首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 301 毫秒
1.
2.
G Thumm  T Olschl?ger  V Braun 《Plasmid》1988,20(1):75-82
Colicins are usually released from producing cells by so-called lysis proteins. No sequence homologous to the structurally very similar colicin lysis genes was found in the gene cluster cmi cma cbi cba, which determines the activity and immunity proteins of colicin B and M on pColBM-Cl139. Instead, the region upstream of cmi contained sequences that showed 91% homology to the structural gene of protein D (resolvase) and 75.5% homology to the rfsF sequence of the Escherichia coli miniF plasmid. It is concluded that colicins B and M are not released via the activity of lysis proteins and that the highly homologous regions encode a resolvase and its target respectively.  相似文献   

3.
E Schramm  J Mende  V Braun    R M Kamp 《Journal of bacteriology》1987,169(7):3350-3357
Colicin B formed by Escherichia coli kills sensitive bacteria by dissipating the membrane potential through channel formation. The nucleotide sequence of the structural gene (cba) which encodes colicin B and of the upstream region was determined. A polypeptide consisting of 511 amino acids was deduced from the open reading frame. The active colicin had a molecular weight of 54,742. The carboxy-terminal amino acid sequence showed striking homology to the corresponding channel-forming region of colicin A. Of 216 amino acids, 57% were identical and an additional 19% were homologous. In this part 66% of the nucleotides were identical in the colicin A and B genes. This region contained a sequence of 48 hydrophobic amino acids. Sequence homology to the other channel-forming colicins, E1 and I, was less pronounced. A homologous pentapeptide was detected in colicins B, M, and I whose uptake required TonB protein function. The same consensus sequence was found in all outer membrane proteins involved in the TonB-dependent uptake of iron siderophores and of vitamin B12. Upstream of cba a sequence comprising 294 nucleotides was identical to the sequence upstream of the structural gene of colicin E1, with the exception of 43 single-nucleotide replacements, additions, or deletions. Apparently, the region upstream of colicins B and E1 and the channel-forming sequences of colicins A and B have a common origin.  相似文献   

4.
Abstract This communication summarizes our present knowledge of colicin M, an unusual member of the colicin group. The gene encoding colicin M, cma , has been sequenced and the protein isolated and purified. With a deduced molecular size of 29 453 Da, colicin M is the smallest of the known colicins. The polypeptide can be divided into functional domains for cell surface receptor binding, uptake into the cell, and killing activity. To kill, the colicin must enter from outside the cell. Colicin M blocks the biosynthesis of both peptidoglycan and O-antigen by inhibiting regeneration of the bactoprenyl-P carrier lipid. Autolysis occurs as a secondary effect following inhibition of peptidoglycan synthesis. Colicin M is the only colicin known to have such a mechanism of action. Immunity to this colicin is mediated by the cmi gene product, a protein of 13 890 Da. This cytoplasmic membrane protein confers immunity by binding to and thus neutralizing the colicin. Cmi shares properties with both immunity proteins of the pore-forming and the cytoplasmically active colicins. Genes for the colicin and immunity protein are found next to each other, but in opposite orientation, on pColM plasmids. The mechanism of colicin M release is not known.  相似文献   

5.
The biology of colicin M   总被引:4,自引:0,他引:4  
This communication summarizes our present knowledge of colicin M, an unusual member of the colicin group. The gene encoding colicin M, cma, has been sequenced and the protein isolated and purified. With a deduced molecular size of 29,453 Da, colicin M is the smallest of the known colicins. The polypeptide can be divided into functional domains for cell surface receptor binding, uptake into the cell, and killing activity. To kill, the colicin must enter from outside the cell. Colicin M blocks the biosynthesis of both peptidoglycan and O-antigen by inhibiting regeneration of the bactoprenyl-P carrier lipid. Autolysis occurs as a secondary effect following inhibition of peptidoglycan synthesis. Colicin M is the only colicin known to have such a mechanism of action. Immunity to this colicin is mediated by the cmi gene product, a protein of 13,890 Da. This cytoplasmic membrane protein confers immunity by binding to and thus neutralizing the colicin. Cmi shares properties with both immunity proteins of the pore-forming and the cytoplasmically active colicins. Genes for the colicin and immunity protein are found next to each other, but in opposite orientation, on pColM plasmids. The mechanism of colicin M release is not known.  相似文献   

