首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 343 毫秒
1.
Ireland DH  Wirsing AJ  Murray DL 《Oecologia》2007,152(1):162-168
Predators have been shown to alter the timing of switch points between life history stages, but few studies have addressed switch point plasticity in prey exposed simultaneously to conflicting predation pressure. We tested hatching responses of green frog (Rana clamitans) embryos subject to perceived predation risk from chemical cues released by two stage-specific predators, predicting that these predators would elicit: (1) directional hatching responses when presented independently, and (2) intermediate phenotypic responses when presented simultaneously. R. clamitans embryos in outdoor exclosures were exposed to cues from an egg predator (freshwater leeches; Nephelopsis obscura), a larval predator (dragonfly nymphs, Aeschna canadensis), and both predators in a 2 × 2 factorial experiment, and changes in hatchling size, hatchling developmental stage, and hatching time were compared to those for control embryos. Leeches alone induced embryos to hatch at a smaller size and an earlier developmental stage than controls, while dragonfly nymphs elicited a delay in egg hatching time that was associated with larger size and later developmental stage at hatching. Embryos failed to respond to simultaneous exposure to both predators, implying that responses to each occurred concurrently and were therefore dampened. Our results indicate that prey under threat from conflicting predators may manifest intermediate defensive phenotypes. Such intermediate responses may result in elevated rates of prey mortality with possible consequences at the population level.  相似文献   

2.
《Zoology (Jena, Germany)》2014,117(2):139-145
For organisms with complex life histories it is well known that risk experienced early in life, as embryos or larvae, may have effects throughout the life cycle. Although carryover effects have been well documented in invertebrates with different levels of parental care, there are few examples of predator-induced responses in externally brooded embryos. Here, we studied the effects of nonlethal predation risk throughout the embryonic development of newly spawned eggs carried by female shrimp on the timing of egg hatching, hatchling morphology, larval development and juvenile morphology. We also determined maternal body mass at the end of the embryonic period. Exposure to predation risk cues during embryonic development led to larger larvae which also had longer rostra but reached the juvenile stage sooner, at a smaller size and with shorter rostra. There was no difference in hatching timing, but changes in larval morphology and developmental timing showed that the embryos had perceived waterborne substances indicative of predation risk. In addition to carryover effects on larval and juvenile stages, predation threat provoked a decrease of body mass in mothers exposed to predator cues while brooding. Our results suggest that risk-exposed embryos were able to recognize the same infochemicals as their mothers, manifesting a response in the free-living larval stage. Thus, future studies assessing anti-predator phenotypes should include embryonic development, which seems to determine the morphology and developmental time of subsequent life-history stages according to perceived environmental conditions.  相似文献   

3.
Hatching responses of subsocial spitting spiders to predation risk   总被引:6,自引:0,他引:6  
The carrying of eggs often renders parents vulnerable to predators due to increased conspicuousness or decreased mobility. Nonetheless, egg-carrying parents can escape from the predators to which they are vulnerable. Previous studies have demonstrated heavy predation by spider-eating jumping spiders (Portia labiata) on egg-carrying spitting spider (Scytodes pallida) females, but little predation on eggless females. If the timing of hatching is phenotypically plastic, then both S. pallida females and their eggs could reduce the risk of predation by hatching early. Hence, this study examines the hatching responses of S. pallida to chemical cues from P. labiata, both in the laboratory and in the field, and addresses the following questions. (i) Do cues from predatory P. labiata influence the hatching traits of S. pallida? (ii) Are the olfactory cues from predators sufficient for predator detection by S. pallida ? (iii) Are hatching responses to predatory P. labiata controlled by egg-carrying S. pallida females, or directly by their embryos? The study provides evidence of hatching as a life-history switch point, which shows an adaptive plasticity in response to predation risk in egg-carrying S. pallida. Egg-carrying S. pallida females, but not unattended eggs, adjust egg-hatching time (the interval between oviposition and hatching) in response to the threat of predation on both the female and her eggs by P. labiata. In the presence of P. labiata, eggs that are carried by females hatch sooner; the hatchlings of these eggs are therefore smaller than hatchlings born in the absence of P. labiata. Chemical cues that are released from the draglines of P. labiata are sufficient to elicit changes in the egg-hatching traits of S. pallida. Hatching early in response to this predator may benefit both females and their offspring. To my knowledge, this is the first direct experimental study to demonstrate predator-induced hatching plasticity in spiders and, in particular, in animals with parental care.  相似文献   

4.
5.
1. Some organisms under variable predator pressure show induced antipredator defences, whose development incurs costs and may be associated with changes to later performance. This may be of especial relevance to animals with complex life histories involving metamorphosis. 2. This study examines the effect of predation environment, experienced both during embryonic and larval stages, on palmate newt (Triturus helveticus) metamorphosis. Newt eggs were raised until hatching with or without exposure to chemical cues from brown trout (Salmo trutta), and larval development was monitored in the presence or absence of the cues. 3. Exposure to predator cues during the embryonic stage resulted in higher growth rates at the larval stage, reduced time to metamorphosis and size at metamorphosis. Metamorphs also had narrower heads and shorter forelimbs than those from predator‐free treatments. In contrast, exposure to predator cues during the larval stage did not affect metamorph characteristics. 4. These results indicate that developing embryos are sensitive to predator chemical cues and that the responses can extend to later stages. Reversion of induced defences when predation risk ceased was not detected. We discuss the possible adaptive significance of these responses.  相似文献   

6.
7.
Risk-sensitive hatching is adaptive for species facing a trade-off between egg-stage and post-hatching risks, and environmental variation in one or both stages. Such plasticity has been found in amphibians, fishes, reptiles and spiders, with red-eyed treefrogs (Agalychnis callidryas) being the best-studied case. We assessed hatching plasticity and egg- and larval-stage risks in a closely related, syntopic species, the gliding leaf-frog (Agalychnis spurrelli). We found a lower hatching response to egg-eating snakes in A. spurrelli (9–28% of embryos escaped) than in A. callidryas (59–80% escaped). Levels of snake predation were similarly high for clutches of both species monitored at a pond in Costa Rica, and in fish predation experiments early-hatched A. spurrelli tadpoles were more vulnerable than later hatchlings, as has been shown for A. callidryas. A. spurrelli thus face a risk trade-off similar to A. callidryas, and likely would benefit from predator-induced hatching; their lower responsiveness to snakes appears nonadaptive. A. spurrelli embryos showed a stronger hatching response (57% hatched in 1 h) to submergence underwater than to snake attacks even though submergence is a less frequent risk. This suggests they have a greater capacity for early hatching than is expressed in the context of snake attacks, but have much lower sensitivity to snake cues than to flooding cues. Development in A. spurrelli is accelerated compared to syntopic A. callidryas, and spontaneous hatching is earlier and more synchronous. This is congruent with predictions based on selection by egg predators in the absence of a strong escape hatching response.  相似文献   

8.
Reproductive performance is often age‐dependent, showing patterns of improvement and/or senescence as well as trade‐offs with other traits throughout the lifespan. High levels of extrinsic mortality (e.g., from predators) have been shown to sometimes, but not always, select for accelerated actuarial senescence in nature and in the lab. Here, we explore the inductive (i.e., plastic) effects of predation risk (i.e., nonlethal exposure to chemical cues from predators) on the reproductive success of freshwater snails (Physa acuta). Snails were reared either in the presence or absence of chemical cues from predatory crayfish and mated early in life or late in life (a 2 × 2 factorial design); we measured egg hatching and early post‐hatching survival of their offspring. Both age and predation risk reduced reproductive success, illustrating that predation risk can have a cross‐generational effect on the early survival of juveniles. Further, the decline in reproductive success was over three times faster under predation risk compared to the no‐predator treatment, an effect that stemmed from a disproportionate, negative effect of predation risk on the post‐hatching survival instead of hatching rate. We discuss our results in terms of a hypothesized consequence of elevated stress hormone levels.  相似文献   

9.
Annual fish species have evolved complex adaptations to survive in temporary wetlands. The main adaptation of these fish is the ability to produce embryos that survive dry periods. Embryo development of this fish can show variation at multiple levels influenced by many environmental factors, such as photoperiod and temperature. Predator cues are another factor that can influence the embryonic stage. One way in which annual fish could adapt to predators is by using risk-spreading strategies (through bet-hedging). Nonetheless, this strategy depends on the coevolutionary history between predators and preys and on the degree of environmental unpredictability, resulting in different responses across different species. This study investigated the influence of predator cues on the embryonic development and hatching of two Austrolebias species that inhabit ponds that present differences in hydroperiod and the risk of predator presence. The results confirmed a differentiated response between the two annual fish species tested, corroborating the modulation of hatching against the risk of predation by native predatory fish. The authors further showed that development times varied between the two annual fish species, regardless of the presence of predators. They highlight that the variation in embryonic development is strongly affected by different levels of hydroperiod unpredictability faced by the two species. To unravel finer-scale local adaptations in the annual fish embryo development, future studies should focus on a region with greater spatial gradient.  相似文献   

10.
In species with complex life cycles hatching plasticity can provide an effective escape from egg predators, but theoretical studies predict a predation-risk trade-off across egg and larval stages. In this study, we examine whether the presence of an egg predator can alter the timing of hatching in an anuran, Rana temporaria, and the consequences of hatching plasticity after transition to the terrestrial habitat. Predator cues induced earlier hatching, and hatchlings were smaller, less developed and had relatively shorter and deeper tails than control hatchlings. The predator–induced differences in developmental time were compensated throughout the larval period; there was no predator effect on metamorph age or size. Surprisingly, the effects of egg predators were perceptible after metamorphosis. Juveniles emerging from the predator and the no-predator treatments differed in several size-adjusted morphological dimensions. Seemingly these morphological differences were not large enough to give rise to suboptimal growth or locomotor performance after metamorphosis. Thus, our results suggest only a short-term effect on juvenile phenotype, but not a trade-off between hatching time and juvenile performance.  相似文献   

11.
Many prey taxa use kairomones or alarm pheromones to assess the risk of predation in aquatic environments, and the rate at which these cues attenuate determines how precisely they indicate the local density of predators. We estimated the rate of degradation of chemical cues generated by Aeshna dragonfly larvae feeding on Rana temporaria tadpoles. The half‐life of the cue was 35 h and was not influenced by whether it was aged in pond water or tap water or whether other tadpoles were present in the container in which cue‐aging occurred. A review of other published estimates of predator cue half‐life revealed values of 0.2–126 h, and variation among studies was unrelated to the type of aging water, the venue in which water was aged or prey behavior observed (laboratory, field), or the type of behavior that was recorded. We conclude that factors affecting the persistence of predator cues remain uncertain in spite of their importance for understanding the evolution of induced defenses.  相似文献   

12.
Various strategies have evolved to protect animals from predators. We explored the activity and predation risk experienced by two species of aphid. Both species will drop from plants when disturbed and face a suite of predators, including wolf spiders, when they reach the ground. We focused on Aphis fabae Scopoli and Aphis nerii Boyer de Fonscolombe (Hemiptera: Aphididae, Aphidini); A. nerii sequesters cardiac glycosides when it feeds on milkweed. We explored the interactions between these aphids and the wolf spider Pardosa milvina Hentz (Araneae: Lycosidae) that is likely a predator they encounter when they are not on their host plants. We hypothesized that there would be differences in the susceptibility of the two species to predation and that the more vulnerable species would react more strongly to substrate-borne cues deposited by the spider. We predicted that any behavioral reactions that the aphid displayed in response to predator cues would be effective in reducing risk. We documented the activity of each aphid species on chemotactile cues from P. milvina and measured predation rate in arenas with and without those same cues. Aphis fabae altered their activity in the presence of P. milvina cues but A. nerii did not. Likewise, A. fabae was more susceptible to predation by P. milvina when no cues were present, but when cues were present, predatory success was much lower. Aphis nerii, the less desirable prey for this predator, moved less and had a different locomotory pattern than A. fabae in control trials with no spider cues and so we cannot determine whether its chemical protection or activity were more important in reducing predation levels. These results provide insight into the risks faced by aphids when they are off of their host plant and in a barren environment.  相似文献   

13.
In many systems, the number of prey killed by predators increases with prey density. This in turn generates higher levels of the indirect signals that prey use to assess predation risk. A model developed by Peacor (2003) showed that prey that respond to predator cues without accounting for conspecific density will consistently over‐ or under‐estimate risk and therefore invest improperly in anti‐predator defense. We tested this model using Rana temporaria tadpoles as prey and Aeshna cyanea dragonfly larvae as predators. As assumed by the model, prey reduced risky activity with increasing concentrations of predator kairomones and increased activity at high prey density. However, prey did not react to changes in cue or density if the ratio of cue‐to‐density remained constant. Prey therefore monitored their per capita risk, strongly supporting Peacor's model.  相似文献   

