首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 187 毫秒
1.
The symbiotic dinoflagellate microalgae of corals (Symbiodinium spp.) contain high concentrations of dimethylsulfoniopropionate (DMSP), a multifunctional metabolite commonly found in many species of marine algae and dinoflagellates. A photoprotective antioxidant function for DMSP and its breakdown products has often been inferred in algae, but its role(s) in the coral–algal symbiosis remains elusive. To examine potential correlations between environmental and physiological parameters and DMSP, total DMSP (DMSPt, from the host coral and zooxanthellae), particulate DMSP (DMSPp, from the zooxanthellae only), coral surface area, and total protein, as well as zooxanthellae density, chlorophyll concentration, cell volume and genotype (i.e., clade) were measured in five coral species from the Diploria-Montastraea-Porites species complex in Bermuda along a depth gradient of 4, 12, 18, and 24 m. DMSPt concentrations were consistently greater than DMSPp concentrations in all species suggesting the possible translocation of DMSP from symbiont to host. D. labyrinthiformis was notably different from the other corals examined, showing DMSPp and DMSPt increases (per coral surface area or tissue biomass) with increasing water depth. However, overall, there were no consistent depth-related patterns in DMSPp and DMSPt concentrations. Further research, investigating dimethylsulfide (DMS), dimethylsulfoxide, and acrylate levels and DMSP-lyase activity in correlation with other biomarker endpoints that have been shown to be depth (i.e., temperature and light) responsive are needed to substantiate the significance of these findings.  相似文献   

2.
Dynamics in the production of extracellular polymeric substances (EPS) were investigated for the benthic diatoms Cylindrotheca closterium (Ehrenberg) and Nitzschia sp. The effect of growth phase and light:dark conditions were examined using axenic cultures. Two EPS fractions were distinguished. Soluble EPS was recovered from the culture supernatant and represented polysaccharides that were only loosely associated with the cells. Bound EPS was extracted from the cells using warm (30° C) water and was more closely associated with the diatom aggregates. Concentrations of EPS exceeded internal concentrations of sugar throughout growth, indicating that EPS production is important in these organisms. Soluble and bound EPS revealed distinct differences in daily dynamics during the course of growth. Soluble EPS was produced continuously once cultures entered the stationary phase. During the stationary phase, chl a‐normalized EPS production rates equaled 6.4 and 3.4 d ? 1 for C. closterium and Nitzschia sp., respectively. In contrast, production of bound EPS occurred only in the light and was highest during the exponential phase. Up to 90% of the attached EPS that was produced in the light was degraded during the subsequent dark period. The monosaccharide distribution of EPS was constant during the course of the experiment. The soluble EPS consisted of high amounts of galactose and glucuronic acid, relative to rhamnose, glucose, xylose/mannose, and galacturonic acid. In contrast, glucose was the dominant monosaccharide present in the bound EPS. These differences suggest that the production of the two distinct EPS fractions is under different metabolic controls and probably serves different cellular functions.  相似文献   

3.
The particulate-phase concentrations of dimethyl sulfoxide (DMSOp) and dimethylsulfoniopropionate (DMSPp) in sea-ice algal communities from the North Water, northern Baffin Bay, were examined from April to June 1998. The concentrations of these compounds were measured in the bottom 2 cm of the ice at 36 locations throughout this region and are compared with results from water-column samples collected for a complementary study. In general, levels of DMSPp (8.66–987 nmol·L 1, average 126 nmol·L 1) in sea-ice algal communities were slightly less than those found in bottom sea-ice algal communities from other polar locations but greater than those found in phytoplankton in other polar environments or at more temperate latitudes. Furthermore, DMSPp :chl a ratios (0.02–14.8 nmol·μg 1, average 1.91 nmol·μg 1) in the sea-ice algal community were slightly less than those found in other polar environments. DMSOp was measured for the first time in sea-ice algal communities. DMSOp concentrations varied from 1.35 to 102 nmol·L 1 (average 13.7 nmol·L 1). DMSOp:chl a ratios varied from 0.01 to 4.5 nmol·μg 1 (average 0.22 nmol·μg 1) and were significantly lower than the DMSPp:chl a ratios observed in this study. It has been hypothesized that DMSO can act as a cryoprotector in phytoplankton cells. However, the low concentrations of DMSO observed in the ice algae during this study indicate that intracellular concentrations of DMSO are unlikely to have a significant influence on the freezing point depression of intracellular fluids.  相似文献   

