首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A biotinylated mannotriose (Man3-bio) was dispersively immobilized in the matrix of biotinylated lactose (Gal-Glc-bio) on a streptavidin-covered, 27-MHz quartz crystal microbalance (QCM), and binding kinetics of concanavalin A (Con A) to Man3-bio in the Gal-Glc-bio matrix could be obtained from frequency decreases (mass increases) of the QCM. Association constants (Ka) and binding and dissociation rate constants (kon and koff) could be determined separately as the 1:1 and 1:2 bindings of Con A to Man3-bio on the surface. When Man3-bio was immobilized with content of 1 to 5 mol% in the matrix, the 1:1 binding of Con A to Man3-bio was obtained as Ka = (4 ± 1) × 106 M−1, kon = (4 ± 1) × 104 M−1 s−1, and koff = (12 ± 2) × 10–3 s−1. On the contrary, when Man3-bio was immobilized with content of 20 to 100 mol% in the matrix, the 1:2 binding of Con A to Man3-bio was obtained as Ka = (14 ± 2) × 106 M−1, kon = (14 ± 2) × 104 M−1 s−1, and koff = (7 ± 2) × 10–3 s−1. Thus, Ka for the 1:2 binding was 10 times larger than that for the 1:1 binding, with a three times larger binding rate constant (kon) and a three times smaller dissociation rate constant (koff). This is the first example to obtain separate kinetic parameters for the 1:1 and 1:2 bindings of lectins to carbohydrates on the surface.  相似文献   

2.
A fluorescent sensor, 5, based upon the sugar-aza-crown ether structure with two anthracenetriazolymethyl groups was prepared and its fluoroionophoric properties toward transition metal ions were investigated. In methanol, the sensor exhibits highly selective recognition of Cu2+ and Hg2+ ions among a series of tested metal ions. The association constant for Cu2+ and Hg2+ in methanol was calculated to be 4.0 × 105 M−1 and 1.1 × 105 M−1, respectively. The detection limits for the sensing of Cu2+ and Hg2+ ions were 1.39 × 10−6 M and 1.39 × 10−5 M, respectively.  相似文献   

3.
Galactomannans isolated from legume seed endosperms, including those of commercial interest, have been characterized by multidetection aqueous SEC. Galactomannans derived from seeds of the Faboideae subfamily had substantially higher Mw than those from Caesalpinioideae seeds (Mw,Fab = 2.4–3.1 × 106 g/mol, Mw,Caes. = 0.86–2.1 × 106 g/mol) and within the latter botanical subfamily, an apparent correlation between Mw and the degree of galactose substitution DG was found. The molar mass distributions were unimodal and differed primarily by a scale factor, with distributional widths narrower than a true Flory ‘most-probable distribution’; good fits to Schulz–Zimm model were obtained. Across subfamilies no differences were found in the exponents of [η]–M and RvM relationships (0.61 ± 0.02, 0.54 ± 0.01, respectively), the Flory chain stiffness ratio (C = 20 ± 1 (BSF analysis)), or the persistence length (Lp = 5.5 ± 0.2 nm) obtained from SEC fraction data. However, it was found that prefactors in the [η]–M and RvM relationships as well as the unperturbed parameter KΘ decrease in proportion to DG and therefore chain density. Generalized relationships incorporating galactose-dependent prefactors were therefore developed to model SEC fraction data of native galactomannans ([η]GM = (1800 ± 200) × Mo−1.61 × M0.61±0.02, Rv,GM = 0.63 ± 0.05 × Mo−0.54 × M0.54±0.01) as well as lower-M fractions obtained by ultrasonication ([η]GM = (730 ± 100) × Mo−1.71 × Mw0.71±0.02, Rv,GM = 0.49 ± 0.05 × Mo−0.57 × Mw0.57±0.01, M ≈ 1 × 105-native). As a consequence of this dependence and the observed patterns in molar mass variation, [η] varies within a narrow range for galactomannans as a whole despite substantial Mw differences.  相似文献   

