首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Philip E. Hulme 《Oecologia》1997,111(1):91-98
The post-dispersal fate of seeds and fruit (diaspores) of three vertebrate-dispersed trees, Crataegus monogyna, Prunus mahaleb and Taxus baccata, was studied in the Andalusian highlands, south-eastern Spain. Exclosures were used to quantify separately the impact of vertebrates and invertebrates on seed removal in relation to diaspore density and microhabitat. The three plant species showed marked differences in the percentage of diaspores removed, ranging from only 5% for C. monogyna to 87% for T. baccata. Although chaffinches (Fringilla coelebs) fed on diaspores, rodents (Apodemus sylvaticus) were the main vertebrate removers of seed and fruit. Two species of ant (Cataglyphis velox and Aphaenogaster iberica) were the only invertebrates observed to remove diaspores. However, the impact of ants was strongly seasonal and they only removed P. mahaleb fruit to any significant extent. While removal of seed by rodents was equivalent to predation, ants were responsible for secondary dispersal. However, their role was limited to infrequent, small-scale redistribution of fruit in the vicinity of parent trees. Rodents and ants differed in their use of different microhabitats. Rodents foraged mostly beneath trees and low shrubs and avoided open areas while the reverse was true of ants. Thus, patterns of post-dispersal seed removal will be contigent on the relative abundance and distribution of ants and rodents. Studies which neglect to quantify separately the impacts of these two guilds of seed removers may fail to elucidate the mechanisms underlying patterns of post-dispersal seed removal. The coincidence of both increased seed deposition by the main avian dispersers (Turdus spp.) and increased seed predation with increasing vegetation height suggested that selection pressures other than post-dispersal seed predation shape the spatial pattern of seed dispersal. Rather than providing a means of escaping post-dispersal seed predators, dispersal appears to direct seeds to microhabitats most suitable for seedling survival. Nevertheless, the reliance of most vertebrate-dispersed trees on regeneration by seed and the absence of persistent soil seed banks imply that post-dispersal seed predators may exert a strong influence on the demography of the plants whose seeds they consume. Even where microsites are limited, the coincidence of the most suitable microhabitats for seedling establishment with those where seed predation is highest provide a means by which selective seed predators can influence community composition. Received: 19 August 1996 / Accepted: 25 January 1997  相似文献   

2.
Hornbills (Bucerotidae) are widely regarded as important seed dispersers in tropical forests in Africa and Asia. We investigated how the roosting behavior of wreathed hornbills (Aceros undulatus) influences seed deposition and seedling survival at a roost site in a moist evergreen forest of Khao Yai National Park, Thailand. Fallen fruits and seeds were collected in traps that were placed around a roosting site for 14 months, and seedlings were monitored in adjacent quadrats for 3 years. Seedfall and seedlings of species represented in the hornbill diet occurred at significantly higher densities in the traps and quadrats located beneath the crown of the roosting tree than in those located beyond the crown. With the exception of Cinnamomum subavenium, the seeds and seedlings of most diet species rarely survived beyond the first year. The quality of hornbill dispersal to this roosting site may be poor due to the highly concentrated seedfall, which results in high seed and seedling mortality. However, the number of seeds deposited by each hornbill each day at roosting sites is relatively low. Wreathed hornbills are primarily scatter dispersers during the day and probably serve as agents of seed dispersal in the moist evergreen forest of Khao Yai.  相似文献   