4.
Five diatom species were isolated from settlementplates at Southern Ocean Mariculture, Victoria,Australia (Navicula sp., Naviculajeffreyi, Cylindrotheca closterium, Cocconeis sp., Amphora sp.) and tested insettlement experiments with Haliotis rubralarvae. Settlement was very low on single speciesdiatom films and varied between 1%–6%. Depending onthe species combination larvae preferred to settle onfilms with mixed diatom species than single speciesfilms. The highest settlement was achieved with amixed film of Navicula sp. and Amphora sp.Five and ten-day-old germlings of Sporolithondurum induced settlement of the abalone Haliotisrubra. However, the settlement rate was significantlylower on germlings than on the whole thallus of thealga. Germlings inoculated with the diatom Navicula sp. induced higher settlement than films ofthe diatom species alone. High settlement of up to52% was also achieved with germlings of the greenalga Ulvella lens. Settlement was reduced onU. lens squares inoculated with the diatom Navicula sp. but higher than on films of the diatomalone. The settlement rate was higher if plates withU. lens were previously grazed by juvenileabalone.Post-larval growth rates were higher on monospecificdiatom films than on U. lens or on S.durum. The best growth rate was obtained with Navicula sp. U. lens and S. durum areboth good settlement inducers, but are notsufficient to support rapid growth of young H.rubra post-larvae. Survival was low on U. lensand on the diatom C. closterium. We suggest thatcommercial nursery plates seeded with U. lenswill result in high and consistent settlement, whilean inoculum with Navicula sp. will ensuresufficient food for rapid growth of the post-larvae.  相似文献   

5.
Phytoplankton pigment distributions during the spring isothermal periods of 1998 and 1999 and their association with episodic sediment resuspension were characterized in coastal waters of southern Lake Michigan. Total and phylogenetic group chl a concentrations (derived using chemical taxonomy matrix factorization of diagnostic carotenoids) corresponded with assemblage and group biovolumes estimated from microscopic enumeration (P≤ 0.001). Diatoms and cryptophytes dominated assemblages and together typically comprised greater than 85% of relative chl a. Total chl a concentrations and both fucoxanthin·chl a ? 1 and alloxanthin·chl a ? 1 ratios were similar across depths (P> 0.05), indicating uniform distributions of and photophysiological states for assemblages and diatoms and cryptophytes, respectively, throughout the mixed water column. Total chl a concentrations were not always spatially uniform from near‐shore to offshore waters, with the greatest variability reflecting the influence of tributary inflows upon coastal assemblages. Sediment resuspension strongly influenced water column particle density and light climate; however, total and group chl a concentrations did not correspond with coefficients of Kd and suspended particulate matter concentrations (P> 0.05). The correspondence of both light attenuation and suspended particulate matter concentration with relative diatom chl a (P≤ 0.001) indicated an apparent association between sediment resuspension and diatoms. This, and the negative association (P≤ 0.0001) between relative diatom and cryptophyte chl a, corresponded with the spatial dominance of diatom and cryptophyte chl a in near‐shore and offshore waters, respectively. The presence of viable chl a and fucoxanthin within the surficial sediment layer, established this layer as a potential source of meroplanktonic diatoms for near‐shore assemblages.  相似文献   