4.
These studies defined the expression patterns of genes involved in fatty acid transport, activation and trafficking using quantitative PCR (qPCR) and established the kinetic constants of fatty acid transport in an effort to define whether vectorial acylation represents a common mechanism in different cell types (3T3-L1 fibroblasts and adipocytes, Caco-2 and HepG2 cells and three endothelial cell lines (b-END3, HAEC, and HMEC)). As expected, fatty acid transport protein (FATP)1 and long-chain acyl CoA synthetase (Acsl)1 were the predominant isoforms expressed in adipocytes consistent with their roles in the transport and activation of exogenous fatty acids destined for storage in the form of triglycerides. In cells involved in fatty acid processing including Caco-2 (intestinal-like) and HepG2 (liver-like), FATP2 was the predominant isoform. The patterns of Acsl expression were distinct between these two cell types with Acsl3 and Acsl5 being predominant in Caco-2 cells and Acsl4 in HepG2 cells. In the endothelial lines, FATP1 and FATP4 were the most highly expressed isoforms; the expression patterns for the different Acsl isoforms were highly variable between the different endothelial cell lines. The transport of the fluorescent long-chain fatty acid C1-BODIPY-C12 in 3T3-L1 fibroblasts and 3T3-L1 adipocytes followed typical Michaelis–Menten kinetics; the apparent efficiency (kcat/KT) of this process increases over 2-fold (2.1 × 106–4.5 × 106 s−1 M−1) upon adipocyte differentiation. The Vmax values for fatty acid transport in Caco-2 and HepG2 cells were essentially the same, yet the efficiency was 55% higher in Caco-2 cells (2.3 × 106 s−1 M−1 versus 1.5 × 106 s−1 M−1). The kinetic parameters for fatty acid transport in three endothelial cell types demonstrated they were the least efficient cell types for this process giving Vmax values that were nearly 4-fold lower than those defined form 3T3-L1 adipocytes, Caco-2 cells and HepG2 cells. The same cells had reduced efficiency for fatty acid transport (ranging from 0.82 × 106 s−1 M−1 to 1.35 × 106 s−1 M−1).  相似文献   

5.
Laccase-catalyzed oxidation of phenolic compounds in organic media   总被引:1,自引:0,他引:1  
Rhus vernificera laccase-catalyzed oxidation of phenolic compounds, i.e., (+)-catechin, (−)-epicatechin and catechol, was carried out in selected organic solvents to search for the favorable reaction medium. The investigation on reaction parameters showed that optimal laccase activity was obtained in hexane at 30 °C, pH 7.75 for the oxidation of (+)-catechin as well as for (−)-epicatechin, and in toluene at 35 °C, pH 7.25 for the oxidation of catechol. Ea and Q10 values of the biocatalysis in the reaction media of the larger log p solvents like isooctane and hexane were relatively higher than those in the reaction media of lower log p solvents like toluene and dichloromethane. Maximum laccase activity in the organic media was found with 6.5% of buffer as co-solvent. A wider range of 0–28 μg protein/ml in hexane than that of 0–16.7 μg protein/ml in aqueous medium was observed for the linear increasing conversion of (+)-catechin. The kinetic studies revealed that in the presence of isooctane, hexane, toluene and dichloromethane, the Km values were 0.77, 0.97, 0.53 and 2.9 mmol/L for the substrate of (+)-catechin; 0.43, 0.34, 0.14 and 3.4 mmol/L for (−)-epicatechin; 2.9, 1.8, 0.61 and 1.1 mmol/L for catechol, respectively, while the corresponding Vmax values were 2.1 × 10−2, 2.3 × 10−2, 0.65 × 10−2 and 0.71 × 10−2 δA/μg protein min); 1.8 × 10−2, 0.88 × 10−2, 0.19 × 10−2 and 1.0 × 10−2 δA/μg protein min); 0.48 × 10−2, 0.59 × 10−2, 0.67 × 10−2 and 0.54 × 10−2 δA/μg protein min), respectively. FT-IR indicated the formation of probable dimer from (+)-catechin in organic solvent. These results suggest that this laccase has higher catalytic oxidation capacity of phenolic compounds in suitable organic media and favorite oligomers could be obtained.  相似文献   

6.
A sensitive, selective, and rapid enzymatic method is proposed for the quantification of hydrogen peroxide (H2O2) using 3-methyl-2-benzothiazolinonehydrazone hydrochloride (MBTH) and 10,11-dihydro-5H-benz(b,f)azepine (DBZ) as chromogenic cosubstrates catalyzed by horseradish peroxidase (HRP) enzyme. MBTH traps free radical released during oxidation of H2O2 by HRP and gets oxidized to electrophilic cation, which couples with DBZ to give an intense blue-colored product with maximum absorbance at 620 nm. The linear response for H2O2 is found between 5 × 10−6 and 45 × 10−6 mol L−1 at pH 4.0 and a temperature of 25 °C. Catalytic efficiency and catalytic power of the commercial peroxidase were found to be 0.415 × 106 M−1 min−1 and 9.81 × 10−4 min−1, respectively. The catalytic constant (kcat) and specificity constant (kcat/Km) at saturated concentration of the cosubstrates were 163.2 min−1 and 4.156 × 106 L mol−1 min−1, respectively. This method can be incorporated into biochemical analysis where H2O2 undergoes catalytic oxidation by oxidase. Its applicability in the biological samples was tested for glucose quantification in human serum.  相似文献   