3.
《Biotropica》2017,49(2):170-176
In seed predation studies, removal of a seed is only the first step of a dynamic process that may result in dispersal rather than seed death. This process, termed seed fate, has received little attention in African forests, particularly in Central Africa. We experimentally assessed the initial steps of seed fate for two tree species—the large‐seeded Pentaclethra macrophylla and the relatively small‐seeded Gambeya lacourtiana—in northeastern Gabon. Specifically, we evaluated whether seed size and seed consumer identity are important determinants of seed fate. We established experimental stations under conspecific fruiting trees, each comprising three seeds fitted with telemetric thread tags to facilitate their recovery, and a motion‐sensitive camera to identify visiting mammals. In total, animals removed 76 tagged seeds from experimental stations. Small Murid rats and mice primarily removed small Gambeya seeds, whereas large‐bodied rodents and mandrills primarily removed large Pentaclethra seeds. Gambeya seeds were carried shorter distances than Pentaclethra seeds and were less likely to be cached. The two large‐bodied rodents handled seeds differently: Cricetomys emini larderhoarded nearly all (= 15 of 16) encountered Pentaclethra seeds deep in burrows, while Atherurus africanus cached all (= 5 of 5) encountered Pentaclethra seeds singly under 1–3 cm of leaf litter and soil, at an average distance of 24.2 m and a maximum distance of 46.3 m from experimental stations. This study supports the hypothesis that seed fate varies based on seed size and seed consumer identity, and represents the first telemetric experimental evidence of larderhoarding and scatterhoarding in the region.  相似文献   

4.
Andresen E  Levey DJ 《Oecologia》2004,139(1):45-54
Seeds dispersed by tropical, arboreal mammals are usually deposited singly and without dung or in clumps of fecal material. After dispersal through defecation by mammals, most seeds are secondarily dispersed by dung beetles or consumed by rodents. These post-dispersal, plant-animal interactions are likely to interact themselves, as seeds buried by dung beetles are less likely to be found by rodents than unburied seeds. In a series of three experiments with seeds of 15 species in central Amazonia (Brazil), we determined (1) how presence and amount of dung associated with seeds influences long-term seed fate and seedling establishment, (2) how deeply dung beetles bury seeds and how burial depth affects seedling establishment, and (3) how seed size affects the interaction between seeds, dung beetles, and rodents. Our overall goal was to understand how post-dispersal plant-animal interactions determine the link between primary seed dispersal and seedling establishment. On average, 43% of seeds surrounded by dung were buried by dung beetles, compared to 0% of seeds not surrounded by dung (n=2,156). Seeds in dung, however, tended to be more prone than bare seeds to predation by rodents. Of seeds in dung, probability of burial was negatively related to seed size and positively related to amount of dung. Burial of seeds decreased the probability of seed predation by rodents three-fold, and increased the probability of seedling establishment two-fold. Mean burial depth was 4 cm (0.5–20 cm) and was not related to seed size, contrary to previous studies. Probability of seedling establishment was negatively correlated with burial depth and not related to seed size at 5 or 10 cm depths. These results illustrate a complex web of interactions among dung beetles, rodents, and dispersed seeds. These interactions affect the probability of seedling establishment and are themselves strongly tied to how seeds are deposited by primary dispersers. More generally, our results emphasize the importance of looking beyond a single type of plant-animal interaction (e.g., seed dispersal or seed predation) to incorporate potential effects of interacting interactions.  相似文献   

5.
The Sulawesi red-knobbed hornbill (Aceros cassidix) is a large-bodied, frugivorous bird that nests in high densities in the Tangkoko-DuaSudara Nature Reserve, North Sulawesi, Indonesia. I measured seedling abundance and species richness, diversity, and dominance in plots placed below and immediately behind 20 active nest sites to evaluate the role of red-knobbed hornbills as agents of seed dispersal. Comparisons of treatment (below nests) and control plots (behind nests) show that hornbills affect the abundance and distribution of diet-species seedlings. Nondiet and nest tree seedlings did not differ between control and treatment plots suggesting that differences in diet species were the result of additional input by hornbills rather than by random or other dispersal events. Significantly greater numbers of diet seedlings germinated below nests, and the diversity of diet species was greater than that of nondiet species. Dominance of a few species in the treatment plots is consistent with the hypothesis that hornbills are effectively dispersing seeds of some, but not all, of their diet species. Although seedlings under nests may eventually experience density-dependent mortality, seedlings survived at least 12 months, indicating that red-knobbed hornbills were effectively dispersing seeds and influencing the initial fate of seeds of several tropical forest tree species.  相似文献   

6.
Timothy G. Laman 《Oecologia》1996,107(3):347-355
Due to their copious seed production and numerous dispersers, rain forest fig trees have been assumed to produce extensive and dense seed shadows. To test this idea, patterns of seed dispersal of two species of large hemiepiphytic fig tree were measured in a Bornean rain forest. The sample included four Ficus stupenda and three F. subtecta trees with crop sizes ranging from 2,000 to 40,000 figs (400,000 to 13,000,000 seeds). Seed rain out to a distance of 60 m from each study tree was quantified using arrays of seed traps deployed in the understory. These trees showed a strongly leptokurtic pattern of dispersal, as expected, but all individuals had measurable seed rain at 60 m, ranging from 0.2 to 5.0 seeds/m2. A regression of In-transformed seed rain density against distance gave a significant fit to all seven trees' dispersal patterns, indicating that the data could be fitted to the negative exponential distribution most commonly fitted to seed shadows. However, for six of seven trees, an improved fit was obtained for regressions in which distance was also In-transformed. This transformation corresponds to an inverse power distribution, indicating that for vertebrate-dispersed Ficus seeds, the tail of the seed rain distribution does not drop off as rapidly as in the exponential distribution typically associated with wind dispersed seed shadows. Over 50% of the seed crop was estimated to fall below each fig tree's crown. Up to 22% of the seed crop was dispersed beyond the crown edge, but within 60 m of the tree. Estimates of the maximum numbers of seeds which could have been transported beyond 60 m were 45% for the two largest crops of figs, but were under 24% for the trees with smaller crops. Seed traps positioned where they had an upper canopy layer above them were associated with higher probabilities of being hit by seeds, suggesting that vertebrate dispersal agents are likely to perch or travel through forest layers at the same level as the fig crown and could concentrate seeds in such areas to some degree. The probability of a safe site at 60 m from the fig tree being hit by seeds is calculated to be on the order of 0.01 per fruiting episode. Fig trees do not appear to saturate safe sites with seeds despite their large seed crops. If we in addition consider the rarity of quality establishment sites and post-dispersal factors reducing successful seedling establishment, hemiepiphytic fig trees appear to face severe obstacles to seedling recruitment.  相似文献   

7.
In tropical rain forests of Central America, the canopy tree Dipteryx panamensis (Papilionaceae) fruits when overall fruit biomass is low for mammals. Flying and arboreal consumers feed on D. panamensis and drop seeds under the parent or disperse them farther away. Seeds on the ground attract many vertebrate seed-eaters, some of them potential secondary seed dispersers. The fate of seeds artificially distributed to simulate bat dispersal was studied in relation to fruitfall periodicity and the visiting frequency of diurnal rodents at Barro Colorado Island (BCI), Panama. The frequency of visits by agoutis is very high at the beginning of fruitfall, but in the area close (<50 m) to fruiting trees (Dipteryx-rich area) it declines throughout fruiting, whereas it remains unchanged farther (>50 m) away (Dipteryx-poor and Gustavia-rich area). Squirrels were usually observed in the Dipteryx-rich area. Along with intense post-dispersal seed predation by rodents in the Dipteryx-rich area, a significant proportion of seeds were cached by rodents in the Dipteryx-poor area. Post-dispersal seed predation rate was inversely related to hoarding rate. A significantly greater proportion of seeds was cached in March, especially more than 100 m from the nearest fruiting tree. This correlates with the mid-fruiting period, i.e. during the height of D. panamensis fruiting, when rodents seem to be temporarily satiated with the food supply at parent trees. Hoarding remained high toward April, i.e. late in the fruiting season of D. panamensis. Low survival of scatterhoarded seeds suggests that the alternative food supply over the animal's home-ranges in May–June 1990 was too low to promote survival of cached seeds. Seedlings are assumed to establish in the less-used area of the rodents' home-range when overall food supply is sufficient to satiate post-dispersal predators.  相似文献   

8.
Large‐seeded plants may suffer seed dispersal limitation in human‐modified landscapes if seed dispersers are absent or unable to disperse their seeds. We investigated dispersal limitation for the large‐seeded tree Virola surinamensis in a human‐modified landscape in southern Costa Rica. During two fruiting seasons, we monitored crop size, seed removal rates, the number of fruiting conspecifics within 100 m, and feeding visitation rates by frugivores at trees located in high and low forest disturbance conditions. Seed removal rates and the total number of seeds removed were high regardless of the disturbance level, but these parameters increased with tree crop size and decreased with the number of fruiting V. surinamensis trees within a 100 m radius. Trees at low disturbance levels were more likely to be visited by seed dispersers. Black mandibled toucans (Ramphastos ambiguus) and spider monkeys (Ateles geoffroyi) were the most important seed dispersers, based on visitation patterns and seed removal rates. Spider monkey feeding visits were more frequent at high disturbance levels, but the monkeys preferentially visited isolated trees with large yields and surrounded by a low number of fruiting Virola trees within 100 m. Toucan visitation patterns were not constrained by any of the predictors and they visited trees equally across the landscape. We suggest that isolated and highly fecund Virola trees are an important food resource for spider monkeys in human‐modified landscapes and that toucans can provide resilience against seed dispersal limitations for large‐seeded plants in human‐modified landscapes in the absence of hunting.  相似文献   

9.
Long‐distance seed dispersal influences many critical ecological processes by improving chances of gene flow and maintaining genetic diversity among plant populations. Accordingly, large‐scale movements by frugivores may have important conservation implications as they provide an opportunity for long‐distance seed dispersal. We studied movement patterns, resource tracking, and potential long‐distance seed dispersal by two species of Ceratogymna hornbills, the black‐casqued hornbill C. atrata, and the white‐thighed hornbill C. cylindricus, in lowland tropical forests of Cameroon. We determined fruiting phenology of 24 tree species important in hornbill diet at monthly intervals and compared these patterns to monthly hornbill census data. After capture and radio‐tagging of 16 hornbills, we used radio telemetry by vehicle and fixed wing aircraft to determine the extent of long‐distance movements. Hornbills exhibited up to 20‐fold changes in numbers in response to fruit availability in our 25 km2 study area. Also, hornbills made large‐scale movements up to 290 km, which are larger than any movement previously reported for large avian frugivores. Together, these observations provide direct evidence that hornbills are not resident and that hornbills track available fruit resources. Our results suggest that Ceratogymna hornbills embark on long‐distance movements, potentially dispersing seeds and contributing to rain forest regeneration and diversity.  相似文献   

10.
  • To determine seed removal influence on seed populations, we need to quantify pre‐ and post‐dispersal seed removal. Several studies have quantified seed removal in temperate American deserts, but few studies have been performed in tropical deserts. These studies have only quantified pre‐ or post‐dispersal seed removal, thus underestimating the influence of seed removal. We evaluated pre‐ and post‐dispersal seed removal in the columnar cactus Stenocereus stellatus in a Mexican tropical desert.
  • We performed selective exclosure experiments to estimate percentage of seeds removed by ants, birds and rodents during the pre‐ and post‐dispersal phases. We also conducted field samplings to estimate abundance of the most common seed removers.
  • Birds (10–28%) removed a higher percentage of seeds than ants (2%) and rodents (1–4%) during pre‐dispersal seed removal. Melanerpes hypopolius was probably the main bird removing seeds from fruits. Ants (62–64%) removed a higher percentage of seeds than birds (34–38%) and rodents (16–30%) during post‐dispersal seed removal. Pogonomyrmex barbatus was probably the main ant removing seeds from soil.
  • Birds and ants are the main pre‐ and post‐dispersal seed removers in S. stellatus, respectively. Further studies in other S. stellatus populations and plants with different life forms and fruit types will contribute to evaluate seed removal in tropical American deserts.
  相似文献   

11.
Summary Little is known about the adaptive value of mast seeding, a common phenomenon in temperate trees and shrubs. Masting is likely to affect both seed dispersal and seed predation. In systems where similar taxa of animals are involved in these two processes, the consequences of mast seeding are likely to be particularly complicated. This study examined the effects of mast seeding in a cycad, Macrozamia communis, on the dispersal of seeds, the pattern of dispersion of seeds and post-dispersal predation on seeds. Dispersal of seeds by possums was poorer from source plants in a masting population than from source plants in an adjacent, non-masting population. This resulted in fewer seeds per seeding female plant in the masting plot being dispersed to favourable sites. We conclude that this is caused by the feeding behaviour and movements of possums in the masting site. The abundance of seeds in this site did not satiate the post-dispersal predators, native rats. In fact, more seeds in this site were eaten than in the nonmasting site. We suggest that the mast seeding observed in M. communis may not be adaptive, but is more likely a consequence of other factors which synchromize flowering within local populations.  相似文献   

