首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 620 毫秒
1.
Ye Z  Wang N  Xia P  Wang E  Yuan Y  Guo Q 《Neurochemical research》2012,37(2):321-329
Parecoxib is a recently described novel COX-2 inhibitor whose functional significance and neuroprotective mechanisms remain elusive. Therefore, in this study, we aimed to investigate whether delayed administration of parecoxib inhibited mitochondria-mediated neuronal apoptosis induced by ischemic reperfusion injury via phosphorylating Akt and its downstream target protein, glycogen synthase kinase 3β (GSK-3β). Adult male Sprague–Dawley rats were administered parecoxib (10 or 30 mg kg−1, IP) or isotonic saline twice a day starting 24 h after middle cerebral artery occlusion (MCAO) for three consecutive days. Cerebral infarct volume, apoptotic neuron, caspase-3 immunoreactivity and the protein expression of p-Akt, p-GSK-3β and Cytochrome C in cerebral ischemic cortex were evaluated at 96 h after reperfusion. Parecoxib significantly diminished infarct volume and attenuated neuron apoptosis in a dose-independent manner, compared with MCAO group alone. Increased p-Akt and p-GSK-3β was observed in the ischemic penumbra of parecoxib group after stroke. Moreover, parecoxib also reduced the release of Cytochrome C from mitochondrial into cytosol and attenuated the caspase-3 immunoreactivity in the penumbra. Taken together, these results suggested that parecoxib ameliorated postischemic mitochondria-mediated neuronal apoptosis induced by focal cerebral ischemia in rats and this neuroprotective potential is involved in phosphorylation of Akt and GSK-3β.  相似文献   

2.
Bcl-2 protects against both apoptotic and necrotic death induced by several cerebral insults. We and others have previously demonstrated that defective herpes simplex virus vectors expressing Bcl-2 protect against various insults in vitro and in vivo, including cerebral ischemia. Because the infarct margin may be a region that is most amenable to treatment, we first determined whether gene transfer to the infarct margin is possible using a focal ischemia model. Since ischemic injury with and without reperfusion may occur by different mechanisms, we also determined whether Bcl-2 protects against focal cerebral ischemic injury either with or without reperfusion in rats. Bax expression, cytochrome c translocation and activated caspase-3 expression were also assessed. Viral vectors overexpressing Bcl-2 were delivered to the infarct margin. Reperfusion resulted in larger infarcts than permanent occlusion. Bcl-2 overexpression significantly improved neuron survival in both ischemia models. Bcl-2 overexpression did not alter overall Bax expression, but inhibited cytosolic accumulation of cytochrome c and caspase-3 activation. Thus, we provide the first evidence that gene transfer to the infarct margin is feasible, that overexpression of Bcl-2 protects against damage to the infarