首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Forty six new 1,4-epoxy-2-exo-aryl- and cis-2-aryl-4-hydroxytetrahydro-1-benzazepine derivatives were synthesized and fully characterized. All compounds were tested in vitro against both Trypanosoma cruzi and Leishmania chagasi parasites and also for cytotoxicity using Vero and THP-1 mammalian cell lines. Many of the evaluated compounds showed remarkable activity against the epimastigote and intracellular amastigote forms of T. cruzi, with IC50 values comparable with that of control drug nifurtimox, a nitrofuran derivative currently used in the treatment of Chagas’ disease. Other derivatives were found to have good activity against L. chagasi promastigotes, with low toxicity against the mammalian cells, but neither of them was active on intracellular amastigotes of L. chagasi infecting THP-1 macrophages.  相似文献   

2.
In the search for new therapeutic tools against diseases produced by kinetoplastid parasites five vanadyl complexes, [VIVO(L-2H)(phen)], including 1,10-phenanthroline (phen) and tridentate salicylaldehyde semicarbazone derivatives as ligands have been synthesized and characterized in the solid state and in solution by using different techniques. EPR suggested a distorted octahedral geometry with the tridentate semicarbazone occupying three equatorial positions and phen coordinated in an equatorial/axial mode. The compounds were evaluated in vitro on epimastigotes of Trypanosoma cruzi, causative agent of Chagas disease, Leishmania panamensis and Leishmania chagasi and on tumor cells. The complexes showed higher in vitro anti-trypanosomal activities than the reference drug Nifurtimox (IC50 values in the range 1.6-3.8 μM) and increased activities in respect to the free semicarbazone ligands. In vitro activity on promastigote and amastigote forms of Leishmania showed interesting results. The compounds [VO(L1-2H)(phen)] and [VO(L3-2H)(phen)], where L1 = 2-hydroxybenzaldehyde semicarbazone and L3 = 2-hydroxy-3-methoxybenzaldehyde semicarbazone, resulted active (IC50 2.74 and 2.75 μM, respectively, on promastigotes of L. panamensis; IC50 19.52 and 20.75 μM, respectively, on intracellular amastigotes of L. panamensis) and showed low toxicity on THP-1 mammalian cells (IC50 188.55 and 88.13 μM, respectively). In addition, the complexes showed cytotoxicity on human promyelocytic leukemia HL-60 cells with IC50 values of the same order of magnitude as cisplatin. The interaction of the complexes with DNA was demonstrated by different techniques, suggesting that this biomolecule could be a potential target either in the parasites or in tumor cells.  相似文献   

3.
《Phytomedicine》2014,21(12):1689-1694
Protozoan diseases, such as leishmaniasis, are a cause of considerable morbidity throughout the world, affecting millions every year. In this study, two triterpenic acids (maslinic and oleanolic acids) were isolated from Tunisian olive leaf extracts and their in vitro activity against the promastigotes stage of Leishmania (L.) infantum and Leishmania (L.) amazonensis was investigated. Maslinic acid showed the highest activity with an IC50 of 9.32 ± 1.654 and 12.460 ± 1.25 μg/ml against L. infantum and L. amazonensis, respectively. The mechanism of action of these drugs was investigated by detecting changes in the phosphatidylserine (PS) exposure, the plasma membrane permeability, the mitochondrial membrane potential and the ATP level production in the treated parasites. By using the fluorescent probe SYTOX® Green, both triterpenic acids showed that they produce a time-dependent plasma membrane permeabilization in the treated Leishmania species. In addition, spectrofluorimeteric data revealed the surface exposure of PS in promastigotes. Both molecules reduced the mitochondrial membrane potential and decreased the ATP levels to 15% in parasites treated with IC90 for 24 h. We conclude that the triterpenic acids tested in this study, show potential as future therapeutic alternative against leishmaniasis. Further studies are needed to confirm this.  相似文献   