14.
Many species alter the timing of hatching in response to egg or larval predators, pathogens, or physical risks. This plasticity depends on separation between the onset of hatching competence and physiological limits to embryonic development. I present a framework based on heterokairy to categorize developmental mechanisms and identify traits contributing to and limiting hatching plasticity, then apply it to a case of predator-induced hatching. Red-eyed treefrogs have arboreal eggs, and tadpoles fall into ponds upon hatching. Egg and tadpole predators select for earlier and later hatching, respectively. Embryos hatch up to 30% early in predator attacks, and later if undisturbed. They maintain large external gills throughout the plastic hatching period, delaying gill regression while development otherwise continues. Rapid gill regression occurs upon hatching. Prolonged embryonic development depends on external gills; inducing gill regression causes hatching. External hypoxia retards development, kills eggs, and induces hatching. Nonetheless, embryos develop synchronously and without hatching prematurely across a broad range of perivitelline PO2, from 0.5–12.5 kPa. Embryos exploit spatial variation of PO2 within eggs by positioning gills against patches of air-exposed surface. Respiratory plasticity and oxygen-sensitive behavior appear critical for the hatching plasticity that balances a predation risk trade-off across life stages.  相似文献   

15.
Many orb-web weaving spiders add conspicuous silken structures, called stabilimenta, to the hub of their webs, which are hypothesized to attract more prey. However, they may also attract predators. Orb spiders should therefore alter their web-building behaviour to minimize predation risk. We tested this hypothesis by experimentally examining web-building responses of the St Andrew cross spider, Argiope versicolor, to predation risk from one of its natural predators, the jumping spider Portia labiata. We randomly assigned A. versicolor juveniles to one of three treatments: (1) blank control (clean blotting paper: no odour from the predator or nonpredator); (2) predator odour cues from P. labiata; and (3) nonpredator control (odour cues from Leucauge decorata). Each individual of A. versicolor was monitored until it had built five consecutive webs (two webs before and three webs after the introduction of predator cues). When exposed to predator cues, the juveniles not only decreased the frequency of stabilimentum building but also refrained from increasing stabilimentum area, capture area and capture silk thread with subsequent webs compared with the blank control and the nonpredator control. Web-building traits, however, were not significantly different between the blank control and the nonpredator control. One plausible explanation is that A. versicolor juveniles can detect and discriminate between predators and nonpredators through olfactory cues and alter stabilimentum building and other web traits in response to the risk of predation. This is the first demonstration of an adaptive, plastic web-building behavioural response induced by chemical cues from a predator.  相似文献   

16.
Assessment of predation risk is vital for the success of an individual. Primary cues for the assessment include visual and olfactory stimuli, but the relative importance of these sources of information for risk assessment has seldom been assessed for marine fishes. This study examined the importance of visual and chemical cues in assessing risk for the star goby, Asterropteryx semipunctatus. Visual and chemical cue intensities were used that were indicative of a high threat situation. The behavioural response elicited by both the visual cues of a predator (the rock cod, Cephalopholis boenak) and the chemical alarm cues from conspecifics were similar in magnitude, with responses including a decrease in feeding strikes and moves. A bobbing behaviour was exhibited when the predator was visible and not when only exposed to the chemical alarm cue. When visual and chemical cues were presented together they yielded a stronger antipredator response than when gobies were exposed solely to conspecific alarm cues. This suggests additivity of risk assessment information at the levels of threat used, however, the goby’s response is also likely to depend on the environmental and social context of the predator–prey encounter. This study highlights the importance of chemical cues in the assessment of predation risk for a coral reef fish.  相似文献   

