首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 592 毫秒
1.
Signaling initiation by receptor-like kinases (RLKs) at the plasma membrane of plant cells often requires regulatory leucine-rich repeat (LRR) RLK proteins such as SERK or BIR proteins. The present work examined how the microbe-associated molecular pattern (MAMP) receptor FLS2 builds signaling complexes with BAK1 (SERK3). We first, using in vivo methods that validate separate findings by others, demonstrated that flg22 (flagellin epitope) ligand-initiated FLS2-BAK1 extracellular domain interactions can proceed independent of intracellular domain interactions. We then explored a candidate SERK protein interaction site in the extracellular domains (ectodomains; ECDs) of the significantly different receptors FLS2, EFR (MAMP receptors), PEPR1 (damage-associated molecular pattern (DAMP) receptor), and BRI1 (hormone receptor). Repeat conservation mapping revealed a cluster of conserved solvent-exposed residues near the C-terminus of models of the folded LRR domains. However, site-directed mutagenesis of this conserved site in FLS2 did not impair FLS2-BAK1 ECD interactions, and mutations in the analogous site of EFR caused receptor maturation defects. Hence this conserved LRR C-terminal region apparently has functions other than mediating interactions with BAK1. In vivo tests of the subsequently published FLS2-flg22-BAK1 ECD co-crystal structure were then performed to functionally evaluate some of the unexpected configurations predicted by that crystal structure. In support of the crystal structure data, FLS2-BAK1 ECD interactions were no longer detected in in vivo co-immunoprecipitation experiments after site-directed mutagenesis of the FLS2 BAK1-interaction residues S554, Q530, Q627 or N674. In contrast, in vivo FLS2-mediated signaling persisted and was only minimally reduced, suggesting residual FLS2-BAK1 interaction and the limited sensitivity of co-immunoprecipitation data relative to in vivo assays for signaling outputs. However, Arabidopsis plants expressing FLS2 with the Q530A+Q627A double mutation were impaired both in detectable interaction with BAK1 and in FLS2-mediated responses, lending overall support to current models of FLS2 structure and function.  相似文献   

2.
The receptor kinase EFR of Arabidopsis thaliana detects the microbe-associated molecular pattern elf18, a peptide that represents the N terminus of bacterial elongation factor Tu. Here, we tested subdomains of EFR for their importance in receptor function. Transient expression of tagged versions of EFR and EFR lacking its cytoplasmic domain in leaves of Nicotiana benthamiana resulted in functional binding sites for elf18. No binding of ligand was found with the ectodomain lacking the transmembrane domain or with EFR lacking the first 5 of its 21 leucine-rich repeats (LRRs). EFR is structurally related to the receptor kinase flagellin-sensing 2 (FLS2) that detects bacterial flagellin. Chimeric receptors with subdomains of FLS2 substituting for corresponding parts of EFR were tested for functionality in ligand binding and receptor activation assays. Substituting the transmembrane domain and the cytoplasmic domain resulted in a fully functional receptor for elf18. Replacing also the outer juxtamembrane domain with that of FLS2 led to a receptor with full affinity for elf18 but with a lower efficiency in response activation. Extending the substitution to encompass also the last two of the LRRs abolished binding and receptor activation. Substitution of the N terminus by the first six LRRs from FLS2 reduced binding affinity and strongly affected receptor activation. In summary, chimeric receptors allow mapping of subdomains relevant for ligand binding and receptor activation. The results also show that modular assembly of chimeras from different receptors can be used to form functional receptors.  相似文献   

3.
Dunning FM  Sun W  Jansen KL  Helft L  Bent AF 《The Plant cell》2007,19(10):3297-3313
Mutational, phylogenetic, and structural modeling approaches were combined to develop a general method to study leucine-rich repeat (LRR) domains and were used to identify residues within the Arabidopsis thaliana FLAGELLIN-SENSING2 (FLS2) LRR that contribute to flagellin perception. FLS2 is a transmembrane receptor kinase that binds bacterial flagellin or a flagellin-based flg22 peptide through a presumed physical interaction within the FLS2 extracellular domain. Double-Ala scanning mutagenesis of solvent-exposed beta-strand/beta-turn residues across the FLS2 LRR domain identified LRRs 9 to 15 as contributors to flagellin responsiveness. FLS2 LRR-encoding domains from 15 Arabidopsis ecotypes and 20 diverse Brassicaceae accessions were isolated and sequenced. FLS2 is highly conserved across most Arabidopsis ecotypes, whereas more diversified functional FLS2 homologs were found in many but not all Brassicaceae accessions. flg22 responsiveness was correlated with conserved LRR regions using Conserved Functional Group software to analyze structural models of the LRR for diverse FLS2 proteins. This identified conserved spatial clusters of residues across the beta-strand/beta-turn residues of LRRs 12 to 14, the same area identified by the Ala scan, as well as other conserved sites. Site-directed randomizing mutagenesis of solvent-exposed beta-strand/beta-turn residues across LRRs 9 to 15 identified mutations that disrupt flg22 binding and showed that flagellin perception is dependent on a limited number of tightly constrained residues of LRRs 9 to 15 that make quantitative contributions to the overall phenotypic response.  相似文献   