12.
The effect of forest disturbance on survival and secondary dispersal of an artificial seed shadow (N= 800) was studied at Brownsberg Natural Park, Suriname, South America. We scattered single seeds of the frugivore‐dispersed tree Virola kwatae (Myristicaceae), simulating loose dispersal by frugivores, in undisturbed and disturbed secondary forest habitats. Seed survival rate aboveground was high (69%) within 2 wk and was negatively correlated with scatterhoarding rate by rodents, the latter being significantly lower in the undisturbed forest (9%) than in the disturbed forest (20%). Postdispersal seed predation by vertebrates was low (3%) and infestation of seeds by invertebrates was almost zero in all instances. Therefore, secondary seed dispersal by rodents in forest is not as critical for recruitment as observed among other bruchid‐infested large‐seeded species. Secondary seed dispersal by rodents may, however, facilitate seedling recruitment whether cached seeds experience greater survival than seeds remaining above ground surface.  相似文献   

13.
Scatterhoarding by rodents, whereby seeds are collected and stored for later consumption, can result in seed dispersal. Seeds may be covered in litter on the forest floor (cached) or buried. This is particularly so in the Neotropics for large, nutritious seeds, and where primary dispersers are rare or missing. In African forests, contemporary anthropogenic pressures such as hunting, forest degradation, and fragmentation are contributing toward major declines in large frugivores, yet the potential for scatterhoarding to mitigate this loss is largely unknown. In this study, we used thread‐marked seed to explore the balance between seed predation and dispersal by rodents in Afromontane forest. We studied two tree species in three habitats: (1) continuous forest; (2) continuous forest edge, and (3) small, degraded riparian forest patches. We found that seed removal rates were high and almost the same in all three habitats for both tree species, but that the predation/dispersal balance differed among habitats. In continuous forest, more seeds of each species were scatterhoarded than depredated, and rates of scatterhoarding differed between the two species. In all habitats, burying seeds up to 2 cm belowground was more common than caching. Distances seeds were moved was approximately five times greater in continuous forest than in forest edge or riparian patches. We found strong evidence to suggest that the African pouched rat, Cricetomys sp. nov was responsible for the scatterhoarding.  相似文献   

14.
Dispersal patterns can be affected by seed familiarity and seed traits, including size, mass, and nutritional value, but these factors have not been intensively studied in the context of seed dispersal processes. Our aim was to study how small rodents respond to seed size and seed familiarity in their pattern of Manchurian walnut (Juglans mandshurica) seeds in two different habitats in temperate forests of northeast China. Our results demonstrated that Apodemus penisulae acts as the most important disperser for Manchurian walnut seeds. Inexperienced small rodents did not reject seeds of the Manchurian walnut and show similar seed removal rates as compared with experienced rodents. Both experienced and naïve rodents actively participated in seed scatterhoarding of Manchurian walnut seeds. Consecutive survey showed that seeds with large size/mass were removed faster than those with small size/mass, indicating a preference for large seeds. However, small seeds scatter-hoarded by small rodents were transported farther than large ones, failing to support the traditional optimization models for various tree species. Small seeds of Manchurian walnut in caches were less likely to be recovered than large ones and showed greater cache survival rates, indicating that small seeds would be more advantageous for regeneration than large seeds in small rodent-dominated forests.  相似文献   