6.
The DNA sequence of the colicin M activity gene cma was determined. A polypeptide consisting of 271 amino acids was deduced from the nucleotide sequence. The amino acid sequence agreed with the peptide sequences determined from the isolated colicin. The molecular weight of active colicin M was 29,453. The primary translation product was not processed. In the domain required for uptake into cells, colicin M contained the pentapeptide Glu-Thr-Leu-Thr-Val. A similar sequence was found in all colicins which are taken up by a TonB-dependent mechanism and in outer membrane receptor proteins which are constituents of TonB-dependent transport systems. The structure of colicin M in the carboxy-terminal activity domain had no resemblance to the pore-forming colicins or colicins with endonuclease activity. Instead, the activity domain contained a sequence which exhibited homology to the sequence around the serine residue in the active site of penicillin-binding proteins of Escherichia coli. The colicin M activity gene was regulated from an SOS box upstream of the adjacent colicin B activity gene on the natural plasmid pColBM-Cl139.  相似文献   

7.
The nucleotide sequence of a 2.4 kb Dral-EcoRV fragment of pColD-CA23 DNA was determined. The segment of DNA contained the colicin D structural gene (cda) and the colicin D immunity gene (cdi). From the nucleotide sequence it was deduced that colicin D had a molecular weight of 74683D and that the immunity protein had a molecular weight of 10057D. The amino-terminal portion of colicin D was found to be 96% homologous with the same region of colicin B. Both colicins share the same cell-surface receptor, FepA, and require the TonB protein for uptake. A putative TonB box pentapeptide sequence was identified in the amino terminus of the colicin D protein sequence. Since colicin D inhibits protein synthesis, it was unexpected that no homology was found between the carboxy-terminal part of this colicin and that of the protein synthesis inhibiting colicin E3 and cloacin DF13. This could indicate that colicin D does not function in the same manner as the latter two bacteriocins. The observed homology with colicin B supports the domain structure concept of colicin organization. The structural organization of the colicin operon is discussed. The extensive amino-terminal homology between colicins D and B, and the strong carboxy-terminal homology between colicins B, A, and N suggest an evolutionary assembly of colicin genes from a few DNA fragments which encode the functional domains responsible for colicin activity and uptake.  相似文献   

8.
Summary Cells of Escherichia coli containing the cbi locus on plasmids are immune to colicin B which kills cells by dissipating the membrane potential through pore formation in the cytoplasmic membrane. The nucleotide sequence of the cbi region was determined. It contains an open reading frame for a polypeptide consisting of 175 amino acids. The amino acid sequence is homologous to the primary structure of the colicin A immunity protein. This, and the strong homology between the pore-forming domains of colicins A and B suggests a common evolutionary origin for both colicins. The immunity protein could be identified following strong overexpression of cbi. The electrophoretically determined molecular weight of 20 000 was close to the calculated molecular weight of 20 185. The protein contains four large hydrophobic regions. The immunity protein was localized in the membrane fraction and was mainly contained in the cytoplasmic membrane. It is proposed that the immunity protein inactivates the colicin in the cytoplasmic membrane.  相似文献   

9.
Two new E colicins, E8 and E9, produced by a strain of Escherichia coli   总被引:6,自引:0,他引:6  
We have isolated a strain of Escherichia coli from chicken caeca which produces two E colicins and colicin M. This strain has seven plasmids, five of which have been transferred to E. coli K12. Two E. coli K12 derivatives which produce the two E colicins separately have been tested against seven standard E colicin producing strains which define seven different immunity groups. Our results indicate that these new E colicins define two further immunity groups, E8 and E9.  相似文献   

10.
Here we review the mechanisms that bacterial cells use to protect themselves against channel-forming colicins. Four mechanisms are examined: immunity, resistance, tolerance and PacB character. Immunity confers protection to colicinogenic cells against the colicin they produce, since the colicinogenic plasmid bears the genetic determinant for such immunity protein. Resistance is provided by modifications on colicin receptors located on the outer membrane. It prevents colicin adsorption and protects against those colicins sharing a common receptor. Tolerance is achieved by changes in the translocation system. The adsorbed colicin is not translocated toward the periplasmic space. This impedes its insertion into the cell membrane as well as the formation of the transmembrane channel. Tolerance confers protection against colicins that share the same translocation system. Finally, we discuss the PacB character, that confers protection against all known channel-forming colicins. The latter property is encoded by non-colicinogenic plasmids in the H-incompatibility complex.  相似文献   

