首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
Development of chromaffin cells depends on MASH1 function   总被引:4,自引:0,他引:4  
The sympathoadrenal (SA) cell lineage is a derivative of the neural crest (NC), which gives rise to sympathetic neurons and neuroendocrine chromaffin cells. Signals that are important for specification of these two types of cells are largely unknown. MASH1 plays an important role for neuronal as well as catecholaminergic differentiation. Mash1 knockout mice display severe deficits in sympathetic ganglia, yet their adrenal medulla has been reported to be largely normal suggesting that MASH1 is essential for neuronal but not for neuroendocrine differentiation. We show now that MASH1 function is necessary for the development of the vast majority of chromaffin cells. Most adrenal medullary cells in Mash1(-/-) mice identified by Phox2b immunoreactivity, lack the catecholaminergic marker tyrosine hydroxylase. Mash1 mutant and wild-type mice have almost identical numbers of Phox2b-positive cells in their adrenal glands at embryonic day (E) 13.5; however, only one-third of the Phox2b-positive adrenal cell population seen in Mash1(+/+) mice is maintained in Mash1(-/-) mice at birth. Similar to Phox2b, cells expressing Phox2a and Hand2 (dHand) clearly outnumber TH-positive cells. Most cells in the adrenal medulla of Mash1(-/-) mice do not contain chromaffin granules, display a very immature, neuroblast-like phenotype, and, unlike wild-type adrenal chromaffin cells, show prolonged expression of neurofilament and Ret comparable with that observed in wild-type sympathetic ganglia. However, few chromaffin cells in Mash1(-/-) mice become PNMT positive and downregulate neurofilament and Ret expression. Together, these findings suggest that the development of chromaffin cells does depend on MASH1 function not only for catecholaminergic differentiation but also for general chromaffin cell differentiation.  相似文献   

2.
3.
The diversification of neural-crest-derived sympathoadrenal (SA) progenitor cells into sympathetic neurons and neuroendocrine adrenal chromaffin cells was thought to be largely understood. In-vitro studies with isolated SA progenitor cells had suggested that chromaffin cell differentiation depends crucially on glucocorticoids provided by adrenal cortical cells. However, analysis of mice lacking the glucocorticoid receptor gene had revealed that adrenal chromaffin cells develop mostly normally in these mice. Alternative cues from the adrenal cortex that may promote chromaffin cell determination and differentiation have not been identified. We therefore investigated whether the chromaffin cell phenotype can develop in the absence of an adrenal cortex, using mice deficient for the nuclear orphan receptor steroidogenic factor-1 (SF1), which lack adrenal cortical cells and gonads. We show that in Sf1-/- mice typical chromaffin cells assemble correctly in the suprarenal region adjacent to the suprarenal sympathetic ganglion. The cells display most features of chromaffin cells, including the typical large chromaffin granules. Sf1-/- chromaffin cells are numerically reduced by about 50% compared with the wild type at embryonic day (E) 13.5 and E17.5. This phenotype is not accounted for by reduced survival or cell proliferation beyond E12.5. However, already at E12.5 the 'adrenal' region in Sf1-/- mice is occupied by fewer PHOX2B+ and TH+ SA cells as well as SOX10+ neural crest cells. Our results suggest that cortical cues are not essential for determining chromaffin cell fate, but may be required for proper migration of SA progenitors to and/or colonization of the adrenal anlage.  相似文献   

4.
5.
The Chromaffin Cell and its Development   总被引:1,自引:0,他引:1  
  相似文献   

6.
7.
8.
9.
10.
11.
12.
What causes motor neurons to project into the periphery is not well understood. We here show that forced expression of the homeodomain protein Phox2b, shown previously to be necessary and sufficient for branchio-visceromotor neuron development, and of its paralogue Phox2a imposes a branchiomotor-like axonal phenotype in the spinal cord. Many Phox2-transfected neurons, whose axons would normally stay within the confines of the neural tube, now project into the periphery. Once outside the neural tube, a fraction of the ectopic axons join the spinal accessory nerve, a branchiomotor nerve which, as shown here, does not develop in the absence of Phox2b. Explant studies show that the axons of Phox2-transfected neurons need attractive cues to leave the neural tube and that their outgrowth is promoted by tissues, to which branchio-visceromotor fibers normally grow. Hence, Phox2 expression is a key step in determining the peripheral axonal phenotype and thus the decision to stay within the neural tube or to project out of it.  相似文献   

