首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 718 毫秒
1.
BACKGROUND: Efficient delivery and expression of plasmids (pDNA) is a major concern in gene therapy and DNA vaccination using non-viral vectors. Besides the use of adjuvants, the pDNA vector itself can be designed to maximize survival in nuclease-rich environments. Homopurine-rich tracts in polyadenylation sequences have been previously shown to be especially important in pDNA resistance. METHODOLOGY: The effect of modifications in the poly A sequence of a model pDNA vector (pVAX1GFP) on nuclease resistance and transgene expression was investigated. Four poly A sequences were studied: bovine growth hormone (BGH), mutant BGH, SV40 and a synthetic poly A. Plasmid resistance (half-life) was assessed through in vitro incubations with mammalian nucleases. The impact in transgene expression was studied by quantifying pDNA, mRNA, and GFP expression in CHO, hybridoma and HeLa cells. RESULTS AND CONCLUSIONS: In vitro and cell culture studies indicate that plasmids containing the SV40 and the synthetic poly A sequences present significant improvements in nuclease resistance (up to two-fold increase in half-life). However, RT-PCR analysis demonstrated that significant reduction in mRNA steady-state levels were responsible for a decrease in transgene expression and detected transfection level of CHO and hybridoma cells when using the more resistant plasmids. Interestingly, transfection of HeLa cells demonstrated that both poly A efficiency and plasmid resistance interfere significantly in transgene expression. The results strongly suggest that the choice of the poly A is important, not only for mRNA maturation/stability, but also for pDNA resistance, and should thus be taken into consideration in the design and evaluation of pDNA vectors.  相似文献   

2.
Abstract

Cationic liposomes are non-viral gene transfer vectors for in vitro and in vivo experiments. In the present studies, we investigated whether a disulfide linkage in a cationic lipid was reducible by cell lysate resulting in the release of plasmid DNA and enhanced gene transfection. We also investigated if the differences in transgene production were from differences in total amount of cellular associated plasmid DNA. We systematically compared the gene transfection of disulfide bond containing-cationic lipid, 1', 2'-dioleoyl-sn-glycero-3'-succinyl-2-hydroxyethyl disulfide ornithine conjugate (DOGSDSO), its non-disulfide-containing analog, 1', 2'-dioleyl-sn-glycero-3'-succinyl-1, 6-hexanediol ornithine conjugate (DOGSHDO), 1, 2-dioleoyl-3-trimethylammonium-propane (DOTAP). Two transgene reporter systems (i.e., luciferase and green fluorescent protein (GFP)) were used to address transgene transgene expression and transgene efficiency. Experiments with the luciferase expression plasmid resulted in transgene activity up to 11 times greater transgene production for the disulfide containing lipid in at least two different cell lines, COS 1 and CHO cells. When transgene expression was determined by GFP activity, DOGSDSO liposomes were four times greater than the non-disulfide lipid or positive control (DOTAP) liposomes. By quantifying nucleic acid uptake by flow cytometry it was also demonstrated that increase expression was not solely from an increase in cellular plasmid DNA accumulation. These results demonstrate that cationic lipids containing a disulfide linkage are a promising method for gene transfer.  相似文献   

3.
BACKGROUND: Syngeneic vascular cells are interesting tools for indirect gene therapy in the cardiovascular system. This study aims to optimize transfection conditions of primary cultures of vascular smooth muscle cells (VSMCs) using different non-viral vectors and zinc as an adjuvant and to implant these transfected cells in vivo. METHODS: Non-liposomal cationic vectors (FuGene 6), polyethylenimines (ExGen 500), and histidylated polylysine (HPL) were used as non-viral vectors in vitro with secreted alkaline phosphatase (SEAP) as reporter gene. Transfection efficiency was compared in cultured rat, rabbit and human VSMCs and fibroblasts. Zinc chloride (ZnCl2) was added to optimize transfection of rat VSMCs in vitro which were then seeded in vivo. RESULTS: Much higher SEAP levels were obtained in rabbit cells with FuGene 6 (p <0.0001) at day 2 than in equivalent rat and human cells. Rat VSMCs transfected in vitro with FuGene 6 and ExGen 500 expressed higher SEAP levels than with HPL. In rat VSMCs, SEAP secretion was more than doubled by addition of 250 microM ZnCl2 (p <0.0001) for all vectors. Seeding of syngeneic VSMCs transfected under optimized conditions (FuGene 6/pcDNA3-SEAP +250 microM ZnCl2) into healthy Lewis rats using various routes or into post-infarct myocardial scar resulted in a peak of SEAP expression at day 2 and detectable activity in the plasma for at least 8 days. CONCLUSIONS: FuGene 6 is an efficient non-viral transfection reagent for gene transfer in somatic smooth muscle cells in vitro and ZnCl2 enhances its efficiency. This increased expression of the transgene product is maintained after seeding in vivo.  相似文献   