4.
Plant cell surface-localized receptor kinases such as FLS2, EFR, and CERK1 play a crucial role in detecting invading pathogenic bacteria. Upon stimulation by bacterium-derived ligands, FLS2 and EFR interact with BAK1, a receptor-like kinase, to activate immune responses. A number of Pseudomonas syringae effector proteins are known to block immune responses mediated by these receptors. Previous reports suggested that both FLS2 and BAK1 could be targeted by the P. syringae effector AvrPto to inhibit plant defenses. Here, we provide new evidence further supporting that FLS2 but not BAK1 is targeted by AvrPto in plants. The AvrPto-FLS2 interaction prevented the phosphorylation of BIK1, a downstream component of the FLS2 pathway.  相似文献   

5.
The literature data on the role of IRS1/IRS2 proteins, endogenous substrates for insulin receptor tyrosine kinase, in transduction of signals generated by insulin superfamily peptides (insulin, insulin-like growth factor) were analyzed. The molecular mechanisms of the functional coupling of IRS proteins with peptide receptors possessing a tyrosine kinase activity and SH2 domain-containing proteins (phosphatidylinositol 3-kinase, Grb2 adaptor protein, protein phosphotyrosine phosphatase) were discussed. The structural and functional properties of IRS proteins (distribution of functional domains and sites for tyrosine phosphorylation; conservatism of amino acid sequences) were characterized. The data on the alternative pathways of transduction of signals which are generated by insulin and related peptides and do not involve IRS proteins were analyzed. These pathways are realized through Shc proteins or via direct interaction between receptors and SH2 proteins. Amino acid sequences of IRS proteins and insulin superfamily tyrosine kinase receptors were compared. The homologous regions in IRS proteins and receptors, which can be responsible for their coupling with phosphatidylinositol 3-kinase and protein phosphotyrosine phosphatases, were identified.  相似文献   

6.
Flagellin sensing2 (FLS2) is a transmembrane receptor kinase that activates antimicrobial defense responses upon binding of bacterial flagellin or the flagellin-derived peptide flg22. We find that some Arabidopsis thaliana FLS2 is present in FLS2-FLS2 complexes before and after plant exposure to flg22. flg22 binding capability is not required for FLS2-FLS2 association. Cys pairs flank the extracellular leucine rich repeat (LRR) domain in FLS2 and many other LRR receptors, and we find that the Cys pair N-terminal to the FLS2 LRR is required for normal processing, stability, and function, possibly due to undescribed endoplasmic reticulum quality control mechanisms. By contrast, disruption of the membrane-proximal Cys pair does not block FLS2 function, instead increasing responsiveness to flg22, as indicated by a stronger oxidative burst. There was no evidence for intermolecular FLS2-FLS2 disulfide bridges. Truncated FLS2 containing only the intracellular domain associates with full-length FLS2 and exerts a dominant-negative effect on wild-type FLS2 function that is dependent on expression level but independent of the protein kinase capacity of the truncated protein. FLS2 is insensitive to disruption of multiple N-glycosylation sites, in contrast with the related receptor EF-Tu receptor that can be rendered nonfunctional by disruption of single glycosylation sites. These and additional findings more precisely define the molecular mechanisms of FLS2 receptor function.  相似文献   