6.
Three different species of marine diatoms, Nitzschia closterium (Ehr) Smith, Chaetoceros sp. (Ehr) and Skeletonema costatum (Grev) Cleve, were isolated from the Adriatic sea and studied in vitro for the production of extracellular carbohydrates. Variations of the nitrogen (N)/phosphorus (P)/silicon (Si) ratios in the growth medium affect the accumulation and release of carbohydrates. In the N.closterium cultures at high N/P ratio, the rate of extracellular polysaccharide release was higher both in rapidly growing cells (2.14 g per 106 cells day-1 and in stationary phase (1.0 g per 106 cells day-1) compared to S.costatum and Chaetoceros sp. Instead, at low N/P ratios, S.costatum and Chaetoceros sp. produced large amounts of extracellular polysaccharides during the logarithmic phase, compared to N.closterium, with values of 10 g per 106 cells day-1 for S.costatum and 2.8 g per 106 cells day-1 for Chaetoceros sp., respectively; in particular, only S.costatum was able to produce extracellular carbohydrates (1.2 g per 106 cells day-1) during the stationary phase of growth. Under Si limitation, any of the three diatom species produce extracellular polysaccharides both in the logarithmic and stationary phase of growth. The potential ecological significance of these findings is discussed.   相似文献   

7.
The growth and photosynthesis of Alexandrium tamarense (Lebour) Balech in different nutrient conditions were investigated. Low nitrate level (0.0882 mmol/L) resulted in the highest average growth rate from day 0 to day 10 (4.58 × 102 cells mL?1 d?1), but the lowest cell yield (5420 cells mL?1) in three nitrate level cultures. High nitrate‐grown cells showed lower levels of chlorophyll a‐specific and cell‐specific light‐saturated photosynthetic rate (Pmchl a and Pmcell), dark respiration rate (Rdchla and Rdcell) and chlorophyll a‐specific apparent photosynthetic efficiency (αchla) than was seen for low nitrate‐grown cells; whereas the cells became light saturated at higher irradiance at low nitrate condition. When cultures at low nitrate were supplemented with nitrate at 0.7938 mmol/L in late exponential growth phase, or with nitrate at 0.7938 mmol/L and phosphate at 0.072 mmol/L in stationary growth phase, the cell yield was drastically enhanced, a 7–9 times increase compared with non‐supplemented control culture, achieving 43 540 cells mL?1 and 52 300 cells mL?1, respectively; however, supplementation with nitrate in the stationary growth phase or with nitrate and phosphate in the late exponential growth phase increased the cell yield by no more than 2 times. The results suggested that continuous low level of nitrate with sufficient supply of phosphate may facilitate the growth of A. tamarense.  相似文献   

8.
Changes in photosynthetic activity of a marine diatom duringalgal growth were studied with a typical culture medium formarine algae, ASP-2 (l). As the algal specimen, Phaeodactylumtricornutum was used for the experiments. Nitzschia closteriumand Chaetoceros sp. were also supplementarily used. Photosynthetic and p-benzoquinone Hill activities remarkablychanged with time during algalgrowth; with maximum activityfound in cells at log phase. A rapid decrease occurred in theinterphase from the log to stationary phase. The activity changewas not accompanied by variation in photosynthetic pigment content. The low concentration of phosphorus source was suggested asthe main cause for the change. On supply of extra inorganicphosphate, the time length for holding high photosynthetic activitybecame longer; or, the activity of the cells at stationary phaserecovered at least partly even in the dark. Dark recovery wasnot accompanied by either algal growth or an increase in thecontent of photosynthetic pigments. Inactivation of photosynthesis in the stationary growth phaseand activation by added phosphate in the dark were inferredto be due to changes in activities of both the CO2-fixing andelectron transfer systems. The observed activity change maynot be attributable to a deficiency in inorganic phosphate asthe substrate for photophosphorylation. Similar changes in photosynthetic activity were also observedwith Nitzschia closterium and Chaetoceros sp. (Received January 30, 1971; )  相似文献   