13.
We have analyzed the distribution of neural crest-derived precursors and the expression of catecholaminergic and neuronal markers in developing adrenal tissue of chick embryos. Undifferentiated neural crest cells are found in presumptive adrenal regions from embryonic day 3 (E3) onward. An increasing proportion of cells expressing tyrosine hydroxylase (TH) mRNA indicates catecholaminergic differentiation of precursors not only in primary sympathetic ganglia, but also in presumptive adrenal regions. Whereas precursors and differentiating cells show mesenchymal distribution until E5, discrete adrenal anlagen form during E6. Even during E5, catecholaminergic cells with low or undetectable neurofilament M (NF-M) mRNA expression prevail in positions at which adrenal anlagen become distinct during E6. The predominance of TH-positive and NF-M-negative cells is maintained throughout embryogenesis in adrenal tissue. RNA encoding SCG10, a pan-neuronal marker like NF-M, is strongly expressed throughout adrenal anlagen during E6 but is found at reduced levels in chromaffin cells compared with neuronal cells at E15. Two additional neuronal markers, synaptotagmin 1 and neurexin 1, are expressed at low to undetectable levels in developing chromaffin cells throughout embryogenesis. The developmental regulation of neuronal markers shows at least three different patterns among the four mRNAs analyzed. Importantly, there is no generalized downregulation of neuronal markers in developing adrenal anlagen. Thus, our observations question the classical concept of chromaffin differentiation from a common sympathoadrenal progenitor expressing neuronal properties and suggest alternative models with changing instructive signals or separate progenitor populations for sympathetic neuronal and chromaffin endocrine cells.Chaya Kalcheim and Klaus Unsicker are supported by the Deutsche Forschungsgemeinschaft (SFB 488)  相似文献   

14.
15.
16.
17.
The 5' flanking region from the human dopamine beta-hydroxylase gene directs expression of bacterial beta-galactosidase reporter genes to a subset of adult neurons and adrenal chromaffin cells of transgenic mice. In this paper, we examine the spatial and temporal patterns of expression of these transgenes during embryogenesis. Expression begins at embryonic day 9 in the developing central and peripheral nervous systems and persists in cell populations in which expression is observed in adult transgenic mice. However, transient embryonic expression occurs in presumptive neuroblasts in developing sensory ganglia and ventrolateral neural tube that are destined to synthesize neurotransmitters other than catecholamines. These observations support the concept that some cells fated to become "non-catecholaminergic" neurons exhibit transient catecholaminergic features during their differentiation.  相似文献   

18.
19.
Adrenal medullary chromaffin cells are derivatives of the neural crest and are widely believed to share a common sympathoadrenal (SA) progenitor with sympathetic neurons. For decades, the adrenal cortical environment was assumed to be essential for channelling SA progenitors towards an endocrine chromaffin cell fate. Our recent analysis of steroidogenic factor 1(Sf1) −/− mice, which lack an adrenal cortex, has challenged this view: in Sf1 −/− mice chromaffin cells migrate to the correct “adrenal” location and undergo largely normal differentiation. In contrast to Sf1 homozygous mutants, heterozygous animals have an adrenal cortex, which, however, is smaller than in wildtype littermates. We show here that the Sf1 +/− adrenal cortical anlagen attract normal numbers of chromaffin progenitor cells into their vicinity by embryonic day 13.5 (E13.5). Two days later, however, only a few scattered cells with highly immature features have immigrated into the adrenal cortex, whereas the remainder form a coherent cell assembly ectopically located at the medial surface of the gland. These cells appear more mature than the scattered intracortical chromaffin progenitors and express the adrenaline synthesizing enzyme PNMT with a delay of 1 day in comparison with wildtype littermates. Nevertheless, chromaffin progenitor cells undergo a numerical reduction of approximately 30% by E17.5. Together, our data suggest that normal adrenocortical development is critical for the correct immigration of chromaffin progenitors into the cortical anlagen, for the timing of PNMT expression and for the regulation of chromaffin cell numbers.This work was supported by a grant from the Deutsche Forschungsgemeinschaft (SFB 488, TP A6).  相似文献   

20.
To introduce restricted DNA recombination events into catecholaminergic neurons using the Cre/loxP technology, we generated transgenic mice carrying the Cre recombinase gene driven by a 9 kb rat tyrosine hydroxylase (TH) promoter. Immunohistochemistry performed on transgenic mouse brain sections revealed a high number of cells expressing Cre in areas where TH is normally expressed, including the olfactory bulb, hypothalamic and midbrain dopaminergic neurons, and the locus coeruleus. Double immunohistochemistry and immunofluorescence indicated that colocalization of TH and Cre is greater than 80%. Cre expression was also found in TH-positive amacrine neurons of the retina, chromaffin cells of the adrenal medulla, and sympathetic ganglia. We crossbred TH-Cre mice with the floxed reporter strain Z/AP and observed efficient Cre-mediated recombination in all areas expressing TH, indicating that transgenic Cre is functional. Therefore, we have generated a valuable transgenic mouse strain to induce specific mutations of "floxed" genes in catecholaminergic neurons.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号