首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Jin X  Zhang J  Dai H  Sun H  Wang D  Wu J  Shi Y 《Biophysical chemistry》2007,129(2-3):269-278
The solution structure of human MICAL-1 calpolnin homology (CH) domain is composed of six alpha helices and one 3(10) helix. To study the unfolding of this domain, we carry out native-state hydrogen exchange, intrinsic fluorescence and far-UV circular dichroism experiments. The free energy of unfolding, DeltaG(H2O), is calculated to be 7.11+/-0.58 kcal mol(-1) from GuHCl denaturation at pH 6.5. Four cooperative unfolding units are found using native-state hydrogen exchange experiment. Forty-seven slow-exchange residues can be studied by native-state hydrogen exchange experiments. From the concentration dependence of exchange rates, free energy of amide hydrogen with solvent, DeltaG(HX) and m-value (sensitivity of exposure to denaturant) are obtained, which reveal four cooperative unfolding units. The slowest exchanging protons are distributed throughout the whole hydrophobic core of the protein, which might be the folding core. These results will help us understand the structure of MICAL-1 CH domain more deeply.  相似文献   

2.
The pH dependence of hydrogen exchange in proteins   总被引:3,自引:0,他引:3  
The static accessibility modified discrete charge model for electrostatic interactions in proteins is extended to the prediction of the pH dependence of hydrogen exchange reactions. The exchange rate profiles of buried amide protons are shown to follow the calculated pH dependence of the electrostatic component of protein stability. Rate profiles are calculated for individual buried amide protons in ribonuclease S and bovine pancreatic trypsin inhibitor. The electrostatic free energy of stabilization of the protein and the energy required to bring the catalytic ion to an exchange site are expressed as an apparent, pH-dependent contribution to the activation energy. Changes in the electrostatic stabilization of the proteins affect the calculated exchange rate for buried amide protons by more than 1000, while local field effects raise or lower the predicted exchange rates by less than 100. The pH dependence of exchangeable protons at the protein surface, such as the C-2 imidazole protons, is shown to follow the estimated energy required to introduce the catalytic ion at the exchange site. These calculations are discussed in terms of current models for proton exchange which incorporate the dynamic nature of the structure to explain exchange data from the interior of a protein.  相似文献   

3.
Native-state hydrogen exchange (HX) studies, used in conjunction with NMR spectroscopy, have been carried out on Escherichia coli thioredoxin (Trx) for characterizing two folding subdomains of the protein. The backbone amide protons of only the slowest-exchanging 24 amino acid residues, of a total of 108 amino acid residues, could be followed at pH 7. The free energy of the opening event that results in an amide hydrogen exchanging with solvent (DeltaG(op)) was determined at each of the 24 amide hydrogen sites. The values of DeltaG(op) for the amide hydrogens belonging to residues in the helices alpha(1), alpha(2), and alpha(4) are consistent with them exchanging with the solvent only when the fully unfolded state is sampled transiently under native conditions. The denaturant-dependences of the values of DeltaG(op) provide very little evidence that the protein samples partially unfolded forms, lower in energy than the unfolded state. The amide hydrogens belonging to the residues in the beta strands, which form the core of the protein, appear to have higher values of DeltaG(op) than amide hydrogens belonging to residues in the helices, suggesting that they might be more stable to exchange. This apparently higher stability to HX of the beta strands might be either because they exchange out their amide hydrogens in a high energy intermediate preceding the globally unfolded state, or, more likely, because they form residual structure in the globally unfolded state. In either case, the central beta strands-beta(3,) beta(2), and beta(4)-would appear to form a cooperatively folding subunit of the protein. The native-state HX methodology has made it possible to characterize the free energy landscape that Trx can sample under equilibrium native conditions.  相似文献   