9.
1. Three common species of freshwater phytoplankton, the diatom Nitzschia sp., green alga Sphaerocystis schroeteri and cyanobacterium Phormidium luridum, were grown under contrasting daylengths [18 : 6 h light : dark cycles (LD) versus 6 : 18 h LD] and phosphorus (P) regimes (P‐sufficient versus 1 μm P). The rates of growth and photosynthesis, as well as growth efficiencies and pigment concentrations, were compared among treatments. 2. The growth and photosynthetic parameters of the three species depended on both P status and daylength in a species‐specific way. The responses to P limitation depended on daylength and, conversely, the responses to daylength depended on P status. 3. Growth rates and the maximum rates of photosynthesis (Pmax) of all species decreased under P limitation under both light regimes. However, the decrease of Pmax because of P limitation was greater under long daylength. The Pmax of the green alga S. schroeteri decreased the most (ca. sixfold) under P limitation compared with the other two species. The photosynthesis saturation parameter Ik also decreased under P limitation; the decline was significant in Nitzschia and Sphaerocystis. P‐limitation significantly increased photoinhibition (β) in Nitzschia and Sphaerocystis, but not in Phormidium. The excess photochemical capacity (the ratio of the maximum photosynthesis rate to the photosynthesis rate at the growth irradiance), characterising the ability to utilise fluctuating light, was significantly lower under P limitation. 4. The growth efficiency (growth rate normalised to daylength) declined with increasing daylength in all species. Under short daylength the cyanobacterium Phormidium had the lowest growth efficiency of the three species. 5. The cellular chlorophyll a concentration in both Nitzschia and Sphaerocystis was significantly higher under short daylength, but only under P‐sufficient conditions. In Nitzschia, under short daylength, P‐limitation significantly decreased cellular chlorophyll concentration. In contrast, P‐limitation increased cellular chlorophyll concentration in Sphaerocystis, but under long daylength only. The ratio of chlorophyll a to b in the green alga also declined under short daylength and under P‐limited conditions.  相似文献   

10.
The settlement, early growth and survival of the larval abalone Haliotis discus hannai in response to eight monospecific benthic diatoms were examined in the laboratory. Postlarvae showed active settling and feeding behaviour in all diatom species and in naturally occurring diatoms. Larval settlement rates differed significantly between experimental substrata after 24 h and 48 h. Nitzschia sp. (96.67 %), Hantzschia amphioxys var. leptocephala (95.00 %) and Navicula seminulum (90.00 %) strongly induced larval settlement of H. discus hannai. Postlarvae could feed on benthic diatoms (< 36 μm in shell length) with both weak and strong adhesion on the 4th day after settlement. Greatest growth (shell length) occurred on Nitzschia sp. (786.84 μm ± 2.50 SE and 773.09 μm ± 2.09 SE). Survival of postlarvae was also greatest on Nitzschia sp. (95.33 % ± 1.45 SE). These results indicate the effectiveness of Nitzschia sp., H. amphioxys var. leptocephala, N. seminulum, Rhaphoneis surirella and Navicula corymbosa as single species over natural diatoms in larval settlement and postlarvae growth of H. discus hannai. Thus, Nitzschia sp. has the best potential diet for larval settlement and postlarvae growth of H. discus hannai. H. amphioxys var. leptocephala and N. seminulum can be used as cues to induce larvae settlement, and R. surirella and N. corymbosa can be used as food for growing postlarval.  相似文献   

11.
Diatoms are a group of highly abundant and diverse aquatic algae species. They contain high lipid content along with many bioactive compounds that can be exploited for biotechnological applications. Despite these attractive attributes, diatoms are underrepresented in production projects due to difficulties in their cultivation. To optimize the growth of three freshwater diatom isolates, Cyclotella sp., Synedra sp. and Navicula sp., an orthogonal assay on N, P, Si and Fe, as well as temperature and pH, was designed using traditional single‐factor tests. We also studied the effect of using nanosilica as an alternate Si source on growth and found that the diatom isolates studied achieved their highest growth rates under different combinations of nutrient and environmental conditions. Silica had the greatest influence on growth, followed by phosphate and iron. The optimized growth conditions for Synedra sp. were N: 30 mg L?1, P: 3 mg L?1, Si: 14.8 mg L?1, Fe: 0.448 mg L?1, temperature 25°C and pH 8. For Navicula sp.: N: 20 mg L?1, P: 2.5 mg L?1, Si: 19.7 mg L?1, Fe: 0.112 mg L?1, temperature 30°C and pH 7.5–8. For Cyclotella sp.: N: 20 mg L?1, P: 2.5 mg L?1, Si: 19.7 mg L?1, Fe: 0.448 mg L?1, temperature 30°C and pH 7.5–8. Nano silica negatively affected growth in Navicula sp. and Cyclotella sp., but no such effect was observed in Synedra sp. Fatty acid profiling showed C16:0, C16:1(n ? 7), C18:0 and C20:5(n ? 3) as major fatty acids, with no significant differences in fatty acid methyl ester profiles between traditional and modified media. This work gives us a new insight into the growth requirements of freshwater diatom species, which are less studied than marine species.  相似文献   