11.
Analysis of the nucleotide sequence of an Escherichia coli colicin S4 determinant revealed 76% identity to the pore-forming domain of the colicin A protein, 77% identity to the colicin A immunity protein, and 82% identity to the colicin A lysis protein. The N-terminal region, which is responsible for the Tol-dependent uptake of colicin S4, has 94% identity to the N-terminal region of colicin K. By contrast, the predicted receptor binding domain shows no sequence similarities to other colicins. Mutants that lacked the OmpW protein were resistant to colicin S4.  相似文献   

12.
The nucleotide sequences for colicin Ia and colicin Ib structural and immunity genes were determined. The two colicins each consist of 626 amino acid residues. Comparison of the two sequences along their lengths revealed that the two colicins are nearly identical in the N-terminal 426 amino acid residues. The C-terminal 220 amino acid residues of the colicins are only 60% identical, suggesting that this is the region most likely recognized by their cognate immunity proteins. The predicted proteins for the colicin immunity proteins would contain 111 amino acids for the colicin Ia immunity protein and 115 amino acids for the colicin Ib immunity protein. The colicin immunity proteins have no detectable DNA or amino acid homology but do exhibit a conservation of overall hydrophobicity. The colicin immunity genes lie distal to and in opposite orientation to the colicin structural genes. The colicin Ia immunity protein was purified to apparent homogeneity by a combination of isoelectric focusing and preparative sodium dodecyl sulfate-polyacrylamide gel electrophoresis. The N-terminal amino acid sequence of the purified Ia immunity protein was determined and was found to be in perfect agreement with that predicted from the DNA sequence of its structural gene. The Ia immunity protein is not a processed membrane protein.  相似文献   

13.
Molecular mechanisms of colicin evolution   总被引:8,自引:0,他引:8  
This review explores features of the origin and evolution of colicins in Escherichia coli. First, the evolutionary relationships of 16 colicin and colicin-related proteins are inferred from amino acid and DNA sequence comparisons. These comparisons are employed to detail the evolutionary mechanisms involved in the origin and diversification of colicin clusters. Such mechanisms include movement of colicin plasmids between strains of E. coli and subsequent plasmid cointegration, transposition- and recombination-mediated transfer of colicin and related sequences, and rapid diversification of colicin and immunity proteins through the action of positive selection. The wealth of information contained in colicin sequence comparisons makes this an ideal system with which to explore molecular mechanisms of evolutionary change.   相似文献   

14.
Colicin U, a novel colicin produced by Shigella boydii.   总被引:1,自引:0,他引:1       下载免费PDF全文
D Smajs  H Pilsl    V Braun 《Journal of bacteriology》1997,179(15):4919-4928
A novel colicin, designated colicin U, was found in two Shigella boydii strains of serovars 1 and 8. Colicin U was active against bacterial strains of the genera Escherichia and Shigella. Plasmid pColU (7.3 kb) of the colicinogenic strain S. boydii M592 (serovar 8) was sequenced, and three colicin genes were identified. The colicin U activity gene, cua, encodes a protein of 619 amino acids (Mr, 66,289); the immunity gene, cui, encodes a protein of 174 amino acids (Mr, 20,688); and the lytic protein gene, cul, encodes a polypeptide of 45 amino acids (Mr, 4,672). Colicin U displays sequence similarities to various colicins. The N-terminal sequence of 130 amino acids has 54% identity to the N-terminal sequence of bacteriocin 28b produced by Serratia marcescens. Furthermore, the N-terminal 36 amino acids have striking sequence identity (83%) to colicin A. Although the C-terminal pore-forming sequence of colicin U shows the highest degree of identity (73%) to the pore-forming C-terminal sequence of colicin B, the immunity protein, which interacts with the same region, displays a higher degree of sequence similarity to the immunity protein of colicin A (45%) than to the immunity protein of colicin B (30.5%). Immunity specificity is probably conferred by a short sequence from residues 571 to residue 599 of colicin U; this sequence is not similar to that of colicin B. We showed that binding of colicin U to sensitive cells is mediated by the OmpA protein, the OmpF porin, and core lipopolysaccharide. Uptake of colicin U was dependent on the TolA, -B, -Q, and -R proteins. pColU is homologous to plasmid pSB41 (4.1 kb) except for the colicin genes on pColU. pSB41 and pColU coexist in S. boydii strains and can be cotransformed into Escherichia coli, and both plasmids are homologous to pColE1.  相似文献   