4.
Native state hydrogen exchange of cold shock protein A (CspA) has been characterized as a function of the denaturant urea and of the stabilizing agent trimethylamine N-oxide (TMAO). The structure of CspA has five strands of beta-sheet. Strands beta1-beta4 have strongly protected amide protons that, based on experiments as a function of urea, exchange through a simple all-or-none global unfolding mechanism. By contrast, the protection of amide protons from strand beta5 is too weak to measure in water. Strand beta5 is hydrogen bonded to strands beta3 and beta4, both of which afford strong protection from solvent exchange. Gaussian network model (GNM) simulations, which assume that the degree of protection depends on tertiary contact density in the native structure, accurately predict the strong protection observed in strands beta1-beta4 but fail to account for the weak protection in strand beta5. The most conspicuous feature of strand beta5 is its low sequence hydrophobicity. In the presence of TMAO, there is an increase in the protection of strands beta1-beta4, and protection extends to amide protons in more hydrophilic segments of the protein, including strand beta5 and the loops connecting the beta-strands. TMAO stabilizes proteins by raising the free energy of the denatured state, due to highly unfavorable interactions between TMAO and the exposed peptide backbone. As such, the stabilizing effects of TMAO are expected to be relatively independent of sequence hydrophobicity. The present results suggest that the magnitude of solvent exchange protection depends more on solvent accessibility in the ensemble of exchange susceptible conformations than on the strength of hydrogen-bonding interactions in the native structure.  相似文献   

5.
K Akasaka  T Inoue  H Hatano  C K Woodward 《Biochemistry》1985,24(12):2973-2979
The hydrogen isotope exchange kinetics of the 10 slowest exchanging resonances in the 1H NMR spectrum of Streptomyces subtilisin inhibitor (SSI) have been determined at pH 7-11 and 30-60 degrees C. These resonances are assigned to peptide amide protons in the beta-sheet core that comprises the extensive protein-protein interface of the tightly bound SSI dimer. The core protons are atypical in that their exchange rates are orders of magnitude slower than those for all other SSI protons. When they do exchange at temperatures greater than 50 degrees C, they do so as a set and with a very high temperature coefficient. The pH dependence of the exchange rate constants is also atypical. Exchange rates are approximately first order in hydroxyl ion dependence at pH less than 8.5 and greater than 9.5 and pH independent between pH 8.5 and 9.5. The pH dependence and temperature dependence of the SSI proton exchange rates are interpreted by the two-process model [Woodward, C. K., & Hilton, B. D. (1980) Biophys. J. 32, 561-575]. The results suggest that in the average solution structure of SSI, an unusual mobility of secondary structural elements at the protein surface is, in a sense, compensated by an unusual rigidity and inaccessibility of the beta-sheet core at the dimer interface.  相似文献   

6.
Experiments were done to study the dynamic structural motions that determine protein hydrogen exchange (HX) behavior. The replacement of a solvent-exposed lysine residue with glycine (Lys8Gly) in a helix of recombinant cytochrome c does not perturb the native structure, but it entropically potentiates main-chain flexibility and thus can promote local distortional motions and large-scale unfolding. The mutation accelerates amide hydrogen exchange of the mutated residue by about 50-fold, neighboring residues in the same helix by less, and residues elsewhere in the protein not at all, except for Leu98, which registers the change in global stability. The pattern of HX changes shows that the coupled structural distortions that dominate exchange can be several residues in extent, but they expose to exchange only one amide NH at a time. This "local fluctuation" mode of hydrogen exchange may be generally recognized by disparate near-neighbor rates and a low dependence on destabilants (denaturant, temperature, pressure). In contrast, concerted unfolding reactions expose multiple neighboring amide NHs with very similar computed protection factors, and they show marked destabilant sensitivity. In both modes, ionic hydrogen exchange catalysts attack from the bulk solvent without diffusing through the protein matrix.  相似文献   

