首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Luo C  Tong M  Chilukuri N  Brecht K  Maxwell DM  Saxena A 《Biochemistry》2007,46(42):11771-11779
The reactivation of nerve agent-inhibited acetylcholinesterase (AChE) by oxime is the most important step in the treatment of nerve agent poisoning. Since the evaluation of nerve agent antidotes cannot be conducted in humans, results from animal experiments are extrapolated to humans. Guinea pig is one of the animal models that is frequently used for conducting nerve agent antidote evaluations. Several investigations have demonstrated that the efficacy of an oxime primarily depends on its ability to reactivate nerve agent-inhibited AChE. If the in vitro oxime reactivation of nerve agent-inhibited animal AChE is similar to that of human AChE, it is likely that the results of an in vivo animal study will reliably extrapolate to humans. Therefore, the goal of this study was to compare the reactivation of guinea pig and human AChEs inhibited by six different G and V type nerve agents. Reactivation kinetic studies with five mono- and bis-pyridinium oximes showed that oxime reactivation of nerve agent-inhibited human AChE in most cases was faster than guinea pig AChE. The most significant enhancement was observed in the reactivation of human AChE inhibited by nerve agents containing bulky side chains GF, GD, and VR, by H-series oximes HLo-7, HI-6, and ICD-585. In these cases, species-related differences observed between the two AChEs, based on the second-order reactivation rate constants, were 90- to over 400-fold. On the other hand, less than 3-fold differences were observed in the rates of aging of nerve agent-inhibited guinea pig and human AChEs. These results suggest that the remarkable species-related differences observed in the reactivation of nerve agent-inhibited guinea pig and human AChEs were not due to differences in the rates of aging. These results also suggest that guinea pig may not be an appropriate animal model for the in vivo evaluation of oxime therapy.  相似文献   

2.
A conceptually novel approach to the design of reactivators of nerve agent-inhibited acetylcholinesterase (AChE) is presented. The concept comprises the linkage of a peripheral site ligand via a spacer to a reactivating moiety with the eventual goal to develop non-ionic reactivators with sufficient affinity for AChE to induce reactivation and potentially improved blood-brain barrier penetration. Herein, the first step towards that goal—the synthesis and biological evaluation of a peripheral site ligand conjugated to a charged pyridinium oxime is discussed. It was found, that the introduction of the peripheral site ligand not only increased affinity of the construct for AChE but also enhanced reactivation of nerve agent-inhibited AChE.  相似文献   

3.
In vitro as well as in vivo evaluation of the reactivating efficacy of various oximes against nerve agent-inhibited acetylcholinesterase has been usually done with the help of animal experiments. Nevertheless, previously published data indicate that the reactivation potency of oximes may be different in human and animal species, which may hamper the extrapolation of animal data to human data. Therefore, to better evaluate the efficacy of various oximes (pralidoxime, obidoxime, HI-6, K033) to reactivate brain acetylcholinesterase inhibited by sarin by in vitro methods, human, rat and pig brain acetylcholinesterase were used to calculate kinetic parameters for the reactivation. Our results show differences among the species, depending on the type of oxime, and indicate that data from animal experiments needs to be carefully evaluated before extrapolation to humans.  相似文献   

4.
In vitro as well as in vivo evaluation of the reactivating efficacy of various oximes against nerve agent-inhibited acetylcholinesterase has been usually done with the help of animal experiments. Nevertheless, previously published data indicate that the reactivation potency of oximes may be different in human and animal species, which may hamper the extrapolation of animal data to human data. Therefore, to better evaluate the efficacy of various oximes (pralidoxime, obidoxime, HI-6, K033) to reactivate brain acetylcholinesterase inhibited by sarin by in vitro methods, human, rat and pig brain acetylcholinesterase were used to calculate kinetic parameters for the reactivation. Our results show differences among the species, depending on the type of oxime, and indicate that data from animal experiments needs to be carefully evaluated before extrapolation to humans.  相似文献   

5.
Antidotes currently used for organophosphorus pesticide and nerve agent intoxications consist of anticholinergics (atropine mainly) and acetylcholinesterase (AChE, EC 3.1.1.7) reactivators called oximes. Owing to the wide-spread of these toxic compounds worldwide, development of antidotes in the case of first aid is needed. To select the most promising AChE reactivators is a very time consuming process, which is necessary before approval of these compounds to be used as human antidotes. Because of ethical reasons, many developing experiments have been conducted on laboratory animals. However, these results often could not be transferred directly to human. Here, we have tested five newly developed AChE reactivators--K027, K033, K048, K074 and K075, which showed promising reactivation activity on rodents, as reactivators of inhibited human brain cholinesterases. For this purpose, cyclosarin was used as member of the nerve agent family. Oxime HI-6 and pralidoxime were used as AChE reactivator standards. Two AChE reactivators, K027 and K033, achieved comparable reactivation potency as HI-6. Moreover, oxime K033 reached its maximal reactivation potency at the lowest concentration which could be attained in humans.  相似文献   

