 45–57 °C; LT50) co-occurred with low substrate water potentials (less than – 0·5 MPa) on 11·3% of summer days. Shading by leaves can be crucial to surviving high temperatures as it keeps the rosette centre up to 10 °C colder. Mutual shading prevented sustained drought-induced photoinhibition in upper leaf surfaces at relative water contents below 60%. In exposed lower leaf surfaces restoration of photosystem II took several days. Leaf temperatures above 40 °C (21·3% of summer days) induced photoinhibition in situ. Periods with sufficient water supply can be fully utilized as rehydration is fast ( < 12 h) and exposes the upper leaf surfaces that showed only minor photoinhibition. By reversible leaf rosette closure environmental extremes that otherwise could exceed tolerance are efficiently avoided.  相似文献   

7.
Accumulation of Free Proline at Low Temperatures   总被引:3,自引:0,他引:3  
The accumulation of free proline in the first leaves of barley, Hordeum distichum L., and wheat, Triticum aestivum L., in response to a range of low temperatures was examined with 10-day-old plants. In barley (cv. Prior) no proline accumulated at 8°C or above, but in wheat (cv. Gabo) proline accumulated at 12°C and lower temperatures. In barley, the first leaf survived for 29 days following transfer to 5°C and continued to accumulate proline throughout this period. In contrast, the first leaves of plants maintained at 20°C survived for 13 days only and accumulated no proline. Proline accumulation at low temperature was shown to be light-dependent, both in intact plants and excised leaf sections, and the light requirement could not be replaced by supplying leaf segments with precursors of proline. Proline accumulation in response to water stress was not light-dependent at 20°C but was at 5°C. Inter-specific and intra-specific variation in the extent of accumulation in response to low temperature was also examined. Considerable variation was encountered but there was no clear relationship with geographical distribution or chilling sensitivity for the species and no correlation with accumulation in response to water stress in the cultivars of barley examined.  相似文献   

8.
Relative electrical conductivity (RC) values and Tally acid levels were measured on apple leaves of different ages exposed to 0 and 20°C. RC values were measured at—3°C and high RC values indicate frost-sensitive tissue. A prolonged period at 0°C gave an increased RC value of the leaves, which indicates damage. At 20°C the RC values were lower in older leaves than in young leaves. The fatty acids level as well as the degree of saturation were different at different ages of the leaves. Young leaves showed a higher fatty acid level in plants held at 20°C than in plants at 0°C. The older leaves maintained the same level after 12 days at 20°C as after 3 days at 20°C. The fatty acid level decreased at 0°C. The linolenic acid level followed the same trend as total fatty acids, indicating that synthesis and degradation of linolenic acid can occur in the same plant depending on the age of the leaf and on the temperature. Cold resistance and linolenic acid levels were correlated in both old and young leaves at 20°C and in older leaves at 0°C. There was no correlation between cold resistance and levels of linotenic acid levels in young leaves at 0°C. Two hiosynthetic pathways for linolenic acid synthesis are discussed.  相似文献   

9.
Tolerances of wild potato species from different altitudes to cold and heat   总被引:1,自引:0,他引:1  
The ability of wild potatoes (Solanum spp.) to adapt to potentially stressful environmental temperatures was investigated by measuring the cold and heat tolerances of plants grown near sea-level in Lima following collection of tubers from plants growing naturally at altitudes ranging from 450 to 4,200 m. Relative cold tolerance was measured in leaves stored at 0°C by the decrease in the induced rise of chlorophyll fluorescence. Similarly, changes in chlorophyll fluorescence were used to determine the relative heat tolerance of leaves heated at 41°C for 10 min. With increasing altitude, the cold tolerance of different species tended to increase and conversely, heat tolerance decreased. However, these two genotypic adaptations were not closely correlated and appear to vary independently of each other in response to climate.  相似文献   

10.
Natural selection alters the distribution of a trait in a population and indirectly alters the distribution of genetically correlated traits. Long‐standing models of thermal adaptation assume that trade‐offs exist between fitness at different temperatures; however, experimental evolution often fails to reveal such trade‐offs. Here, we show that adaptation to benign temperatures in experimental populations of Drosophila melanogaster resulted in correlated responses at the boundaries of the thermal niche. Specifically, adaptation to fluctuating temperatures (16–25°C) decreased tolerance of extreme heat. Surprisingly, flies adapted to a constant temperature of 25°C had greater cold tolerance than did flies adapted to other thermal conditions, including a constant temperature of 16°C. As our populations were never exposed to extreme temperatures during selection, divergence of thermal tolerance likely reflects indirect selection of standing genetic variation via linkage or pleiotropy. We found no relationship between heat and cold tolerances in these populations. Our results show that the thermal niche evolves by direct and indirect selection, in ways that are more complicated than assumed by theoretical models.  相似文献   

