首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The interaction of acetylated histones with DNA in chromatin has been studied by UV laser-induced crosslinking histones to DNA. After irradiation of the nuclei, the covalently linked protein-DNA complexes were isolated and the presence of histones in them demonstrated immunochemically. When chromatin from irradiated nuclei was treated with clostripain, which selectively cleaved the N-terminal tails of core histones, no one of them was found covalently linked to DNA, thus showing that crosslinking proceeded solely via the N-terminal regions. However, the crosslinking ability of the laser was preserved both upon physiological acetylation of histones, known to be restricted to the N-terminal tails, and with chemically acetylated chromatin. This finding is direct evidence that the postsynthetic histone acetylation does not release the N-terminal tails from interaction with DNA.  相似文献   

2.
HeLa chromatin core particles contain a protein kinase which transfers phosphate from ATP to both nonhistone proteins and histones. The enzyme preferentially modifies H3 among the histones; about 7% of the H3 molecules in the nucleoprotein are modified at saturation. Activity of this kinase likely contributed to earlier results using crosslinking methodology to study which histones interact with the ends of core particle DNA. When the kinase is largely removed by sedimentation of core particles through sucrose gradients containing 0.45 M NaCl, crosslinking of the 5'-terminal label on DNA is observed only to histone H3. The overall efficiency of the crosslinking reaction is about 15%. The origin of the 5'-terminal 32P previously assigned as crosslinked to H4 is not explained by the current experiments.  相似文献   

3.
BACKGROUND: Linker histones constitute a family of lysine-rich proteins associated with nucleosome core particles and linker DNA in eukaryotic chromatin. In permeabilized cells, they can be extracted from nuclei by using salt concentration in the range of 0.3 to 0.7 M. Although other nuclear proteins are also extracted at 0.7 M salt, the remaining nucleus represents a template that is relatively intact. METHODS: A cytochemical method was used to study the affinity of reconstituted linker histones for chromatin in situ in cultured human fibroblasts. We also investigated their ability to condense chromatin by using DNA-specific osmium ammine staining for electron microscopy. RESULTS: Permeabilized and H1-depleted fibroblast nuclei were suitable for the study of linker histone-chromatin interactions after reconstitution with purified linker histone subfractions. Our results showed that exogenous linker histones bind to chromatin with lower affinity than the native ones. We detected no significant differences between the main H1 and H1 degrees histone fractions with respect to their affinity for chromatin or in their ability to condense chromatin. CONCLUSIONS: Linker histone interactions with chromatin are controlled also by mechanisms independent of linker histone subtype composition.  相似文献   

4.
5.
Structural organization of the meiotic prophase chromatin in the rat testis   总被引:3,自引:0,他引:3  
Pachytene nuclei were isolated from rat testes by the unit gravity sedimentation technique and contained histone variants H1a, H1t, TH2A, TH2B, and X2 in addition to the somatic histones H1bde, H1c, H2A, H2B, H3, and H4. The basic organization of the pachytene chromatin namely the nucleosome repeat length and the accessibility to micrococcal nuclease, was similar to that of rat liver interphase chromatin. However, when digested by DNase I, the susceptibility of pachytene chromatin was 25% more than liver chromatin under identical conditions. Nucleosome core particles were isolated from both liver and pachytene nuclei and were characterized for their DNA length and integrity of the nucleoprotein on low ionic strength nucleoprotein gels. While liver core particles contained all the somatic histones H2A, H2B, H3, and H4, in the pachytene core particles, histone variants TH2A, X2, and TH2B had replaced nearly 60% of the respective somatic histones. A comparison of the circular dichroism spectra obtained for pachytene and liver core particles indicated that the pachytene core particles were less compact than the liver core particles. Studies on the thermal denaturation properties of the two types of core particles revealed that the fraction of the pachytene core DNA melting at the premelting temperature region of 55-60 degrees C was significantly higher than that of the liver core DNA.  相似文献   