7.
Renoguanylin (REN) is a recently described member of the guanylin family, which was first isolated from eels and is expressed in intestinal and specially kidney tissues. In the present work we evaluate the effects of REN on the mechanisms of hydrogen transport in rat renal tubules by the stationary microperfusion method. We evaluated the effect of 1 μM and 10 μM of renoguanylin (REN) on the reabsorption of bicarbonate in proximal and distal segments and found that there was a significant reduction in bicarbonate reabsorption. In proximal segments, REN promoted a significant effect at both 1 and 10 μM concentrations. Comparing control and REN concentration of 1 μM, JHCO3, nmol cm− 2 s− 1 − 1,76 ± 0,11control × 1,29 ± 0,08REN 10 μM; P < 0.05, was obtained. In distal segments the effect of both concentrations of REN was also effective, being significant e.g. at a concentration of 1 μM (JHCO3, nmol cm− 2 s− 1 − 0.80 ± 0.07control × 0.60 ± 0.06REN 1 μM; P < 0.05), although at a lower level than in the proximal tubule. Our results suggest that the action of REN on hydrogen transport involves the inhibition of Na+/H+exchanger and H+-ATPase in the luminal membrane of the perfused tubules by a PKG dependent pathway.  相似文献   

8.
In this study, the hydraulic conductivity (Lp), Me2SO permeability ( Me2SO), and the reflection coefficients (ς) and their activation energies were determined for Metaphase II (MII) mouse oocytes by exposing them to 1.5 M Me2SO at temperatures of 30, 20, 10, 3, 0, and −3°C. These data were then used to calculate the intracellular concentration of Me2SO at given temperatures. Individual oocytes were immobilized using a holding pipette in 5 μl of an isosmotic PBS solution and perfused with precooled or prewarmed 1.5 M Me2SO solutions. Oocyte images were video recorded. The cell volume changes were calculated from the measurement of the diameter of the oocytes, assuming a spherical shape. The initial volume of the oocytes in the isoosmotic solution was considered 100%, and relative changes in the volume of the oocytes after exposure to the Me2SO were plotted against time. Mean (means ± SEM) Lpvalues in the presence of Me2SO ( Me2SOp) at 30, 20, 10, 3, 0, and −3°C were determined to be 1.07 ± 0.03, 0.40 ± 0.02, 0.18 ± 0.01, 7.60 × 10−2± 0.60 × 10−2, 5.29 × 10−2± 0.40 × 10−2, and 3.69 × 10−2± 0.30 × 10−2μm/min/atm, respectively. The Me2SOvalues were 3.69 × 10−3± 0.3 × 10−3, 1.07 × 10−3± 0.1 × 10−3, 2.75 × 10−4± 0.15 × 10−4, 7.83 × 10−5± 0.50 × 10−5, 5.24 × 10−5± 0.50 × 10−5, and 3.69 × 10−5± 0.40 × 10−5cm/min, respectively. The ς values were 0.70 ± 0.03, 0.77 ± 0.04, 0.81 ± 0.06, 0.91 ± 0.05, 0.97 ± 0.03, and 1 ± 0.04, respectively. The estimated activation energies (Ea) for Me2SOp, Me2SO, and ς were 16.39, 23.24, and −1.75 Kcal/mol, respectively. These data may provide the fundamental basis for the development of more optimal cryopreservation protocols for MII mouse oocytes.  相似文献   

9.
In this study, we show that boronates, a class of synthetic organic compounds, react rapidly and stoichiometrically with peroxynitrite (ONOO) to form stable hydroxy derivatives as major products. Using a stopped-flow kinetic technique, we measured the second-order rate constants for the reaction with ONOO, hypochlorous acid (HOCl), and hydrogen peroxide (H2O2) and found that ONOO reacts with 4-acetylphenylboronic acid nearly a million times (k = 1.6 × 106 M− 1 s− 1) faster than does H2O2 (k = 2.2 M− 1 s− 1) and over 200 times faster than does HOCl (k = 6.2 × 103 M− 1 s− 1). Nitric oxide and superoxide together, but not alone, oxidized boronates to the same phenolic products. Similar reaction profiles were obtained with other boronates. Results from this study may be helpful in developing a novel class of fluorescent probes for the detection and imaging of ONOO formed in cellular and cell-free systems.  相似文献   