11.
The effect of variable autumn temperatures in combination with decreasing irradiance and daylength on photosynthesis, growth cessation and freezing tolerance was investigated in northern‐ and southern‐adapted populations of perennial ryegrass (Lolium perenne) and timothy (Phleum pratense) intended for use in regions at northern high latitudes. Plants were subjected to three different acclimation temperatures; 12, 6 and 9/3°C (day/night) for 4 weeks, followed by 1 week of cold acclimation at 2°C under natural light conditions. This experimental setup was repeated at three different periods during autumn with decreasing sums of irradiance and daylengths. Photoacclimation, leaf elongation and freezing tolerance were studied. The results showed that plants cold acclimated during the period with lowest irradiance and shortest day had lowest freezing tolerance, lowest photosynthetic activity, longest leaves and least biomass production. Higher acclimation temperature (12°C) resulted in lower freezing tolerance, lower photosynthetic activity, faster leaf elongation rate and higher biomass compared with the other temperatures. Photochemical mechanisms were predominant in photoacclimation. The northern‐adapted populations had a better freezing tolerance than the southern‐adapted except when grown during the late autumn period and at the highest temperature; then there were no differences between the populations. Our results indicate that the projected climate change in the north may reduce freezing tolerance in grasses as acclimation will take place at higher temperatures and shorter daylengths with lower irradiance.  相似文献   

12.
Summary Experiments were done to test whether N fixation is more sensitive to high soil temperatures in common bean than in cowpea or soybean. Greenhouse experiments compared nodulation, nitrogenase activity, growth and nitrogen accumulation of several host/strain combinations of common bean with the other grain legumes and with N-fertilization, at various root temperatures. Field experiments compared relative N-accumulation (in symbiotic relative to N-fertilized plants) of common bean with cowpea under different soil thermal regimes. N-fertilized beans were unaffected by the higher temperatures, but nitrogen accumulation by symbiotic beans was always more sensitive to high root temperatures (33°C, 33/28°C, 34/28°C compared with 28°C) than were cowpea and soybean symbiosis. Healthy bean nodules that had developed at low temperatures functioned normally in acetylene reduction tests done at 35°C. High temperatures caused little or no suppression of nodule number. However, bean nodules produced at high temperatures were small and had low specific activity. ForP. vulgaris some tolerance to high temperature was observed among rhizobium strains (e.g., CIAT 899 was tolerant) but not among host cultivars. Heat tolerance ofP. acutifolius andP. lunatus symbioses was similar to that of cowpea and soybean. In the field, high surface soil temperatures did not reduce N accumulation in symbiotic beans more than in cowpea, probably because of compensatory nodulation in the deeper and cooler parts of the soil.  相似文献   

13.
The effect of thermal acclimation on trehalose accumulation and the acquisition of thermotolerance was studied in three species of entomopathogenic nematodes adapted to either cold or warm temperatures. All three Steinernema species accumulated trehalose when acclimated at either 5 or 35 degrees C, but the amount of trehalose accumulation differed by species and temperature. The trehalose content of the cold adapted Steinernema feltiae increased by 350 and 182%, of intermediate Steinernema carpocapsae by 146 and 122% and of warm adapted Steinernema riobrave by 30 and 87% over the initial level (18.25, 27.24 and 23.97 microg trehalose/mg dry weight, respectively) during acclimation at 5 and 35 degrees C, respectively. Warm and cold acclimation enhanced heat (40 degrees C for 8h) and freezing (-20 degrees C for 4h) tolerance of S. carpocapsae and the enhanced tolerance was positively correlated with the increased trehalose levels. Warm and cold acclimation also enhanced heat but not freezing tolerance of S. feltiae and the enhanced heat tolerance was positively correlated with the increased trehalose levels. In contrast, warm and cold acclimation enhanced the freezing but not heat tolerance of S. riobrave, and increased freezing tolerance of only warm acclimated S. riobrave was positively correlated with the increased trehalose levels. The effect of acclimation on maintenance of original virulence by either heat or freeze stressed nematodes against the wax moth Galleria mellonella larvae was temperature dependent and differed among species. During freezing stress, both cold and warm acclimated S. carpocapsae (84%) and during heat stress, only warm acclimated S. carpocapsae (95%) maintained significantly higher original virulence than the non-acclimated (36 and 47%, respectively) nematodes. Both cold and warm acclimated S. feltiae maintained significantly higher original virulence (69%) than the non-acclimated S. feltiae (0%) during heat but not freezing stress. In contrast, both warm and cold acclimated S. riobrave maintained significantly higher virulence (41%) than the non-acclimated (14%) nematodes during freezing, but not during heat stress. Our data indicate that trehalose accumulation is not only a cold associated phenomenon but is a general response of nematodes to thermal stress. However, the extent of enhanced thermal stress tolerance conferred by the accumulated trehalose differs with nematode species.  相似文献   