6.
In eukaryotic cell nuclei, DNA associates with the core histones H2A, H2B, H3 and H4 to form nucleosomal core particles. DNA binding to histones is regulated by posttranslational modifications of N-terminal tails (e.g., acetylation and methylation of histones). These modifications play important roles in the epigenetic control of chromatin structure. Recently, evidence that biotinidase and holocarboxylase synthetase (HCS) catalyze the covalent binding of biotin to histones has been provided. The primary aim of this study was to identify biotinylation sites in histone H2A and its variant H2AX. Secondary aims were to determine whether acetylation and methylation of histone H2A affect subsequent biotinylation and whether biotinidase and HCS localize to the nucleus in human cells. Biotinylation sites were identified using synthetic peptides as substrates for biotinidase. These studies provided evidence that K9 and K13 in the N-terminus of human histones H2A and H2AX are targets for biotinylation and that K125, K127 and K129 in the C-terminus of histone H2A are targets for biotinylation. Biotinylation of lysine residues was decreased by acetylation of adjacent lysines but was increased by dimethylation of adjacent arginines. The existence of biotinylated histone H2A in vivo was confirmed by using modification-specific antibodies. Antibodies to biotinidase and HCS localized primarily to the nuclear compartment, consistent with a role for these enzymes in regulating chromatin structure. Collectively, these studies have identified five novel biotinylation sites in human histones; histone H2A is unique among histones in that its biotinylation sites include amino acid residues from the C-terminus.  相似文献   

7.
Structure of nucleosomes and organization of internucleosomal DNA in chromatin   总被引:16,自引:0,他引:16  
We have compared the mononucleosomal pattern produced by micrococcal nuclease digestion of condensed and unfolded chromatin and chromatin in nuclei from various sources with the repeat length varying from 165 to 240 base-pairs (bp). Upon digestion of isolated H1-containing chromatin of every tested type in a low ionic strength solution (unfolded chromatin), a standard series of mononucleosomes (MN) was formed: the core particle, MN145, and H1-containing, MN165, MN175, MN185, MN195, MN205 and MN215 (the indexes give an approximate length of the nucleosomal DNA that differs in these particles by an integral number of 10 bp). In addition to the pattern of unfolded chromatin, digestion of whole nuclei or condensed chromatin (high ionic strength of Ca2+) gave rise to nuclei-specific, H1-lacking MN155. Digestion of H1-lacking chromatin produced only MN145, MN155 and MN165 particles, indicating that the histone octamer can organize up to 165 bp of nucleosomal DNA. Although digestion of isolated sea urchin sperm chromatin (repeat length of about 240 bp) at a low ionic strength gave a typical "unfolded chromatin pattern", digests of spermal nuclei contained primarily MN145, MN155, MN235 and MN245 particles. A linear arrangement of histones along DNA (primary organization) of the core particle was found to be preserved in the mononucleosomes, with the spacer DNA length from 10 to 90 bp on one (in MN155) or both sides of core DNA being a multiple of about 10 bp. In MN235, the core particle occupies preferentially a central position with the length of the spacer DNA on both sides of the core DNA being usually about 30 + 60 or 40 + 50 bp. Histone H1 is localized at the ends of these particles, i.e. close to the centre of the spacer DNA. The finding that globular part of histones H3 and sea urchin sperm H2B can covalently bind to spacer DNA suggests their involvement in the organization of chromatin superstructure. Our data indicate that decondensation of chromatin is accompanied by rearrangement of histone H1 on the spacer DNA sites adjacent to the core particle and thus support a solenoid model for the chromatin superstructure in nuclei in which the core DNA together with the spacer DNA form a continuous superhelix.  相似文献   

8.
Histone H1 and HMG 14/17 are deposited nonrandomly in the nucleus.   总被引:1,自引:0,他引:1       下载免费PDF全文
We have studied the assembly of histone H1 and the high mobility group nonhistones 14/17 by isopycnic analysis after crosslinking density labeled MSB cell nuclei or chromatin. Carbodiimide crosslinking produces dense poly-H1 and hybrid density H1-H2A histone dimers, indicating that new H1 is deposited nonrandomly, albeit nonconservatively relative to new core histones. Core histone-HMG crosslinking with succinimidyl propionate yields dense HMG 14 in uniformly dense particles and new HMG 17 crosslinked to both dense and light protein, implying that HMG 14 and 17 each deposit nonrandomly; but differently with respect to new core octamers. Propionimidate crosslinking yields dense H1-HMG 17 dimers, suggesting that the interactions of new 14/17 with H1 (new HMG 14-old H1, new HMG 17-new H1) are reciprocal to their interactions with the core histones.  相似文献   

9.
Histone modifications and nuclear architecture: a review.   总被引:3,自引:0,他引:3  
Epigenetic modifications, such as acetylation, phosphorylation, methylation, ubiquitination, and ADP ribosylation, of the highly conserved core histones, H2A, H2B, H3, and H4, influence the genetic potential of DNA. The enormous regulatory potential of histone modification is illustrated in the vast array of epigenetic markers found throughout the genome. More than the other types of histone modification, acetylation and methylation of specific lysine residues on N-terminal histone tails are fundamental for the formation of chromatin domains, such as euchromatin, and facultative and constitutive heterochromatin. In addition, the modification of histones can cause a region of chromatin to undergo nuclear compartmentalization and, as such, specific epigenetic markers are non-randomly distributed within interphase nuclei. In this review, we summarize the principles behind epigenetic compartmentalization and the functional consequences of chromatin arrangement within interphase nuclei.  相似文献   

10.
Widlund HR  Vitolo JM  Thiriet C  Hayes JJ 《Biochemistry》2000,39(13):3835-3841
Modulation of nucleosome stability in chromatin plays an important role in eukaryotic gene expression. The core histone N-terminal tail domains are believed to modulate the stability of wrapping nucleosomal DNA and the stability of the chromatin filament. We analyzed the contribution of the tail domains to the stability of nucleosomes containing selected DNA sequences that are intrinsically straight, curved, flexible, or inflexible. We find that the presence of the histone tail domains stabilizes nucleosomes containing DNA sequences that are intrinsically straight or curved. However, the tails do not significantly contribute to the free energy of nucleosome formation with flexible DNA. Interestingly, hyperacetylation of the core histone tail domains does not recapitulate the effect of tail removal by limited proteolysis with regard to nucleosome stability. We find that acetylation of the tails has the same minor effect on nucleosome stability for all the selected DNA sequences. A comparison of histone partitioning between long donor chromatin, acceptor DNA, and free histones in solution shows that the core histone tails mediate internucleosomal interactions within an H1-depleted chromatin fiber amounting to an average free energy of about 1 kcal/mol. Thus, such interactions would be significant with regard to the free energies of sequence-dependent nucleosome positioning. Last, we analyzed the contribution of the H2A/H2B dimers to nucleosome stability. We find that the intact nucleosome is stabilized by 900 cal/mol by the presence of the dimers regardless of sequence. The biological implications of these observations are discussed.  相似文献   

11.
Abstract: Total cerebral hemisphere nuclei purified from adult rabbit brain were subfractionated into neuronal and glial populations. Previous studies have shown that chromatin in neuronal nuclei is organized in an unusual nucleosome conformation compared with glial or kidney nuclei, i.e., a short DNA repeat length is present. We now analyze whether this difference in chromatin organization is associated with an alteration in the histone component of nucleosomes. Total histone isolated by acid/urea-protamine extraction of purified neuronal, glial, and kidney nuclei was analyzed by electrophoresis on SDS-polyacrylamide slab gels. Histone H1 that was selectively extracted from nuclei was also examined. Differences were not observed on SDS gels in the electrophoretic mobilities of histones associated with either the nucleosome core particle (histones H2A, H2B, H3, H4) or the nucleosome linker region (histone H1). Total histone and selectively extracted histone H1 were also analyzed on acid/urea slab gels that resolve histones on the basis of both molecular weight and charge differences. When analyzed in this system, differences with respect to electrophoretic mobility were not detected when comparing either selectively extracted histone H1 or total histone from neuronal and glial nuclei. Quantitative analyses were also performed and neuronal nuclei were found to contain less histone H1 per milligram DNA compared with glial or kidney nuclei. Neuronal nuclei also demonstrated a lower ratio of histone H1/core histone. These results suggest that the pronounced difference in chromatin organization in neuronal compared with glial nuclei, which is reflected by a short DNA repeat length in neurons, appears to be associated with quantitative differences in neuronal histone H1.  相似文献   

