首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 562 毫秒
1.
Resistance to powdery mildew in rose   总被引:1,自引:0,他引:1  
Resistance and susceptibility of rose species and varieties to the powdery mildew fungus Sphaerotheca pannosa were tested on detached leaflets in Petri plates. Strains of the pathogen from greenhouse plants were maintained under aseptic conditions on rose shoots growing in agar medium in glass vials. Biological specialization in S. pannosa was confirmed; the strain on Rosa virginiana did not infect common rose varieties. Variation in susceptibility of commonly cultivated rose varieties to another strain of mildew was demonstrated, and resistance increased with age of leaf. Germination and prepenetration development of the fungus were not related to disease resistance. Fewer fungus haustoria developed normally in epidermal cells of resistant than of susceptible rose varieties. The relative importance of morphological barriers and internal resistance factors is discussed. Attempts failed to infect freshly isolated or long established callus tissue cultures of several rose varieties.  相似文献   

2.
以不同抗白粉病的苦瓜品系幼苗为材料,对它们的叶片及上下表皮厚度、栅栏组织及海绵组织厚度、叶片结构紧密度及疏松度、蜡质含量、比叶重、气孔及茸毛密度等叶片结构进行观察比较,探讨苦瓜白粉病抗性与其主要叶片结构指标的关系。结果显示:(1)抗病苦瓜品系叶片的蜡质含量显著高于感病品系,与病情指数呈显著负相关关系,蜡质层是其抵抗和延迟病原菌侵入的一个有力结构屏障。(2)感病品系叶片的气孔和叶背面茸毛数量显著多于抗病品系,且叶背面的气孔及茸毛密度与病情指数呈显著正相关关系,即气孔和茸毛越少越抗病。(3)抗病苦瓜品系的叶片栅栏组织以及海绵组织排列整齐、紧密,而高感品系的叶片组织出现大量孔隙,较难观察到完整细胞。(4)抗病品系叶片厚度、下表皮厚度、栅栏组织厚度、叶片结构紧密度明显高于感病品系,而感病品系的海绵组织厚度、叶片结构疏松度明显高于抗病品系;且苦瓜比叶重与其白粉病抗性关系不大。研究认为,苦瓜叶片蜡质含量、叶背面气孔及茸毛密度可以作为苦瓜白粉病抗性鉴定的参考指标。  相似文献   

3.
The major cause of powdery mildew in melons (Cucumis melo L.) is the fungus Sphaerotheca fuliginea. There are several cultivar- and season-specific races of this fungus. In order to control powdery mildew, it is important to introduce resistance to fungal infection into new cultivars during melon breeding. Haploid breeding is a powerful tool for the production of pure lines. In this study, it was investigated whether powdery mildew resistance could be manifested at the haploid level from two disease-resistant melon lines, PMR 45 and WMR 29. the effects of various races of S. fuliginea on diploid and haploid plants of PMR 45 and WMR 29 and of a disease-susceptible line, Fuyu 3 were measured. The responses of haploid and diploid plants to powdery mildew were identical. In addition, haploids that were generated from hybrids between Fuyu 3 and disease-resistant lines were examined. Seven out of 13 haploids from a Fuyu 3xPMR 45 cross and 10 out of 12 haploids from a Fuyu 3xWMR 29 cross were classified as resistant plants because they showed the same responses as their disease-resistant diploid parents to the various fungal races. These results indicate that resistance in PMR 45 and WMR 29 is selectable at the haploid level. All of the plant responses were observed by microscopy. A possible mechanism for generating powdery mildew resistance in two different melon lines is discussed.  相似文献   

4.
Powdery mildew is one of the most important limiting factors for cucurbits production in Spain, its management being strongly dependent on chemicals. The aim of this work was to evaluate the possibility of exploiting antagonistic bacteria in the biological control of the cucurbit powdery mildew fungus Podosphaera fusca (syn. Sphaerotheca fusca). Among a collection of bacterial strains isolated from distinct cucurbit powdery mildew diseased plants and rhizospheric soils, four isolates were selected, by means of a screening method based on antibiotic production, and identified as Bacillus spp. These isolates proved to be efficacious in the control of cucurbit powdery mildew in in vitro detached leaves and seedling biocontrol assays, where reductions of disease severity of up to 80% were obtained. Furthermore, bacterial populations on melon leaves remained at similar levels (105 cfu cm–2) over the 16-day period studied and, as observed by scanning electron microscopy analysis, they were able to establish microcolonies associated with an extracellular matrix, which reveals that these isolates efficiently colonize melon phylloplane. These results indicate that the bacterial isolates selected are promising candidates for biological control agents of cucurbit powdery mildew in southern Spain.  相似文献   