14.
Cold-water corals (CWCs) are key ecosystem engineers in deep-sea benthic communities around the world. Their distribution patterns are related to several abiotic and biotic factors, of which seawater temperature is arguably one of the most important due to its role in coral physiological processes. The CWC Dendrophyllia cornigera has the particular ability to thrive in several locations in which temperatures range from 11 to 17 °C, but to be apparently absent from most CWC reefs at temperatures constantly below 11 °C. This study thus aimed to assess the thermal tolerance of this CWC species, collected in the Mediterranean Sea at 12 °C, and grown at the three relevant temperatures of 8, 12, and 16 °C. This species displayed thermal tolerance to the large range of seawater temperatures investigated, but growth, calcification, respiration, and total organic carbon (TOC) fluxes severely decreased at 8 °C compared to the in situ temperature of 12 °C. Conversely, no significant differences in calcification, respiration, and TOC fluxes were observed between corals maintained at 12 and 16 °C, suggesting that the fitness of this CWC is higher in temperate rather than cold environments. The capacity to maintain physiological functions between 12 and 16 °C allows D. cornigera to be the most abundant CWC species in deep-sea ecosystems where temperatures are too warm for other CWC species (e.g., Canary Islands). This study also shows that not all CWC species occurring in the Mediterranean Sea (at deep-water temperatures of 12–14 °C) are currently living at their upper thermal tolerance limit.  相似文献   

15.
Ungrafted apple rootstocks were grown in sand cultures at constant root temperatures between 20°C to 40°C. Temperatures of 30°C and above reduced root and shoot growth. Serious damage to the leaves occurred at 35°C and above. The O2 consumption, CO2 evolution and respiratory quotient (RQ) of the roots showed maximum values at 35°C. Different rootstock cultivars varied greatly in their susceptibility to damage by supraoptimal root temperatures apparently due to anaerobic respiration. The more susceptible ones differed from resistant types in the larger amount of ethanol they accumulated in their roots at supraoptimal root temperature, and the more severe reduction in the malic acid content of the roots at such temperature. Acetaldehyde was also found in roots and leaves at supraoptimal root temperatures, whereas the organic acid content of the leaves tended to decrease. Supraoptimal root temperature also caused a reduction of cytokinins in both roots and leaves accompanied by a reduction in the leaf chlorophyll content. This could be prevented by the application of kinetin or benzyladenine to the leaves. In a short experiment a rise in root temperature up to 40°C caused an increase in transpiration and a decrease in the resistance of the leaves to the passage of water vapor, whereas in prolonged experiments transpiration reached a maximum and leaf resistance a minimum at 30°C. The leaf water potential increased also with increasing root temperature. Leaf temperature increased with increasing root temperature, irrespective of increasing or decreasing transpiration rates.  相似文献   

16.
People are exposed to heat regularly due to their jobs or daily habits in cold winter, but few studies have reported whether parallel heat and cold exposure and diminish cold acclimation. This study was conducted to investigate the effects of alternating exposure to cold and heat on cold tolerance in eight young males. A daily acclimation program to cold and heat, which consisted of 2-h sitting at 10 °C air in the morning and 2-h running and rest at 30 °C air in the afternoon, was conducted for 14 consecutive days. Eight male subjects participated in a cold tolerance test (10 °C [ ± 0.3], 40%RH[ ± 3]) before (PRE) and after (POST) completing the alternating exposure program. During the cold tolerance test, subjects remained sitting upright on a chair for 60 min. Rectal temperature (Tre) was lower in POST than in PRE during the 60-min cold tolerance test (P = 0.027). During the cold tolerance test, systolic, diastolic, and mean arterial blood pressures in POST were lower than those in PRE (P = 0.006, P = 0.005, and P = 0.004). No significant differences in skin temperatures between PRE and POST were found for the cold tolerance test. There were no significant differences in energy expenditure during cold exposure between PRE and POST. Subjects felt less cold in POST than in PRE (P = 0.013) whereas there was no significant difference in overall thermal comfort between PRE and POST. These results suggest that cold adaptation can still occur in the presence of heat stress.  相似文献   