4.
Chemotherapy against visceral leishmaniasis is associated with high toxicity and drug resistance. Leishmania parasites are purine auxotrophs that obtain their purines from exogenous sources. Nucleoside hydrolases release purines from nucleosides and are drug targets for anti-leishmanial drugs, absent in mammal cells. We investigated the substrate specificity of the Leishmania (L.) donovani recombinant nucleoside hydrolase NH36 and the inhibitory effect of the immucillins IA (ImmA), DIA (DADMe-ImmA), DIH (DADMe-ImmH), SMIH (SerMe-ImmH), IH (ImmH), DIG (DADMe-ImmG), SMIG (SerMe-ImmG) and SMIA (SerME-ImmA) on its enzymatic activity. The inhibitory effects of immucillins on the in vitro multiplication of L. (L.) infantum chagasi and L. (L.) amazonensis promastigotes were determined using 0.05–500 μM and, when needed, 0.01–50 nM of each drug. The inhibition on multiplication of L. (L.) infantum chagasi intracellular amastigotes in vitro was assayed using 0.5, 1, 5 and 10 μM of IA, IH and SMIH. The NH36 shows specificity for inosine, guanosine, adenosine, uridine and cytidine with preference for adenosine and inosine. IA, IH, DIH, DIG, SMIH and SMIG immucillins inhibited L. (L.) infantum chagasi and L. (L.) amazonensis promastigote growth in vitro at nanomolar to micromolar concentrations. Promastigote replication was also inhibited in a chemically defined medium without a nucleoside source. Addition of adenosine decreases the immucillin toxicity. IA and IH inhibited the NH36 enzymatic activity (Ki = 0.080 μM for IA and 0.019 μM for IH). IA, IH and SMIH at 10 μM concentration, reduced the in vitro amastigote replication inside mice macrophages by 95% with no apparent effect on macrophage viability. Transmission electron microscopy revealed global alterations and swelling of L. (L.) infantum chagasi promastigotes after treatment with IA and IH while SMIH treatment determined intense cytoplasm vacuolization, enlarged vesicles and altered kinetoplasts. Our results suggest that IA, IH and SMIH may provide new chemotherapy agents for leishmaniasis.  相似文献   

5.
Nature has provided inspiration for Drug Discovery studies and amphibian secretions have been used as a promising source of effective peptides which could be explored as novel drug prototypes for neglected parasitic diseases as Leishmaniasis and Chagas disease. In this study, we isolated four antimicrobial peptides (AMPs) from Phyllomedusa nordestina secretion, and studied their effectiveness against Leishmania (L.) infantum and Trypanosoma cruzi. The antiparasitic fractions were characterized by mass spectrometry and Edman degradation, leading to the identification of dermaseptins 1 and 4 and phylloseptins 7 and 8. T. cruzi trypomastigotes were susceptible to peptides, showing IC50 values in the range concentration of 0.25–0.68 μM. Leishmania (L.) infantum showed susceptibility to phylloseptin 7, presenting an IC50 value of 10 μM. Except for phylloseptin 7 which moderate showed cytotoxicity (IC50 = 34 μM), the peptides induced no cellular damage to mammalian cells. The lack of mitochondrial oxidative activity of parasites detected by the MTT assay, suggested that peptides were leishmanicidal and trypanocidal. By using the fluorescent probe SYTOX® Green, dermaseptins 1 and 4 and phylloseptins 7 and 8 showed time-dependent plasma membrane permeabilization of T. cruzi; phylloseptin 7 also showed a similar effect in Leishmania parasites. The present study demonstrates for the first time that AMPs target the plasma membrane of Leishmania and T. cruzi, leading to cellular death. Considering the potential of amphibian peptides against protozoan parasites and the reduced mammalian toxicity, they may contribute as scaffolds for drug design studies.  相似文献   

6.
Two new natural triterpenes, lantaninilic acid and lantoic acid, along with the known triterpenes lantadene A, and oleanolic, ursolic, betulinic, lantanolic, and camaric acid, were obtained from the aerial parts of Lantana camara through bioassay‐guided isolation, monitoring the in vitro antileishmanial activity against promastigotes of Leishmania major. Oleanolic acid ( 3 ), ursolic acid ( 4 ), lantadene A ( 5 ), and lantanilic acid ( 7 ) showed significant leishmanicidal activities with IC50 values of 53.0, 12.4, 20.4, and 21.3 μM , respectively. The IC50 value of ursolic acid ( 4 ; 12.4 μM ) was found to be comparable with that of the standard drugs, pentamidine (IC50 15.0 μM ) and amphotericin B (IC50 0.31 μM ). The in vitro activities of L. camara and its constituents against promastigotes of Leishmania major are reported here for the first time.  相似文献   