5.
6.
Powdery mildew caused by Podosphaera xanthii has become a major problem in melon since it occurs all year round irrespective of the growing system. The TGR-1551 melon genotype was found to be resistant to several melon diseases, among them powdery mildew. However, the corresponding resistance genes have been never mapped. We constructed an integrated genetic linkage map using an F2 population derived from a cross between the multi-resistant genotype TGR-1551 and the susceptible Spanish cultivar ‘Bola de Oro’. The map spans 1,284.9 cM, with an average distance of 3.6 cM among markers, and consists of 354 loci (188 AFLP, 39 RAPD, 111 SSR, 14 SCAR/CAPS/dCAPS, and two phenotypic traits) distributed in 14 linkage groups. QTL analysis identified one major QTL (Pm-R) on LG V for resistance to races 1, 2, and 5 of powdery mildew. The PM4-CAPS marker is closely linked to the Pm-R QTL at a genetic distance of 1.9 cM, and the PM3-CAPS marker is located within the support interval of this QTL. These codominant markers, together with the map information reported here, could be used for melon breeding, and particularly for genotyping selection of resistance to powdery mildew in this vegetable crop species.  相似文献   

7.
The aim of this study was to investigate the inheritance of powdery mildew disease and to tag it with a DNA marker to utilize for the marker-assisted selection (MAS) breeding program. The powdery mildew resistant genotype Fallon er and susceptible genotype 11760-3 ER were selected from 177 genotypes by heavy infestation of germplasm with Erysiphe pisi through artificial inoculation The F1 plants of the cross Fallon/11760-3 indicated the dominance of the susceptible allele, while F2 plants segregated in 3: 1 ratio (susceptible: resistant) that fit for goodness of fitness by χ2 (P > 0.07), indicating monogenic recessive inheritance for powdery mildew resistance in Pisum sativum. A novel RAPD marker OPB18 (5′-CCACAGCAGT-3′) was linked to the er-1 gene with 83% probability with a LOD score of 4.13, and was located at a distance of 11.2 cM from the er-1 gene.  相似文献   

8.
9.
Kavková M  Curn V 《Mycopathologia》2005,159(1):53-63
Hyphomycete Paecilomyces fumosoroseus that is well known as saprophytic and entomopatogenic fungus was investigated for its mycoparasitism on the cucumber powdery mildew pathogen. Mycoparasitism was documented by using standard bioassay and SEM. Effects of mycoparasitism were evaluated in three types of experiments. Paecilomyces fumosoroseus was applied in the form of graded suspensions into a colony of powdery mildew on a leaf segment. Interaction between both fungi was observed as the percentage of colonized area vs. experimental time. In the second experiment, young cucumber plants were sprayed with a suspension of Paecilomyces fumosoroseus 24 h before inoculation of Sphaerotheca fuliginea. Pre-treatment with P. fumosoroseus reduced development and spreading of powdery mildew infection significantly 15 days post-inoculation in contrast to pre-treatments with sulfur fungicide and distilled water. The development of pure culture powdery mildew under determined experimental conditions was observed and compared with treated variants. In the third experiment, mildewed plants were treated with a suspension of P. fumosoroseus. The control treatments with sulfur fungicide and distilled water were tested. Effects of P. fumosoroseus on the dispersion of powdery mildew during a 21-day period were observed.P. fumosoroseus suppressed the development and spread of cucumber powdery mildew significantly during the time of the experiment. The mechanical and physical damages and disruptions of vegetative and fruiting structures of powdery mildew were recorded under light microscopy and S.E.M.Results were concluded in pursuance to differences between the natural behaviour and development of S. fuliginea on cucumber plants treated with P. fumosoroseus and non-treated plants.  相似文献   