7.
FLS2 and EFR are pattern recognition receptors in Arabidopsis thaliana perceiving the bacterial proteins flagellin and Elongation factor Tu (EF-Tu). Both receptors belong to the >200 membered protein family of Leucine-Rich Repeat Receptor Kinases (LRR-RKs) in Arabidopsis. FLS2 and EFR are engaged in the activation of a common intracellular signal output and they belong to the same subfamily of LRR-RKs, sharing structural features like the intracellular kinase domain and the ectodomain organized in LRRs. On the amino acid sequence level, however, they are only <50% identical even in their kinase domains. In our recently published paper1 we demonstrated that it is possible to create chimeric receptors of EFR and FLS2 that are fully functional in ligand binding and receptor activation. Chimeric receptors consisting of the complete EFR ectodomain and the FLS2 kinase domain proved to be sensitive to elf18, the minimal peptide required for EF-Tu recognition, similar to the native EFR. In chimeric receptors where parts of the FLS2 ectodomain were swapped into the EFR LRR-domain, the receptor function was strongly affected even in cases with only small fragments exchanged. In this addendum we want to address problems and limits but also possibilities and chances of studying receptor functions using a chimeric approach.Key words: pattern recognition receptors, chimeric receptors, MAMP, flagellin perception, FLS2, EFRIn the Arabidopsis genome exist >600 genes that are predicted to encode for receptor-like kinases (RLKs).2,3 More than 200 of them have ectodomains with LRRs. Physiological functions have been attributed only to a rather small percentage of them. Examples for known receptor-ligand pairs in A. thaliana include the well studied BRI1/Brassionlide,4,5 AtPEPR1/Pep25,6 HAESA/IDA7 or CLV1/CLV3.8 While these LRR-RKs detect endogenous ligands, other members of this family function as immunoreceptors that detect ligands indicative of ‘non-self,’ such as pathogen associated molecular patterns (PAMPs). Examples of such LRR-RKs include FLS2 (Flagellin Sensing 2) and EFR (EF-Tu Receptor) from Arabidopsis and XA21 from rice.911 The corresponding ligands have been identified as the flg22-epitope of bacterial flagellin for FLS2, the N-terminus of bacterial EF-Tu represented by the elf18 peptide for EFR, and the sulfated Avr21 peptide from Xanthomonas for XA21, respectively. LRR-ectodomains with related function in pathogen recognition occur also in so-called receptor-like proteins that lack the cytoplasmic kinase domains. Well studied examples include several Cf-receptor proteins which confer resistance against the fungus Cladosporium fulvum (Cf) in a gene-for-gene dependent manner. Thereby, different Cf-proteins function as recognition systems with specificity for factors determined by corresponding AvrCf products of the fungal pathogen.12,13Receptor activation of the well studied receptor BRI1 by its ligand brassinolide involves interaction with a further receptor kinase, BAK1 (BRI1-associated receptor kinase 1).5,14 Most interestingly, BAK1, or one of the four BAK1-related receptor kinases of the SERK protein family, also acts as a co-receptor for the ligand-dependent activation of FLS2, AtPEPR1 and EFR.1517 It seems that the co-receptor BAK1 plays an important role in activation of receptor kinases, serving different intracellular signaling pathways and output programs.18Up to now, little is known about the molecular details of ligand binding by the ectodomain in the apoplast and how this process leads to activation of the output signaling by the kinase moiety in the cytoplasm. The interaction with the co-receptor BAK1 suggests an activation process involving a ligand-induced intramolecular conformational change of the LRR-RK that then allows heterodimerization with the co-receptor BAK1. An initial task in elucidation of this activation process consists in defining the exact sites in the ectodomains of the receptors that interact with their corresponding ligands. So far, the clearest results for mapping ligand binding sites on LRR-receptor proteins were obtained with directed point mutations within the LRR domains as performed with the tomato receptor-like protein Cf-9,19,20 and the Arabidopsis FLS2. There, a series of directed point mutations helped to map the LRRs 9–15 as a subdomain essential for interaction with the ligand flg22.21 Another interesting and promising approach consists in swaps of receptor sub-domains or exchanges of LRRs. In a remarkable, pioneering experiment this approach was used to produce chimeric receptors with the ectodomain of the brassinosteroid receptor BRI1 from Arabidopsis and the kinase domain of the immunoreceptor XA21 from rice.22 This chimera was reported to recognize the “developmental signal” brassinolide but to trigger characteristic cellular defense responses. In a recent publication23 a domain swap between the ectodomain of the Wall Associated Kinase 1 (WAK1) and EFR was used to gain evidence for a function of the WAK1 ectodomain as a pectin receptor. Chimeric forms of the Cf receptor-like protein were used to identify subdomains carrying the specificity for the corresponding effectors from the C. fulvum pathogens.24 However, as a limitation of this analysis, for none of these tomato resistance proteins a direct interaction with the corresponding effector proteins of the pathogen could be demonstrated so far.25In our work, recently published in the Journal of Biochemistry,1 we used the Arabidopsis thaliana receptors FLS2 and EFR to generate receptor chimeras. The main goal was to study the elf18 binding site in the EFR LRR-domain. In initial attempts we used EFR-constructs lacking some of the LRRs to narrow down the interaction site on the ectodomain. However, all of these truncated ectodomain versions lacking the transmembrane domain or more turned out to be unable in binding elf18 and triggering responses. In a second approach, we used the replacement of receptor parts with fragments from the structurally related receptor AtFLS2. These chimeras were tested for proper expression, localization, functionality in several plant defence related assays and affinity for the ligand elf18 in binding assays. The chimera with the complete EFR ectodomain swapped to the Kinase of FLS2 was fully functional as EF-Tu receptor. Since both receptors are known to trigger the same set of defense responses this might be not unexpected. Nevertheless, it is noteworthy that the two receptors show ∼45% sequence identity in their kinase domain, a degree of identity also shared with the kinase domains of receptors involved in other output programs, like BRI1. The 21 LRRs of EFR are sufficient for specifying full affinity for the elf18 as a ligand (
ReceptorEthylene responseOxidative burstFRK-promoter inductionBinding affinitiy for elf18
EFR≥0.01 nM≥0.01 nM≥0.001 nMIC50 ∼10 nM
E-oJM/F≥0.01 nM≥0.01 nM≥0.001 nMIC50 ∼10 nM
E-21/F≥10 nM≥10 nM≥0.1 nMIC50 ∼10 nM
E-19/Fno responseno responseno responseno binding
F-6/Eno response≥1,000 nMno responseIC50 ∼100 nM
Open in a separate windowValues indicate the minimal concentrations of elf18 peptide required to trigger significant induction of ethylene synthesis and oxidative burst in leaves of transiently transformed N. benthamiana or induction of an FRK-promoter construct in A. thaliana protoplasts. The right column shows the relative affinity of the different receptors for the elf18 ligand in competition binding assays; the IC50 indicates the concentration of unlabeled elf18 required to compete 50% of radioligand binding.Although the “fine mapping” of a ligand binding site within a receptor ectodomain seems to be difficult and still needs some optimization, we could show that the approach of “receptor chimearization” works well in principal. The exchange of ectodomains which define specificity for different input signals (elf18 or flg22) resulting in controlling the same output signal has been demonstrated successfully. Altogether, reprogramming in- and output of receptor kinases, as first described by He et al.22 might be an important tool to investigate and to manipulate plant defence and development.  相似文献   