7.
Solvent denaturation and stabilization of globular proteins   总被引:17,自引:0,他引:17  
D O Alonso  K A Dill 《Biochemistry》1991,30(24):5974-5985
Statistical thermodynamic theory has recently been developed to account for the stabilities of globular proteins. Here we extend that work to predict the effects of solvents on protein stability. Folding is assumed to be driven by solvophobic interactions and opposed by conformational entropy. The solvent dependence of the solvophobic interactions is taken from transfer experiments of Nozaki and Tanford on amino acids into aqueous solutions of urea or guanidine hydrochloride (GuHCl). On the basis of the assumption of two pathways involving collapse and formation of a core, the theory predicts that increasing denaturant should lead to a two-state denaturation transition (i.e., there is a stable state along each path separated by a free energy barrier). The denaturation midpoint is predicted to occur at higher concentrations of urea than of GuHCl. At neutral pH, the radius of the solvent-denatured state should be much smaller than for a random-flight chain and increase with either denaturant concentration or number of polar residues in the chain. A question of interest is whether free energies of folding should depend linearly on denaturant, as is often assumed. The free energy is predicted to be linear for urea but to have some small curvature for GuHCl. Predicted slopes and exposed areas of the unfolded states are found to be in generally good agreement with experiments. We also discuss stabilizing solvents and compare thermal with solvent denaturation.  相似文献   

8.
Stable intermediate states and high energy barriers in the unfolding of GFP   总被引:2,自引:0,他引:2  
We present a study of the denaturation of a truncated, cycle3 variant of green fluorescent protein (GFP). Chemical denaturation is used to unfold the protein, with changes in structure being monitored by the green fluorescence, tyrosine fluorescence and far-UV circular dichroism. The results show that the denaturation behaviour of GFP is complex compared to many small proteins: equilibrium is established only very slowly, over the time course of weeks, suggesting that there are high folding/unfolding energy barriers. Unfolding kinetics confirm that the rates of unfolding at low concentrations of denaturant are very low, consistent with the slow establishment of the equilibrium. In addition, we find that GFP significantly populates an intermediate state under equilibrium conditions, which is compact and stable with respect to the unfolded state (m(IU)=4.6 kcal mol(-1) M(-1) and Delta G(IU)=12.5 kcal mol(-1)). The global and local stability of GFP was probed further by measuring the hydrogen/deuterium (H/D) NMR exchange rates of more than 157 assigned amide protons. Analysis at two different values of pH showed that amide protons within the beta-barrel structure exchange at the EX2 limit, consequently, free energies of exchange could be calculated and compared to those obtained from the denaturation-curve studies providing further support for the three-state model and the existence of a stable intermediate state. Analysis reveals that amide protons in beta-strands 7, 8, 9 and 10 have, on average, higher exchange rates than others in the beta-barrel, suggesting that there is greater flexibility in this region of the protein. Forty or so amide protons were found which do not undergo significant exchange even after several months and these are clustered into a core region encompassing most of the beta-strands, at least at one end of the barrel structure. It is likely that these residues play an important role in stabilizing the structure of the intermediate state. The intermediate state observed in the chemical denaturation studies described here, is similar to that observed at pH 4 in other studies.  相似文献   

9.
A procedure to measure exchange rates of fast exchanging protein amide hydrogens by time-resolved NMR spectroscopy following in situ initiation of the reaction by diluting a native protein solution into an exchanging deuterated buffer is described. The method has been used to measure exchange rates of a small set of amide hydrogens of reduced cytochrome c, maintained in a strictly anaerobic atmosphere, in the presence of an otherwise inaccessible range of guanidinium deuterochloride concentrations. The results for the measured protons indicate that hydrogen exchange in the unfolding transition region of cytochrome c reach the EX2 limit, but emphasize the difficulty in interpretation of the exchange mechanism in protein hydrogen exchange studies. Comparison of free energies of structure opening for the measured hydrogens with the global unfolding free energy monitored by far-UV CD measurements has indicated the presence of at least one partially unfolded equilibrium species of reduced cytochrome c. The results provide the first report of measurement of free energy of opening of structure to exchange in the 0–2-kcal/mol range. Proteins 32:241–247, 1998. © 1998 Wiley-Liss, Inc.  相似文献   