10.
We studied the process of conversion of microcrystalline-cellulose into fermentable glucose in the formic acid reaction system using cross polarization/magic angle spinning 13C-nuclear magnetic resonance, X-ray diffraction and Fourier transform infrared spectroscopy. The results indicated that formic acid as an active agent was able to effectively penetrate into the interior space of the cellulose molecules, thus collapsing the rigid crystalline structure and allowing hydrolysis to occur easily in the amorphous zone as well as in the crystalline zone. The microcrystalline-cellulose was hydrolyzed using formic acid and 4% hydrochloric acid under mild conditions. The effects of hydrochloric acid concentration, the ratio of solid to liquid, temperature (55–75 °C) and retention time (0–9 h), and the concentration of glucose were analyzed. The hydrolysis velocities of microcrystalline-cellulose were 6.14 × 10− 3 h− 1 at 55 °C, 2.94 × 10− 2 h− 1 at 65 °C, and 6.84 × 10− 2 h− 1 at 75 °C. The degradation velocities of glucose were 0.01 h− 1 at 55 °C, 0.14 h− 1 at 65 °C, 0.34 h− 1 at 75 °C. The activation energy of microcrystalline-cellulose hydrolysis was 105.61 kJ/mol, and the activation energy of glucose degradation was 131.37 kJ/mol.  相似文献   

11.
An unreported graft copolymer of N,N-dimethylacrylamide (DMA) with chitosan has been synthesized under nitrogen atmosphere using peroxymonosulphate/mandelic acid redox pair. The effect of reaction conditions on grafting parameters i.e. grafting ratio, efficiency, conversion, add on and homopolymer has been studied. Experimental results show that maximum grafting has been obtained at 1.0 g dm−3 concentration of chitosan, 30 × 10−2 mol dm−3 concentration of N,N-dimethylacrylamide and 7.0 × 10−3 mol dm−3 concentration of hydrogen ion. It has also been observed that grafting ratio, add on, conversion and efficiency increase upto 3.2 × 10−3 mol dm−3 of mandelic acid, 12.0 × 10−3 mol dm−3 of potassium peroxymonosulphate, 150 min of time and 40 °C of temperature. Grafted polymer has been characterized by FTIR spectroscopy and thermogravimetric analysis. Water swelling capacity of chitosan-g-N,N-dimethylacrylamide has been determined. It has been observed that the graft copolymer is thermally more stable than parent backbone.  相似文献   

12.
Quantitative detection of the oil-degrading bacterium Acinetobacter sp. strain MUB1 was performed using the SoilMaster DNA Extraction Kit (Epicentre, Madison, Wisconsin) and hybridization probe based real-time PCR. The detection target was the alkane hydroxylase gene (alkM). Standard curve construction showed a linear relation between log values of cell concentrations and real-time PCR threshold cycles over five orders of magnitude between 5.4±3.0×106 and 5.4±3.0×102 CFU ml−1 cell suspension. The detection limit was about 540 CFU ml−1, which was ten times more sensitive than conventional PCR. The quantification of Acinetobacter sp. strain MUB1 cells in soil samples resulted in 46.67%, 82.41%, and 87.59% DNA recovery with a detection limit of 5.4±3.0×104 CFU g−1 dry soil. In this study, a method was developed for the specific, sensitive, and rapid quantification of the Acinetobacter sp. strain MUB1 in soil samples.  相似文献   