8.
Pattern Recognition Receptors Require N-Glycosylation to Mediate Plant Immunity     
Heidrun H?weker  Stephan Rips  Hisashi Koiwa  Susanne Salomon  Yusuke Saijo  Delphine Chinchilla  Silke Robatzek  Antje von Schaewen 《The Journal of biological chemistry》2010,285(7):4629-4636
N-Glycans attached to the ectodomains of plasma membrane pattern recognition receptors constitute likely initial contact sites between plant cells and invading pathogens. To assess the role of N-glycans in receptor-mediated immune responses, we investigated the functionality of Arabidopsis receptor kinases EFR and FLS2, sensing bacterial translation elongation factor Tu (elf18) and flagellin (flg22), respectively, in N-glycosylation mutants. As revealed by binding and responses to elf18 or flg22, both receptors tolerated immature N-glycans induced by mutations in various Golgi modification steps. EFR was specifically impaired by loss-of-function mutations in STT3A, a subunit of the endoplasmic reticulum resident oligosaccharyltransferase complex. FLS2 tolerated mild underglycosylation occurring in stt3a but was sensitive to severe underglycosylation induced by tunicamycin treatment. EFR accumulation was significantly reduced when synthesized without N-glycans but to lesser extent when underglycosylated in stt3a or mutated in single amino acid positions. Interestingly, EFRN143Q lacking a single conserved N-glycosylation site from the EFR ectodomain accumulated to reduced levels and lost the ability to bind its ligand and to mediate elf18-elicited oxidative burst. However, EFR-YFP protein localization and peptide:N-glycosidase F digestion assays support that both EFR produced in stt3a and EFRN143Q in wild type cells correctly targeted to the plasma membrane via the Golgi apparatus. These results indicate that a single N-glycan plays a critical role for receptor abundance and ligand recognition during plant-pathogen interactions at the cell surface.  相似文献   