12.
A series of laboratory culture experiments was used to investigate the effect of selenium (Se, 0–10 nM) on the growth, cellular volume, photophysiology, and pigments of two temperate and four polar oceanic phytoplankton species [coccolithophore Emiliania huxleyi (Lohmann) W. W. Hay et H. P. Mohler, cyanobacterium Synechococcus sp., prymnesiophyte Phaeocystis sp., and three diatoms—Fragilariopsis cylindrus (Grunow) Kriegar, Chaetoceros sp., and Thalassiosira antarctica G. Karst.]. Only Synechoccocus sp. and Phaeocystis sp. did not show any requirement for Se. Under Se‐deficient conditions, the growth rate of E. huxleyi was decreased by 1.6‐fold, whereas cellular volume was increased by 1.9‐fold. Se limitation also decreased chl a (2.5‐fold), maximum relative electron transport rate (1.9‐fold), and saturating light intensity (2.8‐fold), suggesting that Se plays a role in photosynthesis or high‐light acclimation. Pigment analysis for Antarctic taxa provided an interesting counterpoint to the physiology of E. huxleyi. For all Se‐dependent Antarctic diatoms, Se limitation decreased growth rate and chl a content, whereas cellular volume was not affected. Pigment analysis revealed that other pigments were affected under Se deficiency. Photoprotective pigments increased by 1.4‐fold, while diadinoxanthin:diatoxanthin ratios decreased by 1.5‐ to 4.9‐fold under Se limitation, supporting a role for Se in photoprotection. Our results demonstrate an Se growth requirement for polar diatoms and indicate that Se could play a role in the biogeochemical cycles of other nutrients, such as silicic acid in the Southern Ocean. Se measurements made during the austral summer in the Southern Ocean and Se biological requirement were used to discuss possible Se limitation in phytoplankton from contrasting oceanographic regions.  相似文献   

13.
Different sources of nitrogen pose diverse effects to algal community, but the mechanism of inhibitory effects of nitrogen sources on freshwater diatoms is not fully understood. The purpose of this study was to compare biomass, photosynthetic activity, and morphological structure of three common freshwater diatoms (Cyclotella meneghiniana, Nitzschia sp., and Gomphonema parvulum) under different nitrogen sources (NO3 ? or NH4 +). The sorption characteristic of each diatom was investigated, and chlorophyll a (Chl-a) content and oxygen evolution rate were analyzed to investigate stress of different nitrogen sources on each diatom in the batch experiments. Ammonium lowered the growth rate of C. meneghiniana and Nitzschia sp. when it was supplied in addition to growth-saturating nitrate concentrations, suggesting a combined effect of inhibition of nitrate uptake and direct ammonium stress. Oxygen evolution rate of Nitzschia sp. showed that the direct ammonium stress on the photosynthetic activity can be alleviated by coexistence of nitrate in the nitrogen enriched treatment, but not for C. meneghiniana and G. parvulum, which may be caused by a different nitrate transporter system within algal cells. Transmission electron microscopy was used to assess the toxicity of ammonium on ultrastructural chloroplast of each diatom. Ultrastructural changes in chloroplasts showed undefined electron-dense granules and lipid droplets, but the membrane integrity of cell was maintained, suggesting an adaptation to adjustment to ammonia stress. Results showed that Cyclotella meneghiniana and Nitzschia sp. were more sensitive to ammonium stress than Gomphonema parvulum on growth, but the mechanism remains unclear.  相似文献   