13.
Cladoptosis, the abscission of twigs, is the main mechanism of changes in crown structure in senescing pedunculate oak (Quercus robur L.). We tested the hypotheses that abscission zones in nodes of old pedunculate oak trees reduce leaf-specific hydraulic conductance of shoots and thereby limit the stomatal conductance and assimilation.Hydraulic conductance and leaf-specific hydraulic conductance, measured with a high pressure flowmeter in 0.5–1.5 m long shoots, were significantly lower in shoots of low vigour compared to vigorous growing shoots in a 165-years-old stand in the southeast of Germany. Two types of bottlenecks to water transport could be identified in shoots of old oak trees, namely nodes and abscission zones. In young twigs, vessel diameter and vessel density in nodes with abscission zones were significantly reduced compared with internodes. In nodes without abscission zones, vessel density was significantly reduced. The reduction of hydraulic conductance was especially severe in the smallest and youngest shoots with diameters less than 2 mm. Internodes of 1–5 mm sapwood diameter had an average hydraulic conductance of 7.13×10−6±0.2×10−6 kg s−1 m−1 MPa−1, compared to 4.54×10−6±0.3×10−6 kg s−1 m−1 MPa−1 in those with nodes.Maximum stomatal conductance and maximum net assimilation rate increased significantly with hydraulic conductance and leaf-specific hydraulic conductance. Maximum rate of net photosynthesis Amax of the most vigorous shoots (VC0) (7.34±0.55 μmol m−2 s−1) was significantly higher (P<0.001) than in shoots of other vigour classes (5.97±0.28 μmol m−2 s−1). Our data support the hypothesis that the changes in shoot and consequently crown architecture that are observed in ageing and declining trees can limit photosynthesis by reducing shoot hydraulic conductance. Abscission zones increase the hydraulic disadvantage of less vigorous compared to vigorously growing twigs. Cladoptosis might serve as a mechanism of selection between twigs of different efficiency.  相似文献   

14.
The present paper reports the graft copolymerization of N-vinylformamide onto sodium carboxymethylcellulose by free radical polymerization using potassium peroxymonosulphate/thiourea redox system in an inert atmosphere. The reaction conditions for maximum grafting have been optimized by varying the reaction variables, including the concentration of N-vinylformamide (12.0 × 10−2–28.0 × 10−2 mol dm−3), potassium peroxymonosulphate (4.0 × 10−3–12.0 × 10−3 mol dm−3), thiourea (1.2 × 10−3–4.4 × 10−3 mol dm−3), sulphuric acid (2.0 × 10−3–10.0 × 10−3 mol dm−3), sodium carboxymethylcellulose (0.2–1.8 g dm−3) along with time duration (60–180 min) and temperature (25–45° C). Water swelling capacity, metal ion sorption and flocculation studies of synthesized graft copolymer have been performed with respect to the parent polymer. The graft copolymer has been characterized by FTIR spectroscopy and thermogravimetric analysis.  相似文献   

15.
A biosensor based on the ionic liquid 1-butyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide (BMI·Tf2N) and a novel source of peroxidase (tissue from the pine nuts of Araucaria angustifolia) was constructed. This enzyme was immobilized on chitosan crosslinked with citrate and the biosensor used for the determination of rosmarinic acid by square-wave voltammetry. The peroxidase in the presence of hydrogen peroxide catalyzes the oxidation of rosmarinic acid to quinone and the electrochemical reduction of the product was obtained at a potential of +0.15 V vs. Ag/AgCl. Different analytical parameters influencing the biosensor response, that is, peroxidase units, pH, hydrogen peroxide concentration and parameters for the square-wave voltammetry (frequency, pulse amplitude and scan increment), were investigated. The best performance was observed for the biosensor under the following conditions: 1000 units mL−1 peroxidase, pH 7.0 and 8.3 × 10−4 mol L−1 hydrogen peroxide with a frequency of 30 Hz, pulse amplitude of 100 mV and scan increment of 5.0 mV. The biosensor gave a linear response to rosmarinic acid over the concentration range of 9.07 × 10−7 to 4.46 × 10−6 mol L−1 with a detection limit of 7.25 × 10−8 mol L−1. The recovery of rosmarinic acid in plant extracts ranged from 97.0% to 109.6% and the determination of this substance in these samples using the biosensor compared favorably with that using the capillary electrophoresis method.  相似文献   

16.
Human α1-antitrypsin (AAT) was produced in the recombinant yeast Saccharomyces cerevisiae ATCC 20699 grown in batch and fed-batch culture. The final biomass concentration and antitrypsin concentration attained were 55 g·L−1 and 1.23 g·L−1, respectively, in the fed-batch. The maximum productivities of biomass and antitrypsin were 1.6 and > 0.04 g L−1h−1, respectively, or substantially greater than the highest productivity values reported in the past. For recovering the antitrypsin, the cell slurry was concentrated 4-fold (231 g·L−1 biomass, 122 min of processing) by cross-flow microfiltration and the cells were disrupted by bead milling (3 passes of 3 min total retention time). The cell homogenate was treated with aluminum chloride or PBS (pH 7) to aid separation of the cell debris by flocculation and sedimentation. The clarified cell homogenate was subjected to ammonium sulfate fractionation to precipitate the recombinant antitrypsin. The AAT precipitated at 45–75% saturation of ammonium sulfate, depending on the age of the homogenate. The crude AAT in the homogenate degraded at room temperature (25°C), with a zero order deactivation rate of 1.815 × 10−3 ± 3.43 × 10−4 g AAT L−1h−1.  相似文献   