6.
Antidotes currently used for organophosphorus pesticide and nerve agent intoxications consist of anticholinergics (atropine mainly) and acetylcholinesterase (AChE, EC 3.1.1.7) reactivators called oximes. Owing to the wide-spread of these toxic compounds worldwide, development of antidotes in the case of first aid is needed. To select the most promising AChE reactivators is a very time consuming process, which is necessary before approval of these compounds to be used as human antidotes. Because of ethical reasons, many developing experiments have been conducted on laboratory animals. However, these results often could not be transferred directly to human. Here, we have tested five newly developed AChE reactivators – K027, K033, K048, K074 and K075, which showed promising reactivation activity on rodents, as reactivators of inhibited human brain cholinesterases. For this purpose, cyclosarin was used as member of the nerve agent family. Oxime HI-6 and pralidoxime were used as AChE reactivator standards. Two AChE reactivators, K027 and K033, achieved comparable reactivation potency as HI-6. Moreover, oxime K033 reached its maximal reactivation potency at the lowest concentration which could be attained in humans.  相似文献   

7.
Yamamoto K  Oguri S  Momonoki YS 《Planta》2008,227(4):809-822
We recently identified plant acetylcholinesterases (E.C.3.1.1.7; AChEs) homologous to the AChE purified from a monocotyledon, maize, that are distinct from the animal AChE family. In this study, we purified, cloned and characterized an AChE from a dicotyledon, siratro. The full-length cDNA of siratro AChE is 1,441 nucleotides, encoding a 382-residue protein that includes a signal peptide. This AChE is a disulfide-linked 125-kDa homotrimer consisting of 41–42 kDa subunits, in contrast to the maize AChE, which exists as a mixture of disulfide and non-covalently linked 88-kDa homodimers. The plant AChEs apparently consist of various quaternary structures, depending on the plant species, similar to the animal AChEs. We compared the enzymatic properties of the dimeric maize and trimeric siratro AChEs. Similar to electric eel AChE, both plant AChEs hydrolyzed acetylthiocholine (or acetylcholine) and propionylthiocholine (or propionylcholine), but not butyrylthiocholine (or butyrylcholine), and their specificity constant was highest against acetylcholine. There was no significant difference between the enzymatic properties of trimeric and dimeric AChEs, although two plant AChEs had low substrate turnover numbers compared with electric eel AChE. The two plant AChE activities were not inhibited by excess substrate concentrations. Thus, similar to some plant AChEs, siratro and maize AChEs showed enzymatic properties of both animal AChE and animal BChE. On the other hand, both siratro and maize AChEs exhibited low sensitivity to the AChE-specific inhibitor neostigmine bromide, dissimilar to other plant AChEs. These differences in enzymatic properties of plant AChEs may reflect the phylogenetic evolution of AChEs. Kosuke Yamamoto and Yoshie S. Momonoki contributed equally to this work.  相似文献   

8.
Treatment of poisoning by highly toxic organophosphorus compounds (OP) with atropine and an acetylcholinesterase (AChE) reactivator (oxime) is of limited effectiveness in case of different nerve agents and pesticides. One challenge is the reactivation of OP-inhibited brain AChE which shows inadequate success with charged pyridinium oximes. Recent studies with high doses of the tertiary oxime isonitrosoacetone (MINA) indicated a beneficial effect on central and peripheral AChE and on survival in nerve agent poisoned guinea pigs. Now, an in vitro study was performed to determine the reactivation kinetics of MINA with tabun-, sarin-, cyclosarin-, VX- and paraoxon-inhibited human AChE. MINA showed an exceptionally low affinity to inhibited AChE but, with the exception of tabun-inhibited AChE, a moderate to high reactivity. In comparison to the pyridinium oximes obidoxime, 2-PAM and HI-6 the affinity and reactivity of MINA was in most cases lower and in relation to the most effective reactivators, the second order reactivation constant of MINA was 500 to 3400-fold lower. Hence, high in vivo MINA concentrations would be necessary to achieve at least partial reactivation. This assumption corresponds to in vivo data showing a dose-dependent effect on reactivation and survival in animals. In view, of the toxic potential of MINA in animals human studies would be necessary to determine the tolerability and pharmacokinetics of MINA in order to enable a proper assessment of the value of this oxime as an antidote in OP poisoning.  相似文献   

9.
Organophosphonates such as isopropyl metylphosphonofluoridate (sarin) are extremely toxic as they phosphonylate the catalytic serine residue of acetylcholinesterase (AChE), an enzyme essential to humans and other species. Design of effective AChE reactivators as antidotes to various organophosphonates requires information on how the reactivators interact with the phosphonylated AChEs. However, such information has not been available hitherto because of three main challenges. First, reactivators are generally flexible in order to change from the ground state to the transition state for reactivation; this flexibility discourages determination of crystal structures of AChE in complex with effective reactivators that are intrinsically disordered. Second, reactivation occurs upon binding of a reactivator to the phosphonylated AChE. Third, the phosphorous conjugate can develop resistance to reactivation. We have identified crystallographic conditions that led to the determination of a crystal structure of the sarinnonaged-conjugated mouse AChE in complex with [(E)-[1-[(4-carbamoylpyridin-1-ium-1-yl)methoxymethyl]pyridin-2-ylidene]methyl]-oxoazanium dichloride (HI-6) at a resolution of 2.2 Å. In this structure, the carboxyamino-pyridinium ring of HI-6 is sandwiched by Tyr124 and Trp286, however, the oxime-pyridinium ring is disordered. By combining crystallography with microsecond molecular dynamics simulation, we determined the oxime-pyridinium ring structure, which shows that the oxime group of HI-6 can form a hydrogen-bond network to the sarin isopropyl ether oxygen, and a water molecule is able to form a hydrogen bond to the catalytic histidine residue and subsequently deprotonates the oxime for reactivation. These results offer insights into the reactivation mechanism of HI-6 and design of better reactivators.  相似文献   

10.
In this work, the ability of four newly synthesized oximes--K005 (1,3-bis(2-hydroxyiminomethylpyridinium) propane dibromide), K027 (1-(4-hydroxyiminomethylpyridinium)-3-(4-carbamoylpyridinium) propane dibromide), K033 (1,4-bis(2-hydroxyiminomethylpyridinium) butane dibromide) and K048 (1-(4-hydroxyiminomethylpyridinium)-4-(4-carbamoylpyridinium) butane dibromide) to reactivate acetylcholinesterase (AChE, EC 3.1.1.7) inhibited by nerve agents is summarized. Reactivation potency of these compounds was tested using standard in vitro reactivation test. Tabun, sarin, cyclosarin and VX agent were used as appropriate testing nerve agents. Rat brain AChE was used as a source of the enzyme. Efficacies of new reactivators to reactivate tabun-, sarin-, cyclosarin- and VX-inhibited AChE were compared with the currently used AChE reactivators (pralidoxime, obidoxime and HI-6). Oxime K048 seems to be promising reactivator of tabun-inhibited AChE. Its reactivation potency is significantly higher than that of HI-6 and pralidoxime and comparable with the potency of obidoxime. The best reactivator of sarin-inhibited AChE seems to be oxime HI-6. None of the new AChE reactivators reached comparable reactivation potency. The same results were obtained for cyclosarin-inhibited AChE. However, oxime K033 is also potent reactivator of AChE inhibited by this nerve agent. In the case of VX inhibition, obidoxime and new oximes K027 and K048 seem to be the best AChE reactivators. None from the currently tested AChE reactivators is able to reactivate AChE inhibited by all nerve agents used and, therefore, the search for new potential broad spectrum AChE reactivators is needed.  相似文献   

11.
The efficacy of a new bispyridinium oxime 1-(4-hydroxyiminomethylpyridinium)-4-(4-carbamoylpyridinium)butane dibromide, called K048, and currently used oximes (pralidoxime, obidoxime, the oxime HI-6) to reactivate acetylcholinesterase inhibited by various nerve agents (sarin, tabun, cyclosarin, VX) was tested by in vitro methods. The new oxime K048 was found to be a more efficacious reactivator of nerve agent-inhibited acetylcholinesterase than pralidoxime (in the case of VX, tabun and cyclosarin), obidoxime (cyclosarin and tabun) and HI-6 (tabun) but it did not reach the efficacy of currently used oximes for the reactivation of acetylcholinesterase inhibited by sarin. Thus, the oxime K048 seems to be a relatively efficacious broad spectrum acetylcholinesterase reactivator and, therefore, it could be useful for the treatment of a nerve agent-exposed population if information about detection of the type of nerve agent is not available.  相似文献   