17.
Most animals begin life in eggs, protected and constrained by a capsule, shell, or other barrier. As embryos develop, their needs and abilities change, altering the costs and benefits of encapsulation, and the risks and opportunities of the outside world. When the cost/benefit ratio is better outside the egg, animals should hatch. Adaptive timing of hatching evolves in this context. However, many environmental variables affect the optimal timing of hatching so there is often no consistent best time. Across a broad range of animals, from flatworms and snails to frogs and birds, embryos hatch at different times or at different developmental stages in response to changing risks or opportunities. Embryos respond to many types of cues, assessed via different sensory modalities. Some responses appear simple. Others are surprisingly complex and sophisticated. Parents also manipulate the timing of hatching. The number and breadth of examples of cued hatching suggest that, in the absence of specific information, we should not assume that hatching timing is fixed. Our challenge now is to integrate information on the timing of hatching across taxa to better understand the diversity of patterns and how they are structured in relation to different types of environmental and developmental variation. As starting points for comparative studies, I: (1) suggest a framework based on heterokairy-individual, plastic variation in the rate, timing, or sequence of developmental events and processes-to describe patterns and mechanisms of variation in the timing of hatching; (2) briefly review the distribution of environmentally cued hatching across the three major clades of Bilateria, highlighting the diverse environmental factors and mechanisms involved; and (3) discuss factors that shape the diversity of plastic and fixed timing of hatching, drawing on evolutionary theory on phenotypic plasticity which directs our attention to fitness trade-offs, environmental heterogeneity, and predictive cues. Combining mechanistic and evolutionary perspectives is necessary because development changes organismal interactions with the environment. Integrative and comparative studies of the timing of hatching will improve our understanding of embryos as both evolving and developing organisms.  相似文献   

18.
Phenotypically plastic changes in response to variation in perceived predation risk are widespread, but little is known about if and how social environment modulates induced responses to predation risk. We investigated the influence of perceived predation risk (i.e. chemical cues from a predator) and social environment (i.e. one, two or 20 individuals reared together) on three‐spined stickleback (Gasterosteus aculeatus) morphology in a factorial common garden experiment. We found that exposure to chemical cues from potential predators did not influence growth or body condition or induce more robust morphological defences (i.e. lateral plate numbers and dorsal spine lengths). However, sticklebacks exposed to predator cues developed longer caudal peduncles and larger eyes as compared with fish from the control treatment. As these responses may improve sticklebacks’ ability to avoid piscine predation, they might be adaptive. Social environment/density also influenced expression of some traits, but these effects were independent of predation‐risk treatment effects. In general, these results suggest that apart from the classic morphological defence structures, which appear mostly constitutive, three‐spined sticklebacks are capable of expressing potentially adaptive morphological responses to chemical cues from potential predators.  相似文献   

19.
The ability of prey to detect predators directly affects their probability of survival. Chemical cues are known to be important for predator detection in aquatic environments, but the role of other potential cues is controversial. We tested for changes in behaviour of Rana temporaria tadpoles in response to chemical, visual, acoustic, and hydraulic cues originating from dragonfly larvae (Aeshna cyanea) and fish (Gasterosteus aculeatus). The greatest reduction in tadpole activity occurred when all cues were available, but activity was also significantly reduced by visual cues only. We did not find evidence for tadpoles lowering their activity in response to acoustic and hydraulic cues. There was no spatial avoidance of predators in our small experimental containers. The results show that anuran larvae indeed use vision for predator detection, while acoustic and hydraulic cues may be less important. Future studies of predator‐induced responses of tadpoles should not only concentrate on chemical cues but also consider visual stimuli. © 2012 The Linnean Society of London, Biological Journal of the Linnean Society, 2012, ??, ??–??.  相似文献   

20.
Animals face the risk of predation while engaging in regular activities, such as foraging, mate‐seeking, and reproducing. In order to avoid predation, prey can modify behavior to prevent capture. Pardosa milvina may climb in response to chemotactile cues of Hogna helluo, a larger cooccurring wolf spider, to avoid predation. The purpose of this study was to test the effects of the location of predator cues on the climbing response of P. milvina and to test how this antipredator behavior affected foraging success. In experimental arenas, when cues were on the bottom of the containers, P. milvina moved upward, and when cues were on the walls, individuals moved downward. These results suggest that P. milvina respond to H. helluo cues with general avoidance and do not automatically climb in response to the cues. As H. helluo spend most of their time on the ground, P. milvina may avoid predation by spending more time climbing in areas with H. helluo cues. The presence of predator cues significantly decreased foraging by P. milvina. But within the predator cue treatments, climbing ability had no effect on foraging, possibly due to the short height of the feeding arenas. Future studies are needed to determine if climbing by P. milvina in response to cues of H. helluo has direct and indirect negative effects on herbivores in the field.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号