17.
Evaluation of kinetic parameters of methane oxidation under various conditions, on the basis of an analysis of the literature and the authors’ own laboratory research, is presented. Variation in methanotrophic activity in the profile of a simulated landfill cover was observed. The greatest activity was found at a depth of 60 cm. A low affinity (1/KM) and high potential activity (Vmax) were observed. Vmax values ranged from 0.11 × 10−3 to 0.86 × 10−3 units. The values of KM ranged from 0.6 to 2.9% of CH4 (v/v).  相似文献   

18.
The rheological properties of solutions of gellan were examined at high concentrations where there is entanglement coupling between gellan chains. An ionic liquid 1-butyl-3-methylimidazolium chloride (BmimCl) was used as a solvent. Concentrated solutions of gellan in BmimCl were obtained by using a hot-molding technique. The concentration of gellan was varied from 1.9 × 102 to 4.8 × 102 kg m−3. The measurement temperature ranged from 50 to 100 °C. The master curve of the angular frequency dispersion of the storage modulus for the gellan solutions showed a rubbery plateau at high angular frequency. The molecular weight between entanglements (Me) for gellan was obtained from the plateau modulus. From the concentration dependence curve of Me, Me for gellan in the molten state was determined to be 2.3 × 103.  相似文献   

19.
Fluorescence redistribution after photobleaching (FRAP) was utilized to select a “fast” lateral mobility clone from Kirsten murine sarcoma virus-transformed 3T3 (KMSV-3T3) fibroblasts. The clone, E7G1, demonstrated a lateral mobility for membrane wheat germ agglutinin (WGA) and succinylated concanavalin A (sCon A) receptors of (2.1 ± 1.6) × 10−9 cm2/s and (2.7 ± 2.3) × 10−9 cm2/s, respectively. These mobilities were approximately equivalent to phospholipid mobility (2.8 ± 1.9 × 10−9 cm2/s). The fast mobility phenotype is observed when the cells are unattached and spherical. Upon attachment, the mobility decreases to (0.19 ± 0.19) × 10−10 cm2/s. In addition, the ability of Con A to initiate global modulation was completely lost in spread as well as spherical cells in the E7G1 fast mobility clone. A comparison of F-actin patterns between untransformed Balb/c fibroblasts and the E7G1-transformed line suggests a correlation between well-developed stress fiber assemblies and the ability to induce global modulation. The fast mobility clone was stable for at least 23 passages.  相似文献   

20.
Dispersed acini from dog pancreas were used to examine the ability of dopamine to increase cyclic AMP cellular content and the binding of [3H]dopamine. Cyclic AMP accumulation caused by dopamine was detected at 1·10−8 M and was half-maximal at 7.9±3.4·10−7M. The increase at 1·10−5 M, (7.5-fold) was equal to the half-maximal increase caused by secretin at 1·10−9 M. Haloperidol, a dopaminergic receptor antagonist inhibited cyclic AMP accumulation caused by dopamine. The IC50 value for haloperidol, calculated from the inhibition of cyclic AMP increase caused by 1·10−5 M dopamine was 2.3±0.9·10−6M. Haloperidol did not alter basal or secretin-stimulated cyclic AMP content. [3H]Dopamine binding was studied on the same batch of cells as cyclic AMP accumulation. At 37°C, it was rapid, reversible, saturable and stereospecific. The Kd value for high affinity binding sites was 0.43±0.1·10−7M and 4.7±1.6·10−7M for low affinity binding sites. The concentration of drugs necessary to inhibit specific binding of dopamine by 50% was 1.2±0.4·10/t-7M noradrenaline, 2·10/t-7 M epinine, 4.1±1.8·10/t-6M fluphenazine, 8.0±1.6·10/t-6M haloperidol, 4.2±1.2·10−6Mcis-flupenthixol, 2.7±0.4·10−5Mtrans-flupenthixol, >1·10−5M apomorphine, sulpiride, naloxone and isoproterenol.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号