9.
Control of the pattern‐recognition receptor EFR by an ER protein complex in plant immunity          下载免费PDF全文
Martine Batoux  Milena Roux  Alejandra Rougon  Pascal Bittel  Marta Kiss‐Papp  Delphine Chinchilla  H Peter van Esse  Lucia Jorda  Benjamin Schwessinger  Valerie Nicaise  Bart P H J Thomma  Antonio Molina  Jonathan D G Jones  Cyril Zipfel 《The EMBO journal》2009,28(21):3428-3438
In plant innate immunity, the surface‐exposed leucine‐rich repeat receptor kinases EFR and FLS2 mediate recognition of the bacterial pathogen‐associated molecular patterns EF‐Tu and flagellin, respectively. We identified the Arabidopsis stromal‐derived factor‐2 (SDF2) as being required for EFR function, and to a lesser extent FLS2 function. SDF2 resides in an endoplasmic reticulum (ER) protein complex with the Hsp40 ERdj3B and the Hsp70 BiP, which are components of the ER‐quality control (ER‐QC). Loss of SDF2 results in ER retention and degradation of EFR. The differential requirement for ER‐QC components by EFR and FLS2 could be linked to N‐glycosylation mediated by STT3a, a catalytic subunit of the oligosaccharyltransferase complex involved in co‐translational N‐glycosylation. Our results show that the plasma membrane EFR requires the ER complex SDF2–ERdj3B–BiP for its proper accumulation, and provide a demonstration of a physiological requirement for ER‐QC in transmembrane receptor function in plants. They also provide an unexpected differential requirement for ER‐QC and N‐glycosylation components by two closely related receptors.  相似文献   

10.
The Arabidopsis leucine-rich repeat receptor-like kinases BAK1/SERK3 and BKK1/SERK4 are required for innate immunity to hemibiotrophic and biotrophic pathogens     
Roux M  Schwessinger B  Albrecht C  Chinchilla D  Jones A  Holton N  Malinovsky FG  Tör M  de Vries S  Zipfel C 《The Plant cell》2011,23(6):2440-2455
Recognition of pathogen-associated molecular patterns (PAMPs) by surface-localized pattern recognition receptors (PRRs) constitutes an important layer of innate immunity in plants. The leucine-rich repeat (LRR) receptor kinases EF-TU RECEPTOR (EFR) and FLAGELLIN SENSING2 (FLS2) are the PRRs for the peptide PAMPs elf18 and flg22, which are derived from bacterial EF-Tu and flagellin, respectively. Using coimmunoprecipitation and mass spectrometry analyses, we demonstrated that EFR and FLS2 undergo ligand-induced heteromerization in planta with several LRR receptor-like kinases that belong to the SOMATIC-EMBRYOGENESIS RECEPTOR-LIKE KINASE (SERK) family, including BRASSINOSTEROID INSENSITIVE1-ASSOCIATED KINASE1/SERK3 (BAK1/SERK3) and BAK1-LIKE1/SERK4 (BKK1/SERK4). Using a novel bak1 allele that does not exhibit pleiotropic defects in brassinosteroid and cell death responses, we determined that BAK1 and BKK1 cooperate genetically to achieve full signaling capability in response to elf18 and flg22 and to the damage-associated molecular pattern AtPep1. Furthermore, we demonstrated that BAK1 and BKK1 contribute to disease resistance against the hemibiotrophic bacterium Pseudomonas syringae and the obligate biotrophic oomycete Hyaloperonospora arabidopsidis. Our work reveals that the establishment of PAMP-triggered immunity (PTI) relies on the rapid ligand-induced recruitment of multiple SERKs within PRR complexes and provides insight into the early PTI signaling events underlying this important layer of plant innate immunity.  相似文献   

11.
Pseudomonas syringae effector AvrPto blocks innate immunity by targeting receptor kinases   总被引:7,自引:0,他引:7  
Xiang T  Zong N  Zou Y  Wu Y  Zhang J  Xing W  Li Y  Tang X  Zhu L  Chai J  Zhou JM 《Current biology : CB》2008,18(1):74-80
Plants use receptor kinases, such as FLS2 and EFR, to perceive bacterial pathogens and initiate innate immunity. This immunity is often suppressed by bacterial effectors, allowing pathogen propagation. To counteract, plants have evolved disease resistance genes that detect the bacterial effectors and reinstate resistance. The Pseudomonas syringae effector AvrPto promotes infection in susceptible plants but triggers resistance in plants carrying the protein kinase Pto and the associated resistance protein Prf. Here we show that AvrPto binds receptor kinases, including Arabidopsis FLS2 and EFR and tomato LeFLS2, to block plant immune responses in the plant cell. The ability to target receptor kinases is required for the virulence function of AvrPto in plants. The FLS2-AvrPto interaction and Pto-AvrPto interaction appear to share similar sequence requirements, and Pto competes with FLS2 for AvrPto binding. The results suggest that the mechanism by which AvrPto recognizes virulence targets is linked to the evolution of Pto, which, in association with Prf, recognizes the bacterium and triggers strong resistance.  相似文献   