10.
We have examined the contribution to protein stability of an interaction involving a charged hydrogen bond from an arginyl side chain (Arg67) in the serine proteinase inhibitor chymotrypsin inhibitor 2 (CI-2), by replacing this side chain with an alanyl residue by protein engineering. Using nuclear magnetic resonance spectroscopy (NMR), we have examined the effect of this mutation on the hydrogen-deuterium exchange rates of several backbone amide protons in the native and engineered proteins at 50 degrees C. These exchange rates provide a localized probe at multiple discrete sites throughout the protein and from comparison of native and mutant exchange rates allow calculation of the difference in free energy of exchange (delta delta Gex) resulting from the mutation. The results show that for the majority of amides observed this mutation results in delta delta Gex of ca. 1.7 kcal mol-1 over the whole CI-2 molecule. However, for two relatively exposed amide protons the exchange rates are found to be far less perturbed, implying that local unfolding mechanisms predominate for these protons. Direct measurement of the stability of both proteins to denaturation by guanidinum hydrochloride shows that the interaction contributes 1.4 kcal mol-1 to the stability of the molecule. This value is comparable to those obtained from the NMR exchange measurements and indicates that the exchange processes reflect the differences in stability between the native and mutant proteins.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

11.
12.
Proton NMR spectroscopy was used to determine the rate constant, kobs, for exchange of labile protons in both oxidized (Fe(III)) and reduced (Fe(II)) iso-1-cytochrome c. We find that slowly exchanging backbone amide protons tend to lack solvent-accessible surface area, possess backbone hydrogen bonds, and are present in regions of regular secondary structure as well as in omega-loops. Furthermore, there is no correlation between kobs and the distance from a backbone amide nitrogen to the nearest solvent-accessible atom. These observations are consistent with the local unfolding model. Comparisons of the free energy change for denaturation, delta Gd, at 298 K to the free energy change for local unfolding, delta Gop, at 298 K for the oxidized protein suggest that certain conformations possessing higher free energy than the denatured state are detected at equilibrium. Reduction of the protein results in a general increase in delta Gop. Comparisons of delta Gd to delta Gop for the reduced protein show that the most open states of the reduced protein possess more structure than its chemically denatured form. This persistent structure in high-energy conformations of the reduced form appears to involve the axially coordinated heme.  相似文献   

13.
Equilibrium amide hydrogen exchange studies of barstar have been carried out at pH 6.7, 32° SDC using one- and two-dimensional nuclear magnetic resonance. An unusually large fraction of the backbone amide hydrogens of barstar exchange too fast to be measured, and the exchange rates of only fifteen slow-exchanging amide sites including indole amides of two tryptophans could be measured in the presence of 0 to 1.8 M guanidine hydrochloride (GdnHCl). Measurement of exchange occurring in tens of seconds in the unfolding transition region was possible by the use of a fast stopped-flow mixing method. The observed exchange rates have been simulated in the EX2 limit according to a two-process model that incorporates two exchange-competent states: a transiently unfolded state (U*) in which many amide hydrogens are completely accessible to solvent-exchange, and a near-native locally unfolded state (N*), in which only one or a few amide hydrogens are completely accessible to solvent-exchange. The two-process model appears to account for the observed exchange behavior over the entire range of GdnHCl concentrations studied. For several measurable slow-exchanging amide hydrogens, the free energies of production of exchange-competent states from the exchange-incompetent native state are significantly higher than the free-energy of production of the equilibrium unfolded state from the native state, when the latter is determined from circular dichroism- or fluorescence-monitored equilibrium unfolding curves. The result implies that U*, which forms transiently in the strongly native-like conditions used for the hydrogen exchange studies, is higher in energy than the equilibrium-unfolded state. The higher energy of this transiently unfolded exchange-competent state can be attributed to either proline isomerization or to the presence of residual structure. On the basis of the free energies of production of exchange-competent states, the measured amide sites of barstar appear to define two structural subdomains—a three-helix unit and a two-β-strand unit in the core of the protein. Proteins 30:295–308, 1998. © 1998 Wiley-Liss, Inc.  相似文献   

14.
The nature of denatured ensembles of the enzyme human carbonic anhydrase (HCA) has been extensively studied by various methods in the past. The protein constitutes an interesting model for folding studies that does not unfold by a simple two-state transition, instead a molten globule intermediate is highly populated at 1.5 M GuHCl. In this work, NMR and H/D exchange studies have been conducted on one of the isozymes, HCA I. The H/D exchange studies, which were enabled by the previously obtained resonance assignment of HCA I, have been used to identify unfolded forms that are accessible from the native state. In addition, the GuHCl-induced unfolded states of HCA I have also been characterized by NMR at GuHCl concentrations in the 0-5 M range. The most important findings in this work are as follows: (1) Amide protons located in the center of the beta-sheet require global unfolding events for efficient H/D exchange. (2) The molten globule and the native state give similar protection against H/D exchange for all of the observable amide protons (i.e., water seems not to efficiently penetrate the interior of the molten globule). (3) At high protein concentrations, the molten globule can form large aggregates, which are not detectable by solution-state NMR methods. (4) The unfolded state (U), present at GuHCl concentrations above 2 M, is composed of an ensemble of conformations having residual structures with different stabilities.  相似文献   