4.
The persistence of transgene expression has become a hallmark for adenovirus vector evaluation in vivo. Although not all therapeutic benefit in gene therapy is reliant on long-term transgene expression, it is assumed that the treatment of chronic diseases will require significant persistence of expression. To understand the mechanisms involved in transgene persistence, a number of adenovirus vectors were evaluated in vivo in different strains of mice. Interestingly, the rate of vector genome clearance was not altered by the complete deletion of early region 4 (E4) in our vectors. The GV11 (E1- E4-) vector genome cleared with a similar kinetic profile as the GV10 (E1-) vector genome in immunocompetent and immunocompromised mice. These results suggest that the majority of adenovirus vector genomes are eliminated from transduced tissue via a mechanism(s) independent of T-cell, B-cell, and NK cell immune mechanisms. While the levels of persistence of transgene expression in liver or lung transduced with GV10 and GV11 vectors expressing beta-galactosidase, cystic fibrosis transmembrane conductance regulator, or secretory alkaline phosphatase were similar in immunocompetent mice, a marked difference was observed in immunocompromised animals. Levels of transgene expression initially from both GV10 and GV11 vectors were the same. However, GV11 transgene expression correlated with loss of vector genome, while GV10 transgene expression persisted at a high level. Coadministration and readministration of GV10 vectors showed that E4 provided in trans could activate transgene expression from the GV11 vector genome. While transgene expression activity per genome from the GV10 vector is clearly activated, expression from a cytomegalovirus promoter expression cassette in a GV11 vector appeared to be further inactivated as a function of time. Understanding the molecular mechanisms underlying these expression effects will be important for developing persistent adenovirus vectors for chronic applications.  相似文献   

5.
The inefficiency of in vivo gene transfer using currently available vectors reflects a major hurdle in cancer gene therapy. Both viral and non-viral approaches that improve gene transfer efficiency have been described, but suffer from a number of limitations. Herein, a fiber-modified adenovirus, carrying the small peptide ligand on the capsid, was tested for the delivery of a transgene to cancer cells. The fiber-modified adenovirus was able to mediate the entry and expression of a beta-galactosidase into cancer cells with increased efficiency compared to the unmodified adenovirus. Particularly, the gene transfer efficiency was improved up to 5 times in OVCAR3 cells, an ovarian cancer cell line. Such transduction systems hold promise for delivering genes to transferrin receptor overexpressing cancer cells, and could be used for future cancer gene therapy.  相似文献   

6.
Synthetic vectors were evaluated for their ability to mediate efficient mRNA transfection. Initial results indicated that lipoplexes, but not polyplexes based on polyethylenimine (PEI, 25 and 22 kDa), poly(L-lysine) (PLL, 54 kDa) or dendrimers, mediated efficient translation of mRNA in B16-F10 cells. Significant mRNA transfection was achieved by lipoplex delivery in quiescent (passage 0) human umbilical vein endothelial cells (HUVEC), and by passage 4, 10.7% of HUVEC were transfected compared to 0.84% with DNA. Lack of expression with PEI 25 kDa/mRNA or PLL 54 kDa/mRNA in a cell-free translation assay and following cytoplasmic injection into Rat1 cells indicated that these polyplexes were too stable to release mRNA. In contrast, polyplexes formed using smaller PEI 2 kDa and PLL 3.4 kDa gave 5-fold greater expression in B16-F10 cells compared to DOTAP, but were dependent on chloroquine for transfection activity. Endosomolytic activity was incorporated by conjugating PEI 2 kDa to melittin and resulting PEI 2 kDa-melittin/mRNA polyplexes mediated high transfection levels in HeLa cells (31.1 +/- 4.1%) and HUVEC (58.5 +/- 2.9%) in the absence of chloroquine, that was potentiated to 52.2 +/- 2.7 and 71.6 +/- 1.7%, respectively, in the presence of chloroquine. These results demonstrate that mRNA polyplexes based on peptide-modified low molecular weight polycations can possess versatile properties including endosomolysis that should enable efficient non-viral mRNA transfection of quiescent and post-mitotic cells.  相似文献   