14.
Analysis of the gut contents of Euphausia superba and of the phytoplankton composition in the area of the animals catchment served as a basis for answering the question whether or not E. superba is capable of food selection. It was found that the diatom Thalassiosira is preferred by E. superba as a food item and small pennate diatoms, Nitzschia, and Navicula are only tolerated as food. Other algae taxa, such as Tropidoneis, Dactyliosolen, Chaetoceros, and Gyrodinium, are clearly avoided. With respect to phytoplankton cell size, E. superba prefers cells with a length of 20–40 μm and cells larger than 70 μm are rejected. Trophic conditions only slightly affect the food selection of E. superba. Received: 4 September 1995/Accepted: 30 June 1996  相似文献   

15.
Physical constrains such as water discharge, suspended solids and turbidity act as dominant factors in driving the planktonic diatom assemblages of the River Adige (North-Eastern Italy). Two sampling stations, characterised by different hydromorphological features (Cortina all’Adige and Boara Pisani, with torrential and more potamal characteristics, respectively) were sampled fortnightly following an integrated approach encompassing physical, chemical and biological measurements and aiming at identifying the dominant factors controlling the temporal development of the community. A morpho-functional approach was used to classify the diatom assemblages where Morpho-Functional Diatom Groups (MFDG) were defined for diatom genera, according to their morphology, habitat selection and modality of adhesion to river substrate. In the two sampling points, algal growth was never limited by nutrients or zooplankton. The irregular development of MFDG was determined by the stochastic hydrological events and changes in variables related to water discharge (suspended solids and light attenuation). Tychoplanktonic, benthic and drifted taxa (such as Diatoma spp., Encyonema spp., Navicula spp. and Nitzschia spp.) were dominant in the torrential station (Cortina all’Adige), while the contribution of euplanktonic unicellular centric taxa (such as Cyclotella spp., and Stephanodiscus spp.) was higher in the potamal station (Boara Pisani).  相似文献   

16.
Chironomid retreats, constructed out of sand grains upon submerged wood debris, increase the surface area available for diatom colonization. The three dimensional substratum afforded by chironomid tubes supports up to twelve times the diatom biavolume found upon adjacent, unmodified substratum in a northern Michigan stream. Diatom enumeration within scrapings from small defined areas on artificial substrata, combined with examination of intact natural substrata through scanning electron microscopy (SEM), reveals distinct, microdistribution patterns. The larval retreats of two major taxa of tube-dwelling chironomid's (Micropsectra sp. and Pseudodiamesa cf. pertinax Garrett) display significantly different diatom communities relative to adjacent masonite substratum. Substratum without chironomid tubes is primarily colonized by Achnanthes minutissima Kütz. and Cocconeis placentula Ehr., exhibiting the lowest species diversity of microhabitats examined. The diatom flora upon sand tubes of Micropsectra sp. is dominated by Opephora martyi Herib., as is the flora of sand grains collected from the stream sediment load. These two micro-habitats exhibit a high community similarity (SIMI). The SIMI index also suggests that the flora of P. pertinax tubes is highly similar to that of sand grains. Diversity, however, is almost three times greater on P. pertinax tubes and SEM observations reveal that this microhabitat is characterized by a more spatially complex flora; Nitzschia and Navicula spp. dominate the upperstory, and O. martyi is located on underlying sand grains. Results indicate that tube-building chironomids in Carp Creek affect diatom microdistribution by: (1) stabilizing sand grains and associated flora within their retreats, (2) providing a ‘refugium’ for upperstory diatom taxa from the mayfly grazer, Baetis vagans McDunnough (Insecta: Ephemeroptera), and (3) through local nutrient enrichment.  相似文献   