15.
It has long been argued that seed dispersal enhances recruitment in tropical trees by allowing offspring to `escape' strong density/distance-dependent attack by insects, pathogens and rodents. Here we examined the effects of canopy openness and parent-offspring distance upon the frequency and timing of Chlorocardium rodiei seed attack and germination within a 15-ha plot of Guyanan tropical rain forest. Seeds were artificially dispersed beneath parent trees, in the understorey away from trees and in gaps. Analysing our data from an 85-week period of regular monitoring, we found that the main spatial gradients, canopy openness and distance to nearest adult conspecific, do not lead to differences in the final number of seeds attacked by infesting scolytid beetles or rodents. The timing of beetle attack, however, varied along the distance gradient and this difference affords seeds at further distances a `window' in which to germinate and produce a seedling before attack. Canopy openness was not a good predictor of rooting success, but distance was strongly associated with root and shoot formation success and the mean time to shoot formation. There was a strong negative effect of distance on the likelihood of a seed being colonised by scolytid beetles prior to removal by rodents and shoot failure was strongly associated with prior infestation. We believe these results bring a key point to bear on the well-established notion of distance-dependent attack on seeds in tropical rainforests, viz. that seed characteristics (size, germination syndrome) and the timing of attack may be more important in explaining patterns of early seedling recruitment than distance. Our studies suggest that advantages accrued through dispersal in species like Chlorocardium will depend heavily on the `race' between seed germination and attack. In the case of Chlorocardium, the `race' can be lost at considerable distances due to its prolonged dormancy and the temporal fluctuations in fruitfall and rainfall which influence attack and germination. The results presented here suggest that the lag between seed attack and germination in tropical trees can regulate the influence of parent-offspring distance on cohort recruitment at this life history stage. Received: 5 March 1998 / Accepted: 6 December 1998  相似文献   

16.
The post‐dispersal fate of Chrysophyllum lucentifolium (a canopy tree; Sapotaceae) seeds was analyzed in French Guiana over three consecutive years. Experiments using 750 thread‐marked seeds were performed to investigate seed removal, predation, and caching by terrestrial vertebrates on howler monkey (Alouatta seniculus) defecation sites, where clumps of intact C. lucentifolium seeds were observed. Year‐to‐year variations in seed fate during the peak fruiting period were considered in relation to overall fruit and seed resource availability estimated by a raked‐trail survey. The effect of two forest areas, which differed in soil and floristic composition, was examined with conspecific fruiting tree density as a covariant. Exclosure versus open treatment was used to discriminate small rodents (not larger than a spiny rat) from other vertebrates. The presence of fresh howler dung did not affect seed fate after 20 days as shown by comparisons between defecation sites and control during the first year. There was a significant effect of year on the percentage of seeds remaining after 20 days. Low seed removal in 1995 and 1996 (compared to 1997) corresponded to higher overall fruiting and higher fruiting of C. lucentifolium, or the presence of alternative resources for rodents. An effect of forest area was observed on the seed removal rate, which varied with years and protection. Comparatively, an effect of forest area on the percentage of seeds lost was observed in 1996 and an effect of treatment on the percentage of seeds eaten was seen in 1995. The mode of seed caching suggested that spiny rats were the main seed remover. Results of this study suggest that greater seedling recruitment may occur when large fruit crop and high howler dispersal co‐occur with a lower impact of rodents (i.e., when rodents are saturated by abundant and diversified fruit resources such as in 1995). Such event synchrony, however, is highly unpredictable after only three years of study.  相似文献   

17.
Abstract. Through seed dispersal and predation, terrestrial mammals should be an important component of the mechanisms that determine patterns of tree recruitment in tropical forests. Despite their great abundance and ubiquity in Neotropical forests, small rodents as seed predators and dispersers remain largely forgotten. To investigate the fates of seeds in a hunted primary forest in Belize, we tagged seeds of Astrocaryum mexicanum (Palmae), Ampelocera hottlei (Ulmaceae), and Pouteria sapota (Sapotaceae) and placed them into open plots, exclosures accessible only to small mammals, and exclosures accessible to medium-sized and small mammals. The exclosure experiments and fates of the seeds show that the spiny pocket mouse, Heteromys desmarestianus (Heteromyidae), was the dominant handler of seeds of the first two species and also removed a significant proportion of the very large-seeded Pouteria. Most of the seeds were killed immediately upon removal, but many of the seeds (3–18 %) of the first two species were scatterhoarded (dispersed and buried in the soil) by Heteromys. Some of the scatterhoarded seeds (29%) remain buried and therefore protected from predation by other animals. Agoutis (Dasyprocta punctata), a caviomorph rodent, buried 13 % of the seeds of Pouteria, and Heteromys consumed and dispersed but did not bury Pouteria seeds. Results of this study support predictions by some researchers that small rodents are dominant terrestrial granivores in Neotropical forests. The role of small rodents as seed dispersers, however, has never been fully appreciated.  相似文献   