10.
Powdery mildew, caused by Sphaerotheca pannosa var. persicae is one of the most important diseases in European peach orchards. Quantitative trait loci controlling powdery mildew resistance were detected using three related F1, F2 and BC2 populations derived from the cross between the resistant parent P. davidiana clone P1908 and the susceptible peach cultivar Summergrand. Powdery mildew resistance of each population was evaluated under natural exposure, in several locations and over several years. Thirteen QTLs were detected. For nine of them, the favourable allele came from the resistant parent. Five QTLs were consistently detected across the three populations. The F1 hybrid used to produce F2 and BC2 populations had not inherited the favourable allele from P1908 for QTL detected on LG3 and LG8 in F1 population. QTLs were not detected in the corresponding regions in F2 and BC2 populations. In two other genomic areas, significant substitution effects between P1908 alleles were evidenced in the F1 population, but the favourable allele came from Summergrand in the F2 and BC2 populations. Analysis of phenotypic data suggested an important qualitative change in the distribution of powdery mildew resistance after 1996, confirmed by QTL analysis. Indeed, a dramatic decrease of the effect of the major QTL previously detected on LG6 was observed after 1996, while the QTL on LG8 was increasingly involved in the control of powdery mildew resistance. Consequences for peach breeding strategies to improve powdery mildew resistance are discussed.  相似文献   

11.
Two potential biological control agents of cucumber powdery mildew (Sphaerotheca fuliginea),Verticillium lecaniiandSporothrix rugulosa,were tested under glasshouse conditions. Two experiments were carried out. In the first experiment, two cucumber varieties with different levels of resistance, cv Corona (susceptible) and cv Flamingo (partially resistant), were used.Verticillium lecaniicontrolled the mildew better thanS. rugulosa.On cv Flamingo,V. lecaniicould keep the mildew severity below 15% infected leaf area for 9 weeks after inoculation withS. fuliginea.Treatment by Hora Oleo 11E, alone or as an additive toV. lecanii,was as good as a fungicide treatment. In the second experiment, weekly and biweekly treatments withV. lecaniiwere compared on cv Flamingo. Weekly treatments withV. lecaniikept mildew severity at a level below 20% infected leaf area during 10 weeks after inoculation withS. fuliginea.If applied to a partially resistant cucumber cultivar,V. lecaniiis an effective candidate for biological control ofS. fuliginea.  相似文献   

12.
许珂  王萍  崔晓伟  张颖 《西北植物学报》2021,41(10):1673-1680
以籽用美洲南瓜(Cucurbita pepo L.)白粉病抗病品系F2和感病品系M3为试材,在人工气候箱内接种白粉病生理小种2US孢子悬浮液,考察在接种白粉病菌后南瓜幼苗植株与白粉病菌的互作、叶片活性氧代谢及保护酶活性的变化,探讨南瓜抵御白粉病的生理机制。结果表明:(1)与感病品系M3相比,接种白粉病菌后,抗病品系F2叶片上病原菌发育缓慢,较难侵染叶片。(2)抗病品系F2在感病初期叶片H2O2、O2-·含量迅速升高后逐渐下降,而感病品系在感病初期H2O2、O2-·含量上升缓慢,在达最大值后始终保持较高水平,且感病品系叶片MDA含量始终高于抗病品系;组织化学染色分析发现,抗病品系叶片着色比感病品系快,之后着色面积有所减少并趋于较低水平。(3)抗病品系F2和感病品系M3叶片抗氧化酶CAT、SOD、POD活性及PAL、PPO活性在接种白粉病菌后均显著增加,但抗病品系的活性及其增幅均高于感病品系。研究发现,籽用美洲南瓜抗病品系叶片上白粉病菌发育缓慢,较难受到侵染,生成菌丝体后叶片上粉状斑点较小;抗病品系在被白粉病菌侵染初期依靠活性氧的增加抵御病原菌的入侵,随着活性氧含量增加抗病品系通过迅速增加自身抗氧化酶活性来防止氧化胁迫;与感病品系相比,抗病品系在受病原菌侵染后能迅速增加PAL、PPO活性以抵御病原菌侵染。  相似文献   