12.
Herein, we described a new class of uncharged non-pyridinium reactivators for nerve agent-inhibited acetylcholinesterase (AChE). Based on a dual site binding strategy, we conjugated the imidazolium aldoxime to different peripheral site ligands (PSLs) of AChE through alkyl chains. Compared with the known quaternary pyridinium reactivators, two of the resulting conjugates (7g and 7h) were highlighted to be the first efficient non-pyridinium oxime conjugates exhibiting similar or superior ability to reactivate sarin-, VX- and tabun-inhibited AChE. Moreover, they were more broad-spectrum reactivators.  相似文献   

13.
Nerve agents such as sarin, cyclosarin and tabun are organophosphorus substances able to inhibit the enzyme acetylcholinesterase (AChE; EC 3.1.1.7). AChE reactivators and anticholinergics are generally used as antidotes in the case of intoxication with these agents. None of the known AChE reactivators is able to reactivate AChE inhibited by all nerve agents used. In this work, reactivation potency of nine newly developed AChE reactivators with an incorporated xylene ring in their structure was measured in vitro. Cyclosarin was chosen as an appropriate member of the nerve agent family. Reactivation potency of the tested AChE reactivators was compared with the gold standard of AChE reactivators--pralidoxime. Two oximes (K107 and K108) surpassed the reactivation potency of pralidoxime. Moreover, from the obtained results it could be deduced that AChE reactivators with a functional oxime group in position-2 are the most potent AChE reactivators in the case of cyclosarin intoxications.  相似文献   

14.
The efficacy of a new bispyridinium oxime 1-(4-hydroxyiminomethylpyridinium)-4-(4-carbamoylpyridinium)butane dibromide, called K048, and currently used oximes (pralidoxime, obidoxime, the oxime HI-6) to reactivate acetylcholinesterase inhibited by various nerve agents (sarin, tabun, cyclosarin, VX) was tested by in vitro methods. The new oxime K048 was found to be a more efficacious reactivator of nerve agent-inhibited acetylcholinesterase than pralidoxime (in the case of VX, tabun and cyclosarin), obidoxime (cyclosarin and tabun) and HI-6 (tabun) but it did not reach the efficacy of currently used oximes for the reactivation of acetylcholinesterase inhibited by sarin. Thus, the oxime K048 seems to be a relatively efficacious broad spectrum acetylcholinesterase reactivator and, therefore, it could be useful for the treatment of a nerve agent-exposed population if information about detection of the type of nerve agent is not available.  相似文献   

15.
C Luo  A Saxena  M Smith  G Garcia  Z Radi?  P Taylor  B P Doctor 《Biochemistry》1999,38(31):9937-9947
Reactivation of organophosphate (OP)-inhibited acetylcholinesterase (AChE) is a key objective in the treatment of OP poisoning. This study with native, wild-type, and mutant recombinant DNA-expressed AChEs, each inhibited by representative OP compounds, establishes a relationship between edrophonium acceleration of oxime-induced reactivation of OP-AChE conjugates and phosphoryl oxime inhibition of the reactivated enzyme that occurs during reactivation by pyridinium oximes LüH6 and TMB4. No such recurring inhibition could be observed with HI-6 as the reactivator due to the extreme lability of the phosphoryl oximes formed by this oxime. Phosphoryl oximes formed during reactivation of the ethoxy methylphosphonyl-AChE conjugate by LüH6 and TMB4 were isolated for the first time and their structures confirmed by (31)P NMR. However, phosphoryl oximes formed during the reactivation of the diethylphosphoryl-AChE conjugate were not sufficiently stable to be detected by (31)P NMR. The purified ethoxy methylphosphonyl oximes formed during the reactivation of ethoxy methylphosphonyl-AChE conjugate with LüH6 and TMB4 are 10- to 22-fold more potent than MEPQ as inhibitors of AChE and stable for several hours at pH 7.2 in HEPES buffer. Reactivation of both ethoxy methylphosphonyl- and diethylphosphoryl-AChE by these two oximes was accelerated in the presence of rabbit serum paraoxonase, suggesting that organophosphorus hydrolase can hydrolyze phosphoryl oxime formed during the reactivation. Our results emphasize that certain oximes, such as LüH6 and TMB4, if used in the treatment of OP pesticide poisoning may cause prolonged inhibition of AChE due to formation of phosphoryl oximes.  相似文献   