18.
Scatter‐hoarding animals spread out cached seeds to reduce density‐dependent theft of their food reserves. This behaviour could lead to directed dispersal into areas with lower densities of conspecific trees, where seed and seedling survival are higher, and could profoundly affect the spatial structure of plant communities. We tested this hypothesis with Central American agoutis and Astrocaryum standleyanum palm seeds on Barro Colorado Island, Panama. We radio‐tracked seeds as they were cached and re‐cached by agoutis, calculated the density of adult Astrocaryum trees surrounding each cache, and tested whether the observed number of trees around seed caches declined more than expected under random dispersal. Seedling establishment success was negatively dependent on seed density, and agoutis carried seeds towards locations with lower conspecific tree densities, thus facilitating the escape of seeds from natural enemies. This behaviour may be a widespread mechanism leading to highly effective seed dispersal by scatter‐hoarding animals.  相似文献   

19.
Seed traits are important factors affecting seed predation by rodents and thereby the success of recruitment. Seeds of many tree species have hard hulls. These are thought to confer mechanical protection, but the effect of endocarp thickness on seed predation by rodents has not been well investigated. Wild apricot (Prunus armeniaca), wild peach (Amygdalus davidiana), cultivated walnut (Juglans regia), wild walnut (Juglans mandshurica Maxim) and Liaodong oak (Quercus liaotungensis) are very common tree species in northwestern Beijing city, China. Their seeds vary greatly in size, endocarp thickness, caloric value and tannin content. This paper aims to study the effects of seed traits on seed removal speed of these five tree species by small rodents in a temperate deciduous forest, with emphasis on the effect of endocarp thickness. The results indicated that speed of removal of seeds released at stations in the field decreased significantly with increasing endocarp thickness. We found no significant correlations between seed removal speed and other seed traits such as seed size, caloric value and tannin content. In seed selection experiments in small cages, Père David's rock squirrel (Sciurotamias davidianus), a large-bodied, strong-jawed rodent, selected all of the five seed species, and the selection order among the five seed species was determined by endocarp thickness and the ratio of endocarp mass/seed mass. In contrast, the Korean field mouse (Apodemus peninsulae) and Chinese white-bellied rat (Niviventer confucianus), with relatively small bodies and weak jaws, preferred to select small seeds like acorns of Q. liaotungensis and seeds of P. armeniaca, indicating that rodent body size is also an important factor affecting food selection based on seed size. These results suggest endocarp thickness significantly reduces seed removal speed by rodents and then negatively affects dispersal fitness of seeds before seed removal of tree species in the study region. However, effect of endocarp thickness on final dispersal fitness needs further investigation because it may increase seed caching and survival after seed removal.  相似文献   

20.
Negative density dependence (NDD) of recruitment is pervasive in tropical tree species. We tested the hypotheses that seed dispersal is NDD, due to intraspecific competition for dispersers, and that this contributes to NDD of recruitment. We compared dispersal in the palm Attalea butyracea across a wide range of population density on Barro Colorado Island in Panama and assessed its consequences for seed distributions. We found that frugivore visitation, seed removal and dispersal distance all declined with population density of A. butyracea, demonstrating NDD of seed dispersal due to competition for dispersers. Furthermore, as population density increased, the distances of seeds from the nearest adult decreased, conspecific seed crowding increased and seedling recruitment success decreased, all patterns expected under poorer dispersal. Unexpectedly, however, our analyses showed that NDD of dispersal did not contribute substantially to these changes in the quality of the seed distribution; patterns with population density were dominated by effects due solely to increasing adult and seed density.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号