17.
18.
To test the hypothesis that the up‐regulation of sucrose biosynthesis during cold acclimation is essential for the development of freezing tolerance, the acclimation responses of wild‐type (WT) Arabidopsis thaliana (Heynh.) were compared with transgenic plants over‐expressing sucrose phosphate synthase (over‐sps) or with antisense repression of either cytosolic fructose‐1,6‐bisphosphatase (antifbp) or sucrose phosphate synthase (antisps). Plants were grown at 23 °C and then shifted to 5 °C. The leaves shifted to 5 °C for 10 d and the new leaves that developed at 5 °C were compared with control leaves on plants at 23 °C. Plants over‐expressing sucrose phosphate synthase showed improved photosynthesis and increased flux of fixed carbon into sucrose when shifted to 5 °C, whereas both antisense lines showed reduced flux into soluble sugars relative to WT. The improved photosynthetic performance by the over‐sps plants shifted to 5 °C was associated with an increase in freezing tolerance relative to WT (?9.1 and ?7.2 °C, respectively). In contrast, both antisense lines showed impaired development of freezing tolerance (? 5.2 and ?5.8 °C for antifbp and antisps, respectively) when shifted to 5 °C. In the new leaves developed at 5 °C the recovery of photosynthesis as typically seen in WT was strongly inhibited in both antisense lines and this inhibition was associated with a further failure of both antisense lines to cold acclimate. Thus, functional sucrose biosynthesis at low temperature in the over‐sps plants reduced the inhibition of photosynthesis, maintained the mobilization of carbohydrates from source leaves to sinks and increased the rate at which freezing tolerance developed. Modification of sucrose metabolism therefore represents an additional approach that will have benefits both for the development of freezing tolerance and over‐wintering, and for the supply of exportable carbohydrate to support growth at low temperatures.  相似文献   

19.
Ecotherms adjust their physiology to environmental temperatures. Long‐term exposures to heat or cold typically induce acclimation responses that generate directional, but reversible shifts in thermal tolerance and performance. However, less is known about how short exposure in different life stages will affect the adult phenotype. In the present study, we compared the effects of long‐term temperature exposure to 15, 19 and 31 °C with that of brief (16 h) exposure periods at the same temperatures in Drosophila melanogaster eggs, larvae, pupae, or adults, respectively. The acclimation responses are evaluated using activity measurements at 11, 15, 19, 27, 31 and 33 °C and by measuring upper and lower thermal limits (CTmax and CTmin) in 5‐day‐old adult males. As expected, long‐term cold exposure reduces relative CTmin, whereas long‐term heat exposure increases relative CTmax. By contrast, we find little effect on thermal limits when using short‐term exposures at different life stages. Long‐term exposures to 31 and 15 °C both suppressed activity relative to the 19 °C control, suggesting that development at high and low temperatures may lead to reduced activity later in life. Short‐term cold exposure early in development reduces activity in the adult stage, whereas the effects of short‐term heat exposure on behaviour are dependent on life stage and test temperature. Together, our results highlight how the thermal sensitivity of the trait measured determines the ability to detect acclimation responses.  相似文献   

20.
Heatwaves are likely to increase in frequency and intensity with climate change, which may impair tree function and forest C uptake. However, we have little information regarding the impact of extreme heatwaves on the physiological performance of large trees in the field. Here, we grew Eucalyptus parramattensis trees for 1 year with experimental warming (+3°C) in a field setting, until they were greater than 6 m tall. We withheld irrigation for 1 month to dry the surface soils and then implemented an extreme heatwave treatment of 4 consecutive days with air temperatures exceeding 43°C, while monitoring whole‐canopy exchange of CO2 and H2O, leaf temperatures, leaf thermal tolerance, and leaf and branch hydraulic status. The heatwave reduced midday canopy photosynthesis to near zero but transpiration persisted, maintaining canopy cooling. A standard photosynthetic model was unable to capture the observed decoupling between photosynthesis and transpiration at high temperatures, suggesting that climate models may underestimate a moderating feedback of vegetation on heatwave intensity. The heatwave also triggered a rapid increase in leaf thermal tolerance, such that leaf temperatures observed during the heatwave were maintained within the thermal limits of leaf function. All responses were equivalent for trees with a prior history of ambient and warmed (+3°C) temperatures, indicating that climate warming conferred no added tolerance of heatwaves expected in the future. This coordinated physiological response utilizing latent cooling and adjustment of thermal thresholds has implications for tree tolerance of future climate extremes as well as model predictions of future heatwave intensity at landscape and global scales.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号