7.
Toxicity and immunity associated with adenovirus backbone gene expression is an important hurdle to overcome for successful gene therapy. Recent efforts to improve adenovirus vectors for in vivo use have focused on the sequential deletion of essential early genes. Adenovirus vectors have been constructed with the E1 gene deleted and with this deletion in combination with an E2a, E2b, or E4 deletion. We report here a novel vector (Av4orf3nBg) lacking E1, E2a, and all of E4 except open reading frame 3 (ORF3) and expressing a beta-galactosidase reporter gene. This vector was generated by transfection of a plasmid carrying the full-length vector sequence into A30.S8 cells that express E1 and E2a but not E4. Production was subsequently performed in an E1-, E2a-, and E4-complementing cell line. We demonstrated with C57BL/6 mice that the Av4orf3nBg vector effected gene transfer with an efficiency comparable to that of the Av3nBg (wild-type E4) vector but that the former exhibited a higher level of beta-galactosidase expression. This observation suggests that E4 ORF3 alone is able to enhance RNA levels from the beta-galactosidase gene when the Rous sarcoma virus promoter is used to drive transgene expression in the mouse liver. In addition, we observed less liver toxicity in mice injected with the Av4orf3nBg vector than those injected with the Av3nBg vector at a comparable DNA copy number per cell. This study suggests that the additional deletion of E4 in an E1 and E2a deletion background may be beneficial in decreasing immunogenicity and improving safety and toxicity profiles, as well as increasing transgene capacity and expression for liver-directed gene therapy.  相似文献   

8.
BACKGROUND: Synthetic vectors such as polymers have the potential to reduce the safety problems associated with viral vectors; however, their low transfection efficiency limits their clinical utility. To study the critical steps involved in an efficient transgene expression, there is a need for creative approaches that allow a systematic correlation between gene carrier structure and properties necessary for successful gene transfer. Using recombinant techniques a prototype vector comprised of tandem repeating units fused to a targeting moiety was biosynthesized to mediate gene transfer in mammalian cell lines. The carrier was designed to have the structure of (KHKHKHKHKK)6-FGF2 where lysine (K) residues would allow complexation with plasmid DNA, basic fibroblast growth factor (FGF2) to target cells over-expressing FGF2 receptors (FGFR), and histidine (H) residues to facilitate escape from the endosomal compartments. METHODS: The gene carrier was biosynthesized in E. coli, purified using a Ni-NTA column, characterized, complexed with pDNA, and the complexes were used to transfect NIH 3T3, T-47D and COS-1 mammalian cell types known to express FGFR. RESULTS: Results demonstrate the successful cloning and expression of the gene carrier with over 95% purity. The molecular weight of the gene carrier was determined by MALDI-TOF to be 27 402. Amino acid content analysis and Western blot confirmed the expression of the gene carrier in E. coli. The vector was able to condense pDNA, induce cell proliferation in NIH 3T3 fibroblasts, and mediate transgene expression in NIH 3T3, T-47D and COS-1 mammalian cell types. CONCLUSION: Genetic engineering techniques show promise for systematic investigation of structure-activity relationships of non-viral gene delivery vectors.  相似文献   