13.
Disease resistance (R) gene, RPP13, plays an important role in the resistance of plants to pathogen infections; its function in resistance of wheat to powdery mildew remains unknown. In this study, a RNA-Seq technique was used to monitor expression of genes in susceptible wheat ‘Jing411’ and resistant near-isogenic line ‘BJ-1’ in response to powdery mildew infection. Overall, 413 differential expression genes were observed and identified as involved in disease resistance. RPP13 homologous gene on wheat chromosome 7D was preliminarily identified using the wheat 660K SNP chip. RPP13 was highly expressed in ‘BJ-1’ and encodes 1,027 amino acids, including CC, NB and LRR domain, termed TaRPP13-3. After inoculation with powdery mildew, expression of TaRPP13-3 in resistant wheat changed with time, but average expression was higher when compared to susceptible variety, thus indicating that TaRPP13-3 is involved in resistance to powdery mildew. Virus-induced gene silencing (VIGS) was used to inhibit expression of TaRPP13-3 in resistant parent ‘Brock’. Results indicated that silencing of TaRPP13-3 led to decreased disease resistance in ‘Brock’. Overall results of this study indicate that TaRPP13-3 gene is involved in the defence response of wheat to powdery mildew and plays a positive role in wheat powdery mildew interactions.  相似文献   

14.
Primers for the polymerase chain reaction (PCR) were tailored to selectively amplify RFLP marker alleles associated with resistance and susceptibility for powdery mildew in cereals. The differentiation between marker alleles for susceptible and resistant genotypes is based on the discrimination of a single nucleotide by using allele-specific oligonucleotides as PCR primers. The PCR assays developed are diagnostic for RFLP alleles at the loci MWG097 in the barley genome and Whs350 in the wheat genome. The first marker locus is closely linked to MlLa resistance in barley, while the latter is linked to Pm2 resistance locus in wheat. PCR analysis of 31 barley and 30 wheat cultivars, with some exceptions, verified the presence or absence of the resistance loci investigated. These rapid PCR-based approaches are proposed as an efficient alternative to conventional procedures for selecting powdery mildew-resistant genotypes in breeding programs.  相似文献   

15.
Powdery mildew caused by Podosphaera xanthii is an important foliar disease in melon. To find molecular markers for marker-assisted selection, we constructed a genetic linkage map of melon based on a population of 93 recombinant inbred lines derived from crosses between highly resistant AR 5 and susceptible ‘Earl’s Favourite (Harukei 3)’. The map spans 877 cM and consists of 167 markers, comprising 157 simple sequence repeats (SSRs), 7 sequence characterized amplified region/cleavage amplified polymorphic sequence markers and 3 phenotypic markers segregating into 20 linkage groups. Among them, 37 SSRs and 6 other markers were common to previous maps. Quantitative trait locus (QTL) analysis identified two loci for resistance to powdery mildew. The effects of these QTLs varied depending on strain and plant stage. The percentage of phenotypic variance explained for resistance to the pxA strain was similar between QTLs (R 2 = 22–28%). For resistance to pxB strain, the QTL on linkage group (LG) XII was responsible for much more of the variance (41–46%) than that on LG IIA (12–13%). The QTL on LG IIA was located between two SSR markers. Using an independent population, we demonstrated the effectiveness of these markers. This is the first report of universal and effective markers linked to a gene for powdery mildew resistance in melon.  相似文献   

16.
17.
Interactions between introns via exon definition in plant pre-mRNA splicing   总被引:3,自引:1,他引:2  
The barley gene Mlo encodes a prototype of a novel class of plant proteins. In mlo mutants, absence of the 60 kDa wild-type Mlo protein results in broad-spectrum resistance to the powdery mildew fungus, Erysiphe graminis f. sp. hordei . To directly assess its function, Mlo was transiently expressed with a marker gene encoding a modified green fluorescent protein (GFP) in leaf epidermal cells of mlo resistant barley lines. Fungal inoculation of epidermal cells transfected with wild-type Mlo led to haustorium formation and abundant sporulation. Therefore, expression of the wild-type Mlo gene, in mlo resistant genotypes, is both necessary and sufficient to restore susceptibility to fungal attack. Complementation of mlo resistance alleles was restricted to single host cells, indicating a cell-autonomous function for the wild-type Mlo protein. We discuss our findings with respect to source–sink relationships of plants and biotrophic fungi and the potentially wide-ranging use of the transient complementation assay to analyse host compatibility and defence in response to powdery mildew attack.  相似文献   