7.
We have previously demonstrated that yangambin, a lignan obtained from Ocotea duckei Vattimo (Lauraceae), shows antileishmanial activity against promastigote forms of Leishmania chagasi and Leishmania amazonensis. The aim of this study was to determine the in vitro effects of yangambin against these parasites using electron and confocal microscopy. L. chagasi and L. amazonensis promastigotes were incubated respectively with 50 μg/mL and 65 μg/mL of pure yangambin and stained with acridine orange. Treated-parasites showed significant alterations in fluorescence emission pattern and cell morphology when compared with control cells, including the appearance of abnormal round-shaped cells, loss of cell motility, nuclear pyknosis, cytoplasm acidification and increased number of acidic vesicular organelles (AVOs), suggesting important physiological changes. Ultrastructural analysis of treated-promatigotes showed characteristics of cell death by apoptosis as well as by autophagy. The presence of parasites exhibiting multiples nuclei suggests that yangambin may also affect the microtubule dynamic in both Leishmania species. Taken together our results show that yangambin is a promissing agent against Leishmania.  相似文献   

8.
Hundreds of millions of people worldwide are affected by Chagas’ disease caused by Trypanosoma cruzi. Since the current treatment lack efficacy, specificity, and suffers from several side-effects, novel therapeutics are mandatory. Natural products from endophytic fungi have been useful sources of lead compounds. In this study, three lactones isolated from an endophytic strain culture were in silico evaluated for rational guidance of their bioassay screening. All lactones displayed in vitro activity against T. cruzi epimastigote and trypomastigote forms. Notably, the IC50 values of (+)-phomolactone were lower than benznidazole (0.86 vs. 30.78 μM against epimastigotes and 0.41 vs. 4.88 μM against trypomastigotes). Target-based studies suggested that lactones displayed their trypanocidal activities due to T. cruzi glyceraldehyde-3-phosphate dehydrogenase (TcGAPDH) inhibition, and the binding free energy for all three TcGAPDH-lactone complexes suggested that (+)-phomolactone has a lower score value (−3.38), corroborating with IC50 assays. These results highlight the potential of these lactones for further anti-T. cruzi drug development.  相似文献   

9.
Drug repositioning has been considered a promising approach to discover novel treatments against neglected diseases. Among the major protozoan diseases, leishmaniasis remains a public health threat with few therapeutic alternatives, affecting 12 million people in 98 countries. In this study, we report the in vitro antileishmanial activity of the imidazole drugs clotrimazole, and for the first time in literature, econazole and bifonazole and their potential action to affect the regulation of reactive oxygen species (ROS) of the parasites. The lethal action of the imidazoles was investigated using spectrofluorimetric techniques to detect ROS content, plasma membrane permeability, and mitochondrial membrane potential. The imidazoles showed activity against L. (L.) infantum chagasi promastigotes with IC50 values in a range of 2–8 μM; econazole was also effective against Leishmania intracellular amastigotes, with an IC50 value of 11 μM, a similar in vitro effectiveness to miltefosine. Leishmania promastigotes rapidly up-regulated the ROS release after incubation with the imidazoles, but econazole showed a marked increase in ROS content of approximately 1,900 % higher than untreated parasites. When using SYTOX® Green as a fluorescent probe, the imidazoles demonstrated considerable interference in plasma membrane permeability at the early time of incubation; econazole resulted in the higher influx of SYTOX® Green at 60 min. Despite cellular alterations, no depolarization could be observed to the mitochondrial membrane potential of Leishmania until 60 min. The lethal action of econazole involved strong permeabilization of plasma membrane of promastigotes, with an overloaded ROS content that contributed to the death of parasites. Affecting the ROS regulation of Leishmania via small molecules would be an interesting strategy for new drugs.  相似文献   

10.
A series of 1-aryl-4-(4,5-dihydro-1H-imidazol-2-yl)-1H-pyrazoles (4ag) and 5-amino-1-aryl-4-(4,5-dihydro-1H-imidazol-2-yl)-1H-pyrazoles (5ag) were synthesized and evaluated in vitro against three Leishmania species: L. amazonensis, L. braziliensis and L. infantum (L. chagasi syn.). The cytotoxicity was assessed. Among the derivatives examined, six compounds emerged as the most active on promastigotes forms of L. amazonensis with IC50 values ranging from 15 to 60 μM. The reference drug pentamidine presented IC50 = 10 μM. However, these new compounds were less cytotoxic than pentamidine. Based on these results, the more promising derivative 5d was tested further in vivo. This compound showed inhibition of the progression of cutaneous lesions in CBA mice infected with L. amazonensis relative to an untreated control.  相似文献   