15.
The pH dependence of amide proton exchange rates have been measured for trp-repressor. One class of protons exchanges too fast to be measured in these experiments. Among the protons that have measurable hydrogen-deuterium exchange rates, two additional classes may be distinguished. The second class of protons are in elements of secondary structure that are mostly on the surface of the protein, and exchange linearly with increasing base concentration (log kex versus pH). The third class of amide protons is characterized by much higher protection against exchange at higher pH. These protons are located in the core of the protein, in helices B and C. The exchange rate in the core region does not increase linearly with pH, but rather goes through a minimum around pH 6. The mechanism of exchange for the slowly exchanging core protons is interpreted in terms of the two-process model of Hilton and Woodward (1979, Biochemistry 18:5834-5841), i.e., exchange through both a local mechanism that does not require unfolding of the protein, and a mechanism involving global unfolding of the protein. The increase in exchange rates at low pH is attributed to a partial unfolding of the repressor. It is concluded that the formation of secondary structure alone is insufficient to account for the high protection factors seen in the core of native proteins at higher pH, and that tertiary interactions are essential to stabilize the structure.  相似文献   

16.
As a first step to determine the folding pathway of a protein with an alpha/beta doubly wound topology, the 1H, 13C, and 15N backbone chemical shifts of Azotobacter vinelandii holoflavodoxin II (179 residues) have been determined using multidimensional NMR spectroscopy. Its secondary structure is shown to contain a five-stranded parallel beta-sheet (beta2-beta1-beta3-beta4-beta5) and five alpha-helices. Exchange rates for the individual amide protons of holoflavodoxin were determined using the hydrogen exchange method. The amide protons of 65 residues distributed throughout the structure of holoflavodoxin exchange slowly at pH* 6.2 [kex < 10(-5) s(-1)] and can be used as probes in future folding studies. Measured exchange rates relate to apparent local free energies for transient opening. We propose that the amide protons in the core of holoflavodoxin only exchange by global unfolding of the apo state of the protein. The results obtained are discussed with respect to their implications for flavodoxin folding and for modulation of the flavin redox potential by the apoprotein. We do not find any evidence that A. vinelandii holoflavodoxin II is divided into two subdomains based on its amide proton exchange rates, as opposed to what is found for the structurally but not sequentially homologous alpha/beta doubly wound protein Che Y.  相似文献   

17.
N V Kumar  N R Kallenbach 《Biochemistry》1985,24(26):7658-7662
Hydrogen exchange of the individual amide protons of alanine-90 (F5), glutamine-91 (F6), serine-92 (F7), and histidine-93 (F8) residues in cyanometmyoglobin of sperm whale has been studied by 1H nuclear magnetic resonance spectroscopy at 360 MHz. The amide proton resonance of F5, F6, and F7 have been assigned by use of the selective nuclear Overhauser effect between the consecutive amide protons. At pH 6.8, and in the temperature range of 5-20 degrees C, these protons show a 10(4)-fold retardation compared to the rates in free peptides. Apparent activation enthalpies for hydrogen exchange of F5, F6, and F8 protons are 18.5 +/- 0.4, 9.5 +/- 0.3, and 18.5 +/- 0.3 kcal/mol, respectively. Some implications of these results on the nature of the opening processes involved in hydrogen exchange are considered.  相似文献   