12.
Structural requirements for ligand binding by a probable plant vacuolar sorting receptor          下载免费PDF全文
Cao X  Rogers SW  Butler J  Beevers L  Rogers JC 《The Plant cell》2000,12(4):493-506
How sorting receptors recognize amino acid determinants on polypeptide ligands and respond to pH changes for ligand binding or release is unknown. The plant vacuolar sorting receptor BP-80 binds polypeptide ligands with a central Asn-Pro-Ile-Arg (NPIR) motif. tBP-80, a soluble form of the receptor lacking transmembrane and cytoplasmic sequences, binds the peptide SSSFADSNPIRPVTDRAASTYC as a monomer with a specificity indistinguishable from that of BP-80. tBP-80 contains an N-terminal region homologous to ReMembR-H2 (RMR) protein lumenal domains, a unique central region, and three C-terminal epidermal growth factor (EGF) repeats. By protease digestion of purified secreted tBP-80, and from ligand binding studies with a secreted protein lacking the EGF repeats, we defined three protease-resistant structural domains: an N-terminal/RMR homology domain connected to a central domain, which together determine the NPIR-specific ligand binding site, and a C-terminal EGF repeat domain that alters the conformation of the other two domains to enhance ligand binding. A fragment representing the central domain plus the C-terminal domain could bind ligand but was not specific for NPIR. These results indicate that two tBP-80 binding sites recognize two separate ligand determinants: a non-NPIR site defined by the central domain-EGF repeat domain structure and an NPIR-specific site contributed by the interaction of the N-terminal/RMR homology domain and the central domain.  相似文献   

13.
Mapping FLS2 function to structure: LRRs, kinase and its working bits     
Silke Robatzek  Lennart Wirthmueller 《Protoplasma》2013,250(3):671-681
The plasma membrane-localised FLAGELLIN SENSING 2 (FLS2) receptor is an important component of plant immunity against potentially pathogenic bacteria, acting to recognise the conserved flg22 peptide of flagellin. FLS2 shares the common structure of transmembrane receptor kinases with a receptor-like ectodomain composed of leucine-rich repeats (LRR) and an active intracellular kinase domain. Upon ligand binding, FLS2 dimerises with the regulatory LRR-receptor kinase BRI1-associated kinase 1, which in turn triggers downstream signalling cascades. Although lacking crystal structure data, recent advances have been made in our understanding of flg22 recognition based on structural and functional analyses of FLS2. These studies have revealed critical regions/residues of FLS2 and post-translational modifications that regulate the abundance and activity of this receptor. In this review, we present the current knowledge on the structural mechanism of the FLS2–flg22 interaction and subsequent receptor-mediated signalling.  相似文献   

14.
Leucine-rich repeat (LRR) proteins: integrators of pattern recognition and signaling in immunity     
Ng A  Xavier RJ 《Autophagy》2011,7(9):1082-1084
The leucine-rich repeats (LRR)-containing domain is evolutionarily conserved in many proteins associated with innate immunity in plants, invertebrates and vertebrates. Serving as a first line of defense, the innate immune response is initiated through the sensing of pathogen-associated molecular patterns (PAMPs). In plants, NBS (nucleotide-binding site)-LRR proteins provide recognition of pathogen products of avirulence (AVR) genes. LRRs also promote interaction between LRR proteins as observed in receptor-coreceptor complexes. In mammals, toll-like receptors (TLRs) and NOD-like receptors (NLRs) through their LRR domain, sense molecular determinants from a structurally diverse set of bacterial, fungal, parasite and viral-derived components. In humans, at least 34 LRR proteins are implicated in diseases. Most LRR domains consist of 2-45 leucine-rich repeats, with each repeat about 20-30 residues long. Structurally, LRR domains adopt an arc or horseshoe shape, with the concave face consisting of parallel β-strands and the convex face representing a more variable region of secondary structures including helices. Apart from the TLRs and NLRs, most of the 375 human LRR proteins remain uncharacterized functionally. We incorporated computational and functional analyses to facilitate multifaceted insights into human LRR proteins and outline a few approaches here.  相似文献   