12.
K. Kurtz  J. Ausi  M. Chiva 《Tissue & cell》2009,41(5):334-344
An interesting characteristic of decapod crustacean sperm nuclei is that they do not contain highly packaged chromatin. In the present study we re-examine the presence of DNA-interacting proteins in sperm nuclei of the brachyuran Maja brachydactyla. Although previous reports have indicated that, unlike the majority of sperm cells, DNA of decapod sperm is not organized by basic proteins, in this work we show that: (1) histones are present in sperm of M. brachydactyla; (2) histones are associated with sperm DNA; (3) histone H3 appears in lower proportions than the other core histones, while histone H2B appears in higher proportions; and (4) histone H3 in sperm nuclei is acetylated. This work complements a previous study of sperm histones of Cancer pagurus and supports the suggestion that decapod crustacean sperm chromatin deserves further attention.  相似文献   

13.
The effect of poly(ADP-ribosyl)ation on native and H1-depleted chromatin was analyzed by gel electrophoresis, electron microscopy, and velocity sedimentation. In parallel, the interaction of automodified poly(ADP-ribose) polymerase with native and H1-depleted chromatin was analyzed. In H1-depleted chromatin histone H2B becomes the major poly(ADP-ribose) histone acceptor protein, whereas in native chromatin histone H1 was the major histone acceptor. Poly(ADP-ribosyl)ation of H1-depleted chromatin prevented the recondensation of polynucleosomes reconstituted with exogenous histone H1. This is probably due to the presence of modified poly(ADP-ribose) polymerase and hyper(ADP-ribosyl)ated histone H2B. Indeed, about 40% of the modified enzyme remained associated with H1-depleted chromatin, while less than 1% of the modified enzyme was bound to native chromatin. The influence of poly(ADP-ribosyl)ation on the chromatin conformation was also studied at the level of nucleosome in using monoclonal and polyclonal antibodies specific for individual histones and synthetic peptides of histones. In native chromatin incubated in the presence of Mg2+ there was a drop in the accessibility of histone epitopes to monoclonal and polyclonal antibodies whereas upon poly(ADP-ribosyl)ation their accessibility was found to remain even in the presence of Mg2+. In poly(ADP-ribosyl)ated H1-depleted chromatin an increased accessibility of some histone tails to antibodies was observed.  相似文献   

14.
The accessibility and role of histone regions in chromatin fibres were investigated using limited proteolysis with enzymes covalently bound to collagen membranes. The changes in chromatin conformation and condensation monitored by various biophysical methods, were correlated to the degradation of the histone proteins revealed by antibodies specific for histones and histone peptides. Upon digestion with trypsin and subtilisin, chromatin undergoes successive structural transitions. The cleavage of the C-terminal domains of H1, H2A and H2B, and of the N-terminal tail of H3 led to a decondensation of chromatin fibres, indicated by increases in electric birefringence and orientational relaxation times. It corresponds to a 15% increase in linear dimensions. The degradation of the other terminal regions of histones H3, H2A and H2B resulted in the appearance of hinge points between nucleosomes without alteration of the overall orientation of polynucleosome chains. Despite the loss of all the basic domains of H1, H3, H2A and H2B, no significant change in DNA-protein interactions occurred, suggesting that most of these protease-accessible regions interact weakly, if at all, with DNA in chromatin. Further proteolysis led to H4 degradation and other additional cleavages of H1, H2B and H3. This caused the relaxation of no more than 8% of the total DNA but resulted in changes in the ability of chromatin to condense at high ionic strength. More extensive digestion resulted in a total unravelling of nucleosomal chains which acquired properties similar to those of H1-depleted chromatin, although the globular part of H1 was still present. The data suggest that histone-histone interactions between H1 and core histone domains play a central role in stabilizing the chromatin fibres, and cuts in H3, H2A and H2B as well as H1, seem necessary for chromatin expansion. On the contrary, H4 might be involved in the stabilization of nucleosomes only.  相似文献   