18.
Dimethylsulfoxide (DMSO)‐quenched hydrogen/deuterium (H/D)‐exchange is a powerful method to characterize the H/D‐exchange behaviors of proteins and protein assemblies, and it is potentially useful for investigating non‐protected fast‐exchanging amide protons in the unfolded state. However, the method has not been used for studies on fully unfolded proteins in a concentrated denaturant or protein solutions at high salt concentrations. In all of the current DMSO‐quenched H/D‐exchange studies of proteins so far reported, lyophilization was used to remove D2O from the protein solution, and the lyophilized protein was dissolved in the DMSO solution to quench the H/D exchange reactions and to measure the amide proton signals by two‐dimensional nuclear magnetic resonance (2D NMR) spectra. The denaturants or salts remaining after lyophilization thus prevent the measurement of good NMR spectra. In this article, we report that the use of spin desalting columns is a very effective alternative to lyophilization for the medium exchange from the D2O buffer to the DMSO solution. We show that the medium exchange by a spin desalting column takes only about 10 min in contrast to an overnight length of time required for lyophilization, and that the use of spin desalting columns has made it possible to monitor the H/D‐exchange behavior of a fully unfolded protein in a concentrated denaturant. We report the results of unfolded ubiquitin in 6.0M guanidinium chloride.  相似文献   

19.
Szewczuk Z  Konishi Y  Goto Y 《Biochemistry》2001,40(32):9623-9630
Acetylation of Lys residues of horse cytochrome c steadily stabilizes the molten globule state in 18 mM HCl as more Lys residues are acetylated [Goto and Nishikiori (1991) J. Mol. Biol. 222, 679-686]. The dynamic features of the molten globule state were characterized by hydrogen/deuterium exchange of amide protons, monitored by mass spectrometry as each deuteration increased the protein mass by 1 Da. Electrospray mass spectrometry enabled us to monitor simultaneously the exchange kinetics of more than seven species with a different number of acetyl groups. One to four Lys residue-acetylated cytochrome c showed almost no protection of the amide protons from rapid exchange. The transition from the unprotected to the protected state occurred between five and eight Lys residue-acetylated species. For species with more than nine acetylated Lys residues, the exchange kinetics were independent of the extent of acetylation, and 26 amide protons were protected at 60 min of exchange, indicating the formation of a rigid hydrophobic core with hydrogen-bonded secondary structures. The apparent transition to the protected state required a higher degree of acetylation than the conformational transition measured by circular dichroism, which had a midpoint at about four acetylated residues. This difference in the transitions suggested a two-process model in which the exchange occurs either from the protected folded state or from the unprotected unfolded state through global unfolding. On the basis of a two-process model and with the reported values of the exchange and stability parameters, we simulated the exchange kinetics of a series of acetylated cytochrome c species. The simulated kinetics reproduced the observed kinetics well, indicating validity of this model for hydrogen exchange of the molten globule state.  相似文献   

20.
Y Pan  M S Briggs 《Biochemistry》1992,31(46):11405-11412
Ubiquitin adopts a non-native folded structure in 60% methanol solution at low pH. Two-dimensional nuclear magnetic resonance (2D NMR) was used to measure the hydrogen-exchange rates of backbone amide protons of ubiquitin in both native and methanol forms, and to characterize the structure of ubiquitin in the methanol state. Protection factors (the ratios of experimentally determined exchange rates to the rates calculated for an unfolded polypeptide) for protons in the native form of ubiquitin range from less than 10 to greater than 10(5). Most of the protons that are protected from exchange are located in regions of hydrogen-bonded secondary structure. The most strongly protected backbone amide protons are those of residues comprising the hydrophobic core. Hydrogen exchange from ubiquitin in methanol solution was too rapid to measure directly by 2D NMR, so a labeling scheme was employed, in which exchange with solvent occurred while the protein was in methanol solution. Exchange was quenched by dilution with aqueous buffer after the desired labeling time, and proton occupancies were measured by 1H NMR of the native form of the protein. Protection factors for protons in the methanol form of ubiquitin range from 2.6 to 42, with all protected protons located in hydrogen-bonded structure in the native form. Again, the most strongly protected protons are those of residues in the hydrophobic core. Comparison of the patterns of the hydrogen-exchange rates in the native and methanol forms indicates that almost all of the native secondary structure persists in the methanol form, but that it is almost uniformly destabilized by 4-6 kcal/mol.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号