15.
Leucine-rich repeat (LRR) proteins: Integrators of pattern recognition and signaling in immunity     
《Autophagy》2013,9(9):1082-1084
The leucine-rich repeats (LRR)-containing domain is evolutionarily conserved in many proteins associated with innate immunity in plants, invertebrates and vertebrates. Serving as a first line of defense, the innate immune response is initiated through the sensing of pathogen-associated molecular patterns (PAMPs). In plants, NBS (nucleotide-binding site)-LRR proteins provide recognition of pathogen products of avirulence (AVR) genes. LRRs also promote interaction between LRR proteins as observed in receptor-coreceptor complexes. In mammals, toll-like receptors (TLRs) and NOD-like receptors (NLRs) through their LRR domain, sense molecular determinants from a structurally diverse set of bacterial, fungal, parasite and viral-derived components. In humans, at least 34 LRR proteins are implicated in diseases. Most LRR domains consist of 2–45 leucine-rich repeats, with each repeat about 20–30 residues long. Structurally, LRR domains adopt an arc or horseshoe shape, with the concave face consisting of parallel β-strands and the convex face representing a more variable region of secondary structures including helices. Apart from the TLRs and NLRs, most of the 375 human LRR proteins remain uncharacterized functionally. We incorporated computational and functional analyses to facilitate multifaceted insights into human LRR proteins and outline a few approaches here.  相似文献   

16.
An autophosphorylation site database for leucine‐rich repeat receptor‐like kinases in Arabidopsis thaliana          下载免费PDF全文
Srijeet K. Mitra  Ruiqiang Chen  Murali Dhandaydham  Xiaofeng Wang  Robert Kevin Blackburn  Uma Kota  Michael B. Goshe  Daniel Schwartz  Steven C. Huber  Steven D. Clouse 《The Plant journal : for cell and molecular biology》2015,82(6):1042-1060
Leucine‐rich repeat receptor‐like kinases (LRR RLKs) form a large family of plant signaling proteins consisting of an extracellular domain connected by a single‐pass transmembrane sequence to a cytoplasmic kinase domain. Autophosphorylation on specific Ser and/or Thr residues in the cytoplasmic domain is often critical for the activation of several LRR RLK family members with proven functional roles in plant growth regulation, morphogenesis, disease resistance, and stress responses. While identification and functional characterization of in vivo phosphorylation sites is ultimately required for a full understanding of LRR RLK biology and function, bacterial expression of recombinant LRR RLK cytoplasmic catalytic domains for identification of in vitro autophosphorylation sites provides a useful resource for further targeted identification and functional analysis of in vivo sites. In this study we employed high‐throughput cloning and a variety of mass spectrometry approaches to generate an autophosphorylation site database representative of more than 30% of the approximately 223 LRR RLKs in Arabidopsis thaliana. We used His‐tagged constructs of complete cytoplasmic domains to identify a total of 592 phosphorylation events across 73 LRR RLKs, with 497 sites uniquely assigned to specific Ser (268 sites) or Thr (229 sites) residues in 68 LRR RLKs. Multiple autophosphorylation sites per LRR RLK were the norm, with an average of seven sites per cytoplasmic domain, while some proteins showed more than 20 unique autophosphorylation sites. The database was used to analyze trends in the localization of phosphorylation sites across cytoplasmic kinase subdomains and to derive a statistically significant sequence motif for phospho‐Ser autophosphorylation.  相似文献   

17.
PTB or not PTB -- that is the question   总被引:2,自引:0,他引:2  
Yan KS  Kuti M  Zhou MM 《FEBS letters》2002,513(1):67-70
Phosphotyrosine binding (PTB) domains are structurally conserved modules found in proteins involved in numerous biological processes including signaling through cell-surface receptors and protein trafficking. While their original discovery is attributed to the recognition of phosphotyrosine in the context of NPXpY sequences -- a function distinct from that of the classical src homology 2 (SH2) domain -- recent studies show that these protein modules have much broader ligand binding specificities. These studies highlight the functional diversity of the PTB domain family as generalized protein interaction domains, and reinforce the concept that evolutionary changes of structural elements around the ligand binding site on a conserved structural core may endow these protein modules with the structural plasticity necessary for functional versatility.  相似文献   