15.
The colicin Ia structural (cia) and immunity (iia) genes of plasmid pColIa-CA53 have been cloned into the cloning vector pBR322. These two genes are closely linked, and both of them can be isolated on a deoxyribonucleic acid fragment approximately 4,800 base pairs long. An analysis of the polypeptides synthesized in ultraviolet-irradiated cells containing these cloned genes led to the conclusion that the iia gene product is a polypeptide with a molecular weight of approximately 14,500. Insertion of transposon Tn5 into the iia gene led to a concomitant loss of the immune phenotype and the ability to produce this protein. Fractionation of ultraviolet-irradiated cells harboring a plasmid carrying the iia gene showed that the immunity protein is a component of the inner (cytoplasmic) membrane. Furthermore, the mechanism of immunity to colicin Ia appears to operate at the level of the cytoplasmic membrane. This conclusion is based on our finding that membrane vesicles prepared from colicin Ia-immune cells could be depolarized by colicins E1 and Ib but not by colicin Ia.  相似文献   

16.
Colicins, a family of antimicrobial proteins produced by Escherichia coli, are one of the best characterized microbial systems for studying processes of molecular diversification. Recent studies employing DNA sequence comparisons and experimental evolution suggest that positive selection and recombination play dominant roles in colicin diversification. Recombination between distantly related colicins has repeatedly generated novel classes of colicins, while positive selection for novel colicin immunity systems produces further diversity among closely related colicins. Together, these forces have resulted in a surprisingly large and diverse class of antimicrobials. Colicins are thought to play an important role in the invasion of bacteria into novel habitats.  相似文献   

17.
BACKGROUND: The cytotoxicity of most ribonuclease E colicins towards Escherichia coli arises from their ability to specifically cleave between bases 1493 and 1494 of 16S ribosomal RNA. This activity is carried by the C-terminal domain of the colicin, an activity which if left unneutralised would lead to destruction of the producing cell. To combat this the host E. coli cell produces an inhibitor protein, the immunity protein, which forms a complex with the ribonuclease domain effectively suppressing its activity. RESULTS: We have solved the crystal structure of the cytotoxic domain of the ribonuclease colicin E3 in complex with its immunity protein, Im3. The structure of the ribonuclease domain, the first of its class, reveals a highly twisted central beta-sheet elaborated with a short N-terminal helix, the residues of which form a well-packed interface with the immunity protein. CONCLUSIONS: The structure of the ribonuclease domain of colicin E3 is novel and forms an interface with its inhibitor which is significantly different in character to that reported for the DNase colicin complexes with their immunity proteins. The structure also gives insight into the mode of action of this class of enzymatic colicins by allowing the identification of potentially catalytic residues. This in turn reveals that the inhibitor does not bind at the active site but rather at an adjacent site, leaving the catalytic centre exposed in a fashion similar to that observed for the DNase colicins. Thus, E. coli appears to have evolved similar methods for ensuring efficient inhibition of the potentially destructive effects of the two classes of enzymatic colicins.  相似文献   

18.
19.
The construction of hybrids between colicins U and Y and the mutagenesis of the colicin Y gene (cya) have revealed amino acid residues important for interactions between colicin Y and its cognate immunity protein (Cyi). Four such residues (I578, T582, Y586 and V590) were found in helices 8 and 9 of the colicin Y pore-forming domain. To verify the importance of these residues, the corresponding amino acids in the colicin B protein were mutated to the residues present in colicin Y. An Escherichia coli strain with cloned colicin Y immunity gene (cyi) inactivated this mutant, but not the wild-type colicin B. In addition, interacting amino acid pairs in Cya and Cyi were identified using a set of Cyi point mutant strains. These data are consistent with antiparallel helix-helix interactions between Cyi helix T3 and Cya helix 8 of the pore-forming domain as a molecular mechanism of colicin Y inactivation by its immunity protein.  相似文献   

20.
Growth of E. coli K-12 under severe iron stress results in increased production of the outer membrane receptors for colicins B, D, Ib and M. The increase in colicin receptor activity coincides with the appearance of large amounts of two high molecular weight proteins in the outer membrane of the cells. These proteins are identified as the outer membrane receptors for colicins B and D and for colicin M. Mutants lacking a functional outer membrane receptor for colicins B and D are defective in the uptake of iron complexed with the siderochrome enterochelin, and are thus comparable with tonA mutants which lack a functional receptor for colicin M and are defective in the uptake of iron complexed with ferrichrome (6). The colicin B and D receptor may therefore function in the uptake of ferri-enterochelin.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号