9.
BACKGROUND: Although recombinant adenovirus vectors are attractive for use in gene expression studies and therapeutic applications, the construction of these vectors remains relatively time-consuming. We report here a strategy that simplifies the production of adenoviruses using the Cre-loxP system. MATERIALS AND METHODS: Full-length recombinant adenovirus DNA was generated in vitro by Cre-mediated recombination between loxP sites in a linearized shuttle plasmid containing a transgene and adenovirus genomic DNA. RESULTS: After transfection of Cre-treated DNA into 293 cells, replication-defective viral vectors were rapidly obtained without detectable wild-type virus. CONCLUSION: This system facilitates the development of recombinant adenoviral vectors for basic and clinical research.  相似文献   

10.
Increasing the efficiency of gene transfer using non-viral vectors, which have the potential to be safe and economical, would improve upon available options for gene therapy. We previously reported that the third EGF motif of the extracellular matrix protein Del1 (E3) increases the transfection efficiency of non-viral vector methods. Here, we asked if E3 could increase the in vivo transfection efficiency of a polyplex-based approach. To test this, cDNA encoding a heat-stable alkaline phosphatase (AP) was first injected intravenously into mice along with recombinant E3. After 24 h, exogenous AP activity in serum was measured. We found that the introduction of E3 resulted in 50 % more AP activity as compared to the control. We next tested transfection into a tumour explant of SCCKN cells, an oral carcinoma-derived cell line. To do this, a cDNA encoding yellow fluorescent protein was locally injected into a tumour explant, followed by local injection of recombinant E3. Use of E3 increased the number of transfected cells to 2.5 times that of the control. Histochemical staining revealed that E3-induced apoptosis in a tumour explant. The data suggest that E3 might be a useful tool for cancer gene therapy using non-viral vectors.  相似文献   

11.
B Fang  P Koch    J A Roth 《Journal of virology》1997,71(6):4798-4803
The adenovirus E4 promoter was replaced by a synthetic promoter composed of a minimal TATA box and five consensus 17-mer yeast GAL4-binding-site elements. The viral vectors, which also contained human factor IX (hFIX) cDNA driven by Rous sarcoma virus long terminal repeat in the E1 region, were then constructed and expanded in 293 cells permanently expressing GAL4/VP16 fusion protein. Viral replication and expression of adenovirus E4 genes and late genes (hexon and fiber) were evaluated in vitro in the human lung carcinoma cell line H1299. Viral replication and viral gene expression were dramatically reduced in the cells transduced by vectors with a replaced E4 promoter compared to the levels in the cells transduced by vectors with the wild-type E4 promoter. The levels of transgene (hFIX) expression remained similar between vectors with or without E4 promoter replacement. These results indicate that diminution of viral gene expression and viral replication is achievable by promoter replacement.  相似文献   

12.
The improvements to adenovirus necessary for an optimal gene transfer vector include the removal of virus gene expression in transduced cells, increased transgene capacity, complete replication incompetence, and elimination of replication-competent virus that can be produced during the growth of first-generation adenovirus vectors. To achieve these aims, we have developed a vector-cell line system for complete functional complementation of both adenovirus early region 1 (E1) and E4. A library of cell lines that efficiently complement both E1 and E4 was constructed by transforming 293 cells with an inducible E4-ORF6 expression cassette. These 293-ORF6 cell lines were used to construct and propagate viruses with E1 and E4 deleted. While the construction and propagation of AdRSV beta gal.11 (an E1-/E4- vector engineered to contain a deletion of the entire E4 coding region) were possible in 293-ORF6 cells, the yield of purified virus was depressed approximately 30-fold compared with that of E1- vectors. The debilitation in AdRSV beta gal.11 vector growth was found to correlate with reduced fiber protein and mRNA accumulation. AdCFTR.11A, a modified E1-/E4- vector with a spacer sequence placed between late region 5 and the right inverted terminal repeat, efficiently expressed fiber and grew with the same kinetic profile and virus yield as did E1- vectors. Moreover, purified AdCFTR.11A yields were equivalent to E1- vector levels. Since no overlapping sequences exist in the E4 regions of E1-/E4- vectors and 293-ORF6 cell lines, replication-competent virus cannot be generated by homologous recombination. In addition, these second-generation E1-/E4- vectors have increased transgene capacity and have been rendered virus replication incompetent outside of the new complementing cell lines.  相似文献   