18.
Crystal structure of a plant leucine rich repeat protein with two island domains     
SONG Wen  HAN ZhiFu  SUN YaDong  CHAI JiJie 《中国科学:生命科学英文版》2014,57(1):137-144
Leucine rich repeat(LRR)domain,characterized by a repetitive sequence pattern rich in leucine residues,is a universal protein-protein interaction motif present in all life forms.LRR repeats interrupted by sequences of 30 70 residues(termed island domain,ID)have been found in some plant LRR receptor-like kinases(RLKs)and animal Toll-like receptors(TLR7-9).Recent studies provide insight into how a single ID is structurally integrated into an LRR protein.However,structural information on an LRR protein with two IDs is lacking.The receptor-like protein kinase 2(RPK2)is an LRR-RLK and has important roles in controlling plant growth and development by perception and transduction of hormone signal.Here we present the crystal structure of the extracellular LRR domain of RPK2(RPK2-LRR)containing two IDs from Arabidopsis.The structure reveals that both of the IDs are helical and located at the central region of the single RPK2-LRR solenoid.One of them binds to the inner surface of the solenoid,whereas the other one mainly interacts with the lateral side.Unexpectedly,a long loop immediately following the N-terminal capping domain of RPK2-LRR is presented toward and sandwiched between the two IDs,further stabilizing their embedding to the LRR solenoid.A potential ligand binding site formed by the two IDs and the solenoid is located at the C-terminal side of RPK2-LRR.The structural information of RPK2-LRR broadens our understanding toward the large family of LRR proteins and provides insight into RPK2-mediated signaling.  相似文献   

19.
Sensitivity of different ecotypes and mutants of Arabidopsis thaliana toward the bacterial elicitor flagellin correlates with the presence of receptor-binding sites     
Bauer Z  Gómez-Gómez L  Boller T  Felix G 《The Journal of biological chemistry》2001,276(49):45669-45676
Flagellin, the main building block of the bacterial flagellum, acts as potent elicitor of defense responses in different plant species. Genetic analysis in Arabidopsis thaliana identified two distinct loci, termed FLS1 and FLS2, that are essential for perception of flagellin-derived elicitors. FLS2 was found to encode a leucine-rich repeat transmembrane receptor-like kinase with similarities to Toll-like receptors involved in the innate immune system of mammals and insects. Here we used a radiolabeled derivative of flg22, a synthetic peptide representing the elicitor-active domain of flagellin, to probe the interaction of flagellin with its receptor in A. thaliana. The high affinity binding site detected in intact cells and membrane preparations exhibited specificity for flagellin-derived peptides with biological activity as agonists or antagonists of the elicitor responses. Specific binding activity was measurable in all ecotypes of A. thaliana that show sensitivity to flagellin but was barely detectable in the flagellin-insensitive ecotype Ws-0 affected in FLS1. A strongly impaired binding of flagellin was observed also in several independent flagellin-insensitive mutants isolated from the flagellin-sensitive ecotype La-er. In particular, no binding was found in plants carrying a mutation in the LRR domain of FLS2. These data indicate that the formation of functional receptor-binding sites depends on genes encoded by both loci, FLS1 and FLS2. The tight correlation between the presence of the binding site and elicitor response provides strong evidence that this binding site acts as the physiological receptor of flagellin.  相似文献   

20.
ER quality control of immune receptors and regulators in plants     
Yusuke Saijo 《Cellular microbiology》2010,12(6):716-724
Like in animals, cell surface and intracellular receptors mediate immune recognition of potential microbial intruders in plants. Membrane‐localized pattern recognition receptors (PRRs) initiate immune responses upon perception of cognate microbe‐associated molecular patterns (MAMPs). MAMP‐triggered immunity provides a first line of defence that restricts the invasion and propagation of both adapted and non‐adapted pathogens. The Leu‐rich repeat (LRR) receptor protein kinases (RKs) define a major class of trans‐membrane receptors in plants, of which some members are engaged in MAMP recognition and/or defence signalling. The endoplasmic reticulum (ER) quality control (QC) systems monitor N‐glycosylation and folding states of the extracellular, ligand‐binding LRR domains of LRR‐RKs. Recent progress reveals a critical role of evolutionarily conserved ERQC components for different layers of plant immunity. N‐glycosylation appears to play a role in ERQC fidelity rather than in ligand binding of LRR‐RKs. Moreover, even closely related PRRs show receptor‐specific requirements for N‐glycosylation. These findings are reminiscent of the earlier defined function of the cytosolic chaperon complex for LRR domain‐containing intracellular immune receptors. QC of the LRR domains might provide a basis not only for the maintenance but also for diversification of recognition specificities for immune receptors in plants.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号