11.
《Phytomedicine》2014,21(5):676-681
Leishmaniasis and Chagas disease are infectious diseases caused by parasite Leishmania sp. and Trypanosoma cruzi, respectively, and are included among the most neglected diseases in several underdeveloped and developing countries, with an urgent demand for new drugs. Considering the antiparasitic potential of MeOH extract from leaves of Casearia sylvestris Sw. (Salicaceae), a bioguided fractionation was conducted and afforded four active clerodane diterpenes (casearins A, B, G, and J). The obtained results indicated a superior efficacy of tested casearins against trypomastigotes of T. cruzi, with IC50 values ranging from 0.53 to 2.77 μg/ml. Leishmania infantum promastigotes were also susceptible to casearins, with IC50 values in a range between 4.45 and 9.48 μg/ml. These substances were also evaluated for mammalian cytotoxicity against NCTC cells resulting in 50% cytotoxic concentrations (CC50) ranging from 1.46 to 13.76 μg/ml. Additionally, the action of casearins on parasite membranes was investigated using the fluorescent probe SYTOX Green. The obtained results demonstrated a strong interaction of casearins A and B to the plasma membrane of T. cruzi parasites, corroborating their higher efficacy against these parasites. In contrast, the tested casearins induced no alteration in the permeability of plasma membrane of Leishmania parasites, suggesting that biochemical differences between Leishmania and T. cruzi plasma membrane might have contributed to the target effect of casearins on trypomastigotes. Thus, considering the importance of studying novel and selective drug candidates against protozoans, casearins A, B, G, and J could be used as tools to future drug design studies.  相似文献   

12.
A new family of antimicrotubule drugs named (3-haloacetamidobenzoyl) ureas and ethyl 3-haloacetamidobenzoates were found to be cytotoxic to the Leishmania parasite protozoa. While the benzoylureas were shown to strongly inhibit in vitro mammalian brain microtubule assembly, the ethyl ester derivatives were characterized as very poor inhibitors of this process. Ethyl 3-chloroacetamidobenzoate, MF29, was found to be the most efficient drug on the promastigote stage of three Leishmania species (IC50: 0.3–1.8 μM). MF29 maintained its activity against the clinical relevant intracellular stage of L. mexicana with IC50 value of 0.33 μM. It was the only compound that exhibits a high activity on all the Leishmania species tested. This compound appeared to alter parasite microtubule organisation as demonstrated by using antibodies directed against microtubule components and more precisely the class of microtubule decorated by the MAP2-like protein. It is interesting to notice that this MAP2-like protein was identified for the first time in a Leishmania parasite  相似文献   

13.
Pyrazole and propenone quinoxaline derivatives were tested against intracellular forms of Leishmania peruviana and Trypanosoma cruzi. Both series were tested for toxicity against proliferative and non-proliferative cells. The pyrazole quinoxaline series was quite inactive against T. cruzi; however, the compound 2,6-dimethyl-3-f-quinoxaline 1,4-dioxide was found to inhibit 50% of Leishmania growth at 8.9 μM, with no impact against proliferative kidney cells and with low toxicity against THP-1 cells and murine macrophages. The compounds belonging to the propenone quinoxaline series were moderately active against T. cruzi. Among these compounds, two were particularly interesting, (2E)-1-(7-fluoro-3-methyl-quinoxalin-2-yl)-3-(3,4,5-trimethoxy-phenyl)-propenone and (2E)-3-(3,4,5-trimethoxy-phenyl)-1-(3,6,7-trimethyl-quinoxalin-2-yl)-propenone. The former possessed selective activity against proliferative cells (cancer and parasites) and was inactive against murine peritoneal macrophages; the latter was active against Leishmania and inactive against the other tested cells. Furthermore, insilico studies showed that both series respected Lipinski’s rules and that they confirmed a linear correlation between trypanocidal activities and LogP. Docking studies revealed that compounds of the second series could interact with the poly (ADP-ribose) polymerase protein of Trypanosoma cruzi.  相似文献   

14.
This in silico and in vitro comparative study was designed to evaluate the effectiveness of some biurets (K1 to K8) and glucantime against Leishmania major and Leishmania infantum promastigotes. Overall, eight experimental ligands and glucantime were docked using AutoDock 4.3 program into the active sites of Leishmania major and Leishmania infantum pteridine reductase 1, which were modeled using homology modeling programs. The colorimetric MTT assay was used to find L. major and L. infantum promastigotes viability at different concentrations of biuret derivatives in a concentration and time-dependent manner and the obtained results were expressed as 50% and 90% of inhibitory concentration (IC50 and IC90). In silico method showed that out of eight experimental ligands, four compounds were more active on pteridine reductase 1. K3 was the most active against L. major promastigotes with an IC50 of 6.8 μM and an IC90 of 40.2 μM, whereas for L. infantum promastigotes was K8 with IC50 of 7.8 μM. The phenylethyl derivative (K7) showed less toxicity (IC50s > 60 μM) in both Leishmania strains. Glucantime displayed less growth inhibition in concentration of about 20 μM. In silico and especially docking results in a recent study were in accordance with the in vitro activity of these compounds in presented study and compound K3, K2 and K8 showed reasonable levels of selectivity for the Leishmania pteridine reductase 1.  相似文献   