13.
14.
15.
H Zhou  W O'Neal  N Morral    A L Beaudet 《Journal of virology》1996,70(10):7030-7038
Although adenovirus vectors offer many advantages, it would be desirable to develop vectors with improved expression and decreased toxicity. Toward this objective, an adenovirus vector system with deletion of both the El and E2a regions was developed. A 5.9-kb fragment of the adenovirus type 5 (Ad5) genome containing the E2a gene and its early and late promoters was transfected into 293 cells. A complementing cell line, designated 293-C2, expressed the E2a mRNA and protein and was found to complement the defect in Ad5 viruses with temperature-sensitive or deletion mutations in E2a. A deletion of 1.3 kb removing codons 40 to 471 of the 529 amino acids of E2a was introduced into plasmids for preparation of viruses and vectors. An Ad5 virus with disruption of the El gene and deletion of E2a grew on 293-C2 cells but not on 293 cells. Vectors with E1 and E2a deleted expressing Escherichia coli beta-galactosidase or human alpha1-antitrypsin were prepared and expressed the reporter genes after intravenous injection into mice. This vector system retains sequences in common between the complementing cell line and the vectors, including 3.4 kb upstream and 1.1 kb downstream of the deletion. These vectors have potential advantages of increased capacity for insertion of transgene sequences, elimination of expression of E2a, and possibly reduction in expression of other viral proteins. Although the titers of the vectors with deleted are about 10- to 30-fold below those of vectors with E2a wild-type regions, the former vectors are suitable for detailed studies with animals to evaluate the effects on host immune responses, on duration of expression, and on safety.  相似文献   

16.
Brain capillary endothelial cells (BCECs) have been considered as one of the primary targets for cerebral gene therapy. However, the cells, well-known for their poor function of endocytosis, are difficult to be transfected by general non-viral vectors. The aim of this study was to enhance the efficiency of transfection and expression in BCECs of DNA/polymer nanoparticles with the modification of membrane-penetrating peptide, Antennapedia peptide (Antp) polyethylenimine (PEI) and polyamidoamine (PAMAM) were chosen to prepare Antp-modified DNA-loaded nanoparticles with a complex coacervation technique. After a 20-min transfection, the efficiency, in terms of transfection and expression, of DNA/PEI NP or DNA/PAMAM NP was enhanced significantly with the modification of Antp. After a 3-h transfection of DNA/Antp/PEI NP, there was no difference in cellular uptake but an enhancement in gene expression, compared to DNA/PEI NP alone. However, both the transfection and expression efficiency of DNA/PAMAM NP were enhanced using Antp. These observations suggest that Antp can increase the membrane-penetrating ability of DNA-loaded nanoparticles, which can be employed as novel non-viral gene vectors.  相似文献   

17.
Gene therapy directed to the kidney has been attempted to improve renal disorders such as inherited kidney diseases and common renal diseases that cause interstitial fibrosis, tubular atrophy, and glomerulosclerosis. Viral and non-viral vectors have been tried and been modulated to obtain sufficient transgene expression. However, gene delivery to the kidney is usually difficult because of characteristics of renal cell biology. Among non-viral vectors, the liposome system is a promising procedure for kidney-targeted gene therapy. Using cationic liposome, tubular cells were effectively transduced by retrograde injection of liposome/cDNA complex. Although transgene expression was reportedly modest using cationic liposomes, this method improved renal disease models such as carbonic anhydrase II deficiency and unilateral ureteral obstruction. In contrast, HVJ-liposome system is an effective transfection method to glomerular cells using intra-renal arterial infusion and improved glomerular disease models such as glomerulonephritis and glomerulosclerosis. In addition, intra-renal pelvic injection of DNA by HVJ-liposome system showed transgene expression in interstitial fibroblasts. In kidney-targeted gene therapy, liposome-mediated gene transfer is an attractive method because of its simplicity and reduced toxicity. In spite of modest transgene expression, several renal disease models were successfully modulated by liposome system. Although one limitation of liposome-mediated gene delivery is the duration of transgene expression, the liposome/cDNA complex can be repeatedly administered due to the absence of an immune response.  相似文献   