17.
Abstract In many intertidal cohesive—sediment habitats, epipelic diatoms are the dominant microphytobenthic organisms. In such sediments, concentrations of colloidal carbohydrate [including the exopolymeric substances (EPS) produced by diatoms during motility] are closely correlated with the biomass (chlorophyll a) of epipelic diatoms. A model describing this relationship (log (conc. coll. carbo. + 1) = 1.40 + 1.02(log (chl. a conc. + 1)) was derived from published data. It was validated against published and unpublished data from 6 different estuaries, and accounted for 64.6% of the variation in sediment colloidal carbohydrate concentrations. The model was valid for intertidal habitats with cohesive sediments where epipelic diatoms constituted >50% of the microphytobenthic assemblage. In sites with noncohesive sediments, or where the microphytobenthic assemblage was dominated by other algal groups, the model was not applicable. The mean percentage of EPS in colloidal carbohydrate extracts varied between 11 and 37% for axenic cultures of epipelic diatoms (with higher values obtained during stationary phase), and between 22.7% and 24.3% for natural sediments dominated by epipelic diatoms. Assuming an EPS percentage of 25% in colloidal extracts yielded an EPS chl. a ratio of 2.62:1. Maximum rates of EPS production in diatom cultures occurred at the beginning of stationary phase (1.6–5.09 μg EPS μg−1 chl a d−1), with Nitzschia sigma having a significantly (P < 0.05) higher rate of production than N. frustulum, Navicula perminuta and Surirella ovata. Similar rates of EPS production were measured in the field. The dynamics of EPS production and loss on mudflats is discussed, with reference to the model and these production rates. Received: 25 February 1997; Accepted: 23 May 1997  相似文献   

18.
Disturbances such as floods and droughts play a central role in determining the structure of riverine benthic biological assemblages. Extreme disturbances from flash floods are often restricted to part of the river network and the magnitude of the flood disturbance may lessen as floods propagate downstream. The present study aimed to characterize the impact of summer monsoonal floods on the resistance and resilience of the benthic diatom assemblage structure in nine river reaches of increasing drainage size within the Gila River in the southwestern United States. Monsoonal floods had a profound effect on the diatom assemblage in the Gila River, but the effects were not related to drainage size except for the response of algal biomass. During monsoons, algal biomass was effectively reduced in smaller and larger systems, but minor changes were observed in medium systems. Resistance and resilience of the diatom assemblage to floods were related to specific species traits, mainly to growth forms. Tightly adhered, adnate and prostrate species (Achnanthidium spp., Cocconeis spp.) exhibited high resistance to repeated scour disturbance. Loosely attached diatoms, such as Nitzschia spp. and Navicula spp., were most susceptible to drift and scour. However, recovery of the diatom assemblage was very quick indicating a high resilience, especially in terms of biomass and diversity. Regional hydroclimatic models predict greater precipitation variability, which will select for diatoms resilient to bed‐mobilizing disturbances. The results of this study may help anticipate future benthic diatom assemblage patterns in the southwestern United States resulting from a more variable climate.  相似文献   

19.
The diatomsChaetoceros sp.,Skeletonema costatum andThalassiosira pseudonana were grown with different irradiances of white and of blue-green light, and with a mixture of blue-green plus 6.5 mol m–2 s–1 of white light. Exponential growth rates were higher in mixed blue for the first two, whileT. pseudonana grew faster in white light but, in all cases, mean cell division rates did not differ with increasing irradiances. Harvesting in stationary, rather than in late exponential growth phase, resulted in higher protein contents forChaetoceros sp. andS. costatum, but forT. pseudonana the highest value was in the exponential phase. The highest protein content was in blue-green light for the three species and it increased with irradiance. As to other fractions, the three strains showed different responses, related to quality and quantity, as well as to culture ages.  相似文献   

20.
The determination of the history and causes of recent eutrophication and intensified thermal stratification in Lake Victoria is still hampered by the sparsity of paleolimnologic coverage of the enormous lake. Five new diatom records from Ugandan waters now show that a transition from Aulacoseira-dominated planktonic assemblages to those dominated by long Nitzschia spp., occurred in northern coastal sites from the mid-1970s to mid-1980s. Similar transitions developed from the late 1960s to early 1970s offshore and from the 1940s to early 1950s along the Kenyan coast, suggesting a time-transgressive process. These changes are not readily attributable to the trophic effects of Nile perch population growth during the early 1980s, but more likely reflect responses to long-term nutrient enrichment and climatic instability in the region. The diversity of planktonic diatom communities has declined dramatically, and a namesake variety of Aulacoseira nyassensis may now be nearly extirpated. Although local phytoplankton communities varied considerably in the past, the current domination of diatom assemblages by Nitzschia is apparently unprecedented in the 15,000-year history of Lake Victoria.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号