15.
In the search for new therapeutic tools against parasitic diseases caused by the Kinetoplastids Leishmania spp. and Trypanosoma cruzi, a novel gold(I) triphenylphosphine complex with the bioactive coligand pyridine-2-thiol N-oxide (mpo) was synthesized and characterized by using analytical and conductometric measurements, electrospray ionization-mass spectrometry (ESI) and electronic, FTIR and 1H and 31P NMR spectroscopies. A dinuclear structure is suggested for the complex. At a 1 microM concentration the complex induced in vitro after 30 min a potent leishmanicidal effect (LD50) against promastigotes of Leishmania (L.) mexicana while on Leishmania (V.) braziliensis with the same concentration only a leishmanistatic effect (IC75) was observed 48 h after treatment. Similar differential susceptibilities were also found when testing the ligand mpo, but at a higher dose (5 μM). In addition, the compound showed growth inhibitory effect on Dm28c T. cruzi epimastigotes in culture (IC50 0.09 μM), being even more active than the anti-trypanosomal reference drug Nifurtimox (IC50 6 μM). DNA interaction studies showed that this biomolecule does not constitute a main target for the mpo complex currently tested. Instead, the significant potentiation of the antiproliferative effect against both Leishmania species and T. cruzi could be associated to the inhibition of NADH fumarate reductase, a kinetoplastid parasite-specific enzyme absent in the host. Furthermore, due to its low unspecific cytotoxicity on mammalian cells (J774 macrophages), the new gold complex showed a selective anti-parasite activity. It constitutes a promising new potent chemotherapeutic alternative to be evaluated in vivo in experimental models of leishmaniasis and Chagas´ disease.  相似文献   

16.
The chemotherapy of schistosomiasis remains centered in the use of praziquantel, however, there has been growing resistant parasites to this drug. Thus, the aim of this work was to evaluate in vitro schistosomicidal activity of the hexanes/dichloromethane 1 : 1 extract of Brazilian green propolis (Pex), as well as its major isolated compounds artepillin C, caffeic acid, coumaric acid and drupanin against Schistosoma mansoni. The Pex was active by displaying an IC50 value of 36.60 (26.26–51.13) μg mL?1 at 72 h against adult worms of S. mansoni. The major isolated compounds were inactive with IC50 values >100 μM, however, the combination of the isolated compounds (CM) in the same range found in the extract was active with an IC50 value of 41.17 (39.89–42.46) μg mL?1 at 72 h. Pex and CM induced alteration in the tegument of S. mansoni, and caffeic acid caused alteration in egg's maturation. Pex displayed in vitro activity against adult worms’ and eggs’ viability of S. mansoni, which opens new perspectives to better understand the synergistic and/or additive effects promoted by both Pex extract and CM against schistosomiasis features.  相似文献   

17.
The objective of this study was to develop a novel liposomal formulation, containing phosphatidylserine (PS), of buparvaquone (BPQ) and to evaluate its in vivo effectiveness in Leishmania (L.) infantum chagasi-infected hamsters. The activity of BPQ was evaluated against both the promastigote forms of different Leishmania species and the intracellular amastigotes of L. (L.) infantum chagasi. Buparvaquone was entrapped in PS-liposomes (BPQ–PS-LP), and the drug was quantified by ultra-high-performance liquid chromatography. The treatment was quantified by detecting the RNA of the living amastigotes in the spleen and the liver by real-time PCR. In vitro assays with L. (L.) infantum chagasi intracellular amastigotes were performed in peritoneal macrophages for the evaluation of the 50% inhibitory concentration (IC50). BPQ–PS-LP at 0.33 mg/kg/day for eight consecutive days reduced the number of amastigotes by 89.4% (P < 0.05) in the spleen and by 67.2% (P > 0.05) in the liver, compared to 84.3% (P < 0.05) and 99.7% (P < 0.05), respectively, following Glucantime® treatment at 50 mg/kg/day. Free BPQ at 20 mg/kg/day failed to treat the hamsters when compared to the untreated group. BPQ was significantly (P < 0.05) selective against L. (L.) infantum chagasi intracellular amastigotes, with an IC50 value of 1.5 μM; no in vitro mammalian cytotoxicity could be detected. Other cutaneous species were also susceptible to BPQ, with IC50 values in the range 1–4 μM. BPQ–PS-LP caused a significant reduction in the parasite burden at a 60-fold lower dose than did the free BPQ. These results show the potential of PS-liposome formulations for the successful targeted delivery of BPQ in visceral leishmaniasis.  相似文献   