16.
Acetylcholinesterase (AChE) is a widely spread enzyme playing a very important role in nerve signal transmission. As AChE controls key processes, its inhibition leads to the very fast death of an organism, including humans. However, when this feature is to be used for killing of unwanted organisms (i.e. mosquitoes), one is faced with the question - how much do AChEs differ between species and what are the differences? Here, a theoretical point of view was utilized to identify the structural basis for such differences. The various primary and tertiary alignments show that AChEs are very evolutionary conserved enzymes and this fact could lead to difficulties, for example, in the search for inhibitors specific for a particular species.  相似文献   

17.
Nerve agents such as sarin, cyclosarin and tabun are organophosphorus substances able to inhibit the enzyme acetylcholinesterase (AChE; EC 3.1.1.7). AChE reactivators and anticholinergics are generally used as antidotes in the case of intoxication with these agents. None of the known AChE reactivators is able to reactivate AChE inhibited by all nerve agents used. In this work, reactivation potency of nine newly developed AChE reactivators with an incorporated xylene ring in their structure was measured in vitro. Cyclosarin was chosen as an appropriate member of the nerve agent family. Reactivation potency of the tested AChE reactivators was compared with the gold standard of AChE reactivators – pralidoxime. Two oximes (K107 and K108) surpassed the reactivation potency of pralidoxime. Moreover, from the obtained results it could be deduced that AChE reactivators with a functional oxime group in position-2 are the most potent AChE reactivators in the case of cyclosarin intoxications.  相似文献   

18.
Acetylcholinesterase (AChE) is a widely spread enzyme playing a very important role in nerve signal transmission. As AChE controls key processes, its inhibition leads to the very fast death of an organism, including humans. However, when this feature is to be used for killing of unwanted organisms (i.e. mosquitoes), one is faced with the question - how much do AChEs differ between species and what are the differences? Here, a theoretical point of view was utilized to identify the structural basis for such differences. The various primary and tertiary alignments show that AChEs are very evolutionary conserved enzymes and this fact could lead to difficulties, for example, in the search for inhibitors specific for a particular species.  相似文献   

19.
Intense research efforts performed during the past decade clearly established the major role of glucuronidation and uridine-diphospho-glucuronosyltransferase (UGT) enzymes for steroid metabolism in humans. However, a clear understanding of the physiological importance of this metabolic process requires in vivo studies. Numerous evidences ascertain that simians are the most appropriate animal models for such studies. Indeed human and monkey have a similar pattern of steroidogenesis, unlike common laboratory mammals such as rat or mouse. Furthermore, human and monkey are unique in having high levels of circulating androsterone glucuronide and androstane-3-diol glucuronide (3-Diol-G). In addition, characterization of eight monkey UGT proteins demonstrated the similarity of their conjugation activity toward steroid hormones. Like human ones, monkey enzymes are expressed in steroid target tissues, where they preferentially glucuronidate androgen and estrogen metabolites. In monkey tissues, immunohistochemical studies demonstrated that UGT2B proteins are expressed in a cell-type specific manner in ovary and kidney, where they control androgens and aldosterone inactivation. These results identify the cynomolgus monkey as an appropriate animal model for the determination of cellular localization of UGT enzymes in steroid target tissues and for the identification of endogenous or exogenous stimuli affecting steroid glucuronidation.  相似文献   

20.
Intense research efforts performed during the past decade clearly established the major role of glucuronidation and uridine-diphospho-glucuronosyltransferase (UGT) enzymes for steroid metabolism in humans. However, a clear understanding of the physiological importance of this metabolic process requires in vivo studies. Numerous evidences ascertain that simians are the most appropriate animal models for such studies. Indeed human and monkey have a similar pattern of steroidogenesis, unlike common laboratory mammals such as rat or mouse. Furthermore, human and monkey are unique in having high levels of circulating androsterone glucuronide and androstane-3α-diol glucuronide (3α-Diol-G). In addition, characterization of eight monkey UGT proteins demonstrated the similarity of their conjugation activity toward steroid hormones. Like human ones, monkey enzymes are expressed in steroid target tissues, where they preferentially glucuronidate androgen and estrogen metabolites. In monkey tissues, immunohistochemical studies demonstrated that UGT2B proteins are expressed in a cell-type specific manner in ovary and kidney, where they control androgens and aldosterone inactivation. These results identify the cynomolgus monkey as an appropriate animal model for the determination of cellular localization of UGT enzymes in steroid target tissues and for the identification of endogenous or exogenous stimuli affecting steroid glucuronidation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号