18.
A limited genetic mapping strategy based on simple sequence repeat (SSR) marker data was used with five grape populations segregating for powdery mildew (Erysiphe necator) resistance in an effort to develop genetic markers from multiple sources and enable the pyramiding of resistance loci. Three populations derived their resistance from Muscadinia rotundifolia ‘Magnolia’. The first population (06708) had 97 progeny and was screened with 137 SSR markers from seven chromosomes (4, 7, 9, 12, 13, 15, and 18) that have been reported to be associated with powdery or downy mildew resistance. A genetic map was constructed using the pseudo-testcross strategy and QTL analysis was carried out. Only markers from chromosome 13 and 18 were mapped in the second (04327) and third (06712) populations, which had 47 and 80 progeny, respectively. Significant QTLs for powdery mildew resistance with overlapping genomic regions were identified for different tissue types (leaf, stem, rachis, and berry) on chromosome 18, which distinguishes the resistance in ‘Magnolia’ from that present in other accessions of M. rotundifolia and controlled by the Run1 gene on chromosome 12. The ‘Magnolia’ resistance locus was termed as Run2.1. Powdery mildew resistance was also mapped in a fourth population (08391), which had 255 progeny and resistance from M. rotundifolia ‘Trayshed’. A locus accounting for 50% of the phenotypic variation mapped to chromosome 18 and was named Run2.2. This locus overlapped the region found in the ‘Magnolia’-based populations, but the allele sizes of the flanking markers were different. ‘Trayshed’ and ‘Magnolia’ shared at least one allele for 68% of the tested markers, but alleles of the other 32% of the markers were not shared indicating that the two M. rotundifolia selections were very different. The last population, 08306 with 42 progeny, derived its resistance from a selection Vitis romanetii C166-043. Genetic mapping discovered a major powdery mildew resistance locus termed Ren4 on chromosome 18, which explained 70% of the phenotypic variation in the same region of chromosome 18 found in the two M. rotundifolia resistant accessions. The mapping results indicate that powdery mildew resistance genes from different backgrounds reside on chromosome 18, and that genetic markers can be used as a powerful tool to pyramid these loci and other powdery mildew resistance loci into a single line.  相似文献   

19.
Germination of Erysiphe graminis f.sp. hordei conidia on leaves of several barley cultivars was studied in the laboratory. On both detached leaves and intact plants, within 48 h of inoculation a higher proportion of conidia had germinated on the basal and middle portions of the adaxial leaf surface than on the corresponding portions of the abaxial surface. Such differences between surfaces were not observed near the leaf tip. Similar results were obtained with all the cultivars and growth stages tested, and with five isolates of E. graminis, and are consistent with the observation that there is usually less powdery mildew on the abaxial than the adaxial surface of barley leaves. With most of the barley genotype/mildew isolate combinations tested, within 48 h of inoculation higher proportions of conidia germinated on seedlings and juvenile plants than on older plants. Inherited characteristics which affect spore germination on the leaf surface may be important factors in the development of adult-plant resistance of barley to powdery mildew, particularly in certain genotypes.  相似文献   

20.
Nisar M  Ghafoor A 《Genetika》2011,47(3):345-348
The aim of this study was to investigate the inheritance of powdery mildew disease and to tag it with a DNA marker to utilize for the marker-assisted selection (MAS) breeding program. The powdery mildew resistant genotype Fallon(er) and susceptible genotype 11760-3ER were selected from 177 genotypes by heavy infestation of germplasm with Erysiphe pisi through artificial inoculation. The F1 plants of the cross Fallon/11760-3 indicated the dominance of the susceptible allele, while F2 plants segregated in 3 : 1 ratio (susceptible : resistant) that fit for goodness of fitness by chi2 (P > 0.07), indicating monogenic recessive inheritance for powdery mildew resistance in Pisum sativum. A novel RAPD marker OPB18 (5'-CCACAGCAGT-3') was linked to the er-1 gene with 83% probability with a LOD score of 4.13, and was located at a distance of 11.2 cM from the er-1 gene.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号