18.
Leishmaniasis is a tropical zoonotic disease. It is found in 98 countries, with an estimated 1.3 million people being affected annually. During the life cycle, the Leishmania parasite alternates between promastigote and amastigote forms. The first line treatment for leishmaniasis are the pentavalent antimonials, such as N-methylglucamine antimoniate (Glucantime®) and sodium stibogluconate (Pentostam®). These drugs are commonly related to be associated with dangerous side effects such as cardiotoxicity, nephrotoxicity, hepatotoxicity, and pancreatitis. Considering these aspects, this work aimed to obtain a new series of limonene-acylthiosemicarbazides hybrids as an alternative for the treatment of leishmaniasis. For this, promastigotes, axenic amastigotes, and intracellular amastigotes of Leishmania amazonensis were used in the antiproliferative assay; J774-A1 macrophages for the cytotoxicity assay; and electron microscopy techniques were performed to analyze the morphology and ultrastructure of parasites. ATZ−S-04 compound showed the best result in both tests. Its IC50, in promastigotes, axenic amastigotes and intracellular amastigotes was 0.35±0.08 μM, 0.49±0.06 μM, and 15.90±2.88 μM, respectively. Cytotoxicity assay determined a CC50 of 16.10±1.76 μM for the same compound. By electron microscopy, it was observed that ATZ−S-04 affected mainly the Golgi complex, in addition to morphological changes in promastigote forms of L. amazonensis.  相似文献   

19.
Leishmaniasis chemotherapy is a bottleneck in disease treatment. Although available, chemotherapy is limited, toxic, painful, and does not lead to parasite clearance, with parasite resistance also being reported. Therefore, new therapeutic options are being investigated, such as plant-derived anti-parasitic compounds. Amentoflavone is the most common biflavonoid in the Selaginella genus, and its antileishmanial activity has already been described on Leishmania amazonensis intracellular amastigotes but its direct action on the parasite is controversial. In this work we demonstrate that amentoflavone is active on L. amazonensis promastigotes (IC50 = 28.5 ± 2.0 μM) and amastigotes. Transmission electron microscopy of amentoflavone-treated promastigotes showed myelin-like figures, autophagosomes as well as enlarged mitochondria. Treated parasites also presented multiple lipid droplets and altered basal body organization. Similarly, intracellular amastigotes presented swollen mitochondria, membrane fragments in the lumen of the flagellar pocket as well as autophagic vacuoles. Flow cytometric analysis after TMRE staining showed that amentoflavone strongly decreased mitochondrial membrane potential. In silico analysis shows that amentoflavone physic-chemical, drug-likeness and bioavailability characteristics suggest it might be suitable for oral administration. We concluded that amentoflavone presents a direct effect on L. amazonensis parasites, causing mitochondrial dysfunction and parasite killing. Therefore, all results point for the potential of amentoflavone as a promising candidate for conducting advanced studies for the development of drugs against leishmaniasis.  相似文献   

20.
Sixteen aromatic Morita–Baylis–Hillman adducts (MBHA) 116 were efficiently synthesized in a one step Morita–Baylis–Hillman reaction (MBHR) involving commercial aldehydes with methyl acrylate or acrylonitrile (81–100% yields) without the formation of side products on DABCO catalysis and at low temperature (0 °C). The toxicities of these compounds were assessed against promastigote form of Leishmania amazonensis and Leishmania chagasi. The low synthetic cost of these MBHA, green synthetic protocols, easy one-step synthesis from commercially available and cheap reagents as well as the very good antileishmanial activity obtained for 14 and 16 (IC50 values of 6.88 μg mL−1 and 11.06 μg mL−1 respectively on L. amazonensis; 9.58 μg mL−1 and 14.34 μg mL−1 respectively on L. chagasi) indicates that these MBHA can be a novel and promising class of anti-parasitic compounds.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号