15.
A picosecond UV laser was used to cross-link proteins to DNA in nuclei, whole cells and reconstituted nucleohistone. Irradiation of the nucleohistone resulted in crosslinking 15-20% of bound histones to DNA in a very short time (one or several picosecond pulses), the efficiency of crosslinking to single stranded DNA being higher than to double stranded DNA. All histones as well as high mobility group 1 proteins were identified in the covalently linked protein-DNA complexes upon irradiation of isolated nuclei and whole cells. A method is suggested for isolation of crosslinked material from cells and nuclei in amounts sufficient for further analysis. Experiments with reconstituted nucleohistones showed that upon irradiation at a constant dose the efficiency of crosslinking depended on the intensity of the light, thus suggesting a two-quantum process is involved in the reaction.  相似文献   

16.
17.
Crosslinking induced by ultraviolet light irradiation at 254 nm has been utilized to investigate the structure of chromatin and isolated nucleosomes. The results presented here imply that the four core histones, as well as histone H1, have reactive groups within a bond length of the DNA bases. In nucleosomes depleted of H1, all of the core histones react similarly with the DNA and form crosslinks. In chromatin, the rate of crosslinking of all histones to DNA is essentially similar. Comparison of mononucleosomes, dinucleosomes and whole chromatin shows that the rate of crosslinking increases significantly with increasing number of connected nucleosomes. These differences in the rate of crosslinking are interpreted in terms of interactions between neighbouring nucleosomes on the chromatin fiber, which are absent in an isolated mononucleosome.  相似文献   

18.
19.
Crosslinking of histone H1 molecules to each other and to the core histones with bifunctional reagents in mouse liver nuclei and chromatin was compared with that under the conditions of random 'contacts' between these molecules. The patterns of crosslinking of the H1 subfractions (H1A, H1B, and H10) to each other in nuclei, chromatin and in solution at different ionic strengths due to random collisions were essentially the same. Moreover, the contacts between the H1 molecules were qualitatively the same in nuclei, chromatin and in solution also at the level of the chymotryptic halves of the H1 molecules. The contacts between the H1 molecules and the core histones in nuclei were similar to those obtained in chromatin at 70 mM NaCl, when H1 molecules readily migrate, and at 0.6 M NaCl, when H1 molecules are dissociated from chromatin. We conclude that spatial arrangement of H1 subfractions and mutual orientation of H1 molecules in isolated nuclei are random-like at least in terms of cross-linking. The static and dynamic models of histone H1 binding to chromatin compatible with the known data are considered. Although unequivocal verification of the models is not possible at present, the dynamic models do correspond better to recent data on the location of the histone H1 in nuclei and chromatin.  相似文献   

20.
We have reconstructed nucleosomes from a histone octamer (H2A, H2B, H3, H4)2 and DNA 146 b.p. or 2-3 thousands b.p. in length. Comparison by means of DNA-histone cross-links of the primary organization of minimal nucleosomes obtained by reconstruction or isolated from chromatin of chicken erythrocyte nuclei has demonstrated a high similarity in histone location on their DNAs. Simultaneously, there have been observed some variations in the character of interaction for all core histones with DNA on nucleosomes. Thus, the cross-link of histone H4 with DNA of a core particle at H4 sites (65), unlike H4(55) and H4(88) sites, significantly depends on the superstructure of chromatin, ionic strength of solution and the presence of denaturating agents. All these differences are expected to probe the existence of conformational isomers for core particles. (Bracketed is the distance from the histone interaction site with the DNA of the core particle to the DNA 5'-terminus.)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号