18.
Liposome-mediated gene therapy in the kidney   总被引:1,自引:0,他引:1  
Gene therapy directed to the kidney has been attempted to improve renal disorders such as inherited kidney diseases and common renal diseases that cause interstitial fibrosis, tubular atrophy, and glomerulosclerosis. Viral and non-viral vectors have been tried and been modulated to obtain sufficient transgene expression. However, gene delivery to the kidney is usually difficult because of characteristics of renal cell biology. Among non-viral vectors, the liposome system is a promising procedure for kidney-targeted gene therapy. Using cationic liposome, tubular cells were effectively transduced by retrograde injection of liposome/cDNA complex. Although transgene expression was reportedly modest using cationic liposomes, this method improved renal disease models such as carbonic anhydrase II deficiency and unilateral ureteral obstruction. In contrast, HVJ-liposome system is an effective transfection method to glomerular cells using intra-renal arterial infusion and improved glomerular disease models such as glomerulonephritis and glomerulosclerosis. In addition, intra-renal pelvic injection of DNA by HVJ-liposome system showed transgene expression in interstitial fibroblasts. In kidney-targeted gene therapy, liposome-mediated gene transfer is an attractive method because of its simplicity and reduced toxicity. In spite of modest transgene expression, several renal disease models were successfully modulated by liposome system. Although one limitation of liposome-mediated gene delivery is the duration of transgene expression, the liposome/cDNA complex can be repeatedly administered due to the absence of an immune response.  相似文献   

19.
Biology of E1-deleted adenovirus vectors in nonhuman primate muscle   总被引:3,自引:0,他引:3       下载免费PDF全文
Adenovirus vectors have been studied as vehicles for gene transfer to skeletal muscle, an attractive target for gene therapies for inherited and acquired diseases. In this setting, immune responses to viral proteins and/or transgene products cause inflammation and lead to loss of transgene expression. A few studies in murine models have suggested that the destructive cell-mediated immune response to virally encoded proteins of E1-deleted adenovirus may not contribute to the elimination of transgene-expressing cells. However, the impact of immune responses following intramuscular administration of adenovirus vectors on transgene stability has not been elucidated in larger animal models such as nonhuman primates. Here we demonstrate that intramuscular administration of E1-deleted adenovirus vector expressing rhesus monkey erythropoietin or growth hormone to rhesus monkeys results in generation of a Th1-dependent cytotoxic T-cell response to adenovirus proteins. Transgene expression dropped significantly over time but was still detectable in some animals after 6 months. Systemic levels of adenovirus-specific neutralizing antibodies were generated, which blocked vector readministration. These studies indicate that the cellular and humoral immune response generated to adenovirus proteins, in the context of transgenes encoding self-proteins, hinders long-term transgene expression and readministration with first-generation vectors.  相似文献   

20.
Experimental results have suggested that transgene expression can be saturated when large amounts of plasmid vectors are delivered into cells. To investigate this saturation kinetic behavior, cells were transfected with monitoring and competing plasmids using cationic liposomes. Even although an identical amount of a monitoring plasmid expressing firefly luciferase (FL) was used for transfection, transgene expression from the plasmid was greatly affected by the level of transgene expression from competing plasmids expressing renilla luciferase (RL). Similar results were obtained by exchanging the monitoring and competing plasmids. The competing plasmid‐dependent reduction in transgene expression from the monitoring plasmid was also observed in mouse liver after hydrodynamic injection of plasmids. On the other hand, the mRNA and protein expression level of glyceraldehyde‐3‐phosphate dehydrogenase (GAPDH), an endogenous gene, in the liver hardly changed even when transgene expression process is saturated. The expression of FL from a monitoring plasmid was significantly restored by siRNA‐mediated degradation of RL mRNA that was expressed from a competing plasmid. These results suggest that the efficiency of protein synthesis from plasmid vectors is reduced when a large amount of mRNA is transcribed with no significant changes in endogenous gene expression. Biotechnol. Bioeng. 2011;108: 2380–2389. © 2011 Wiley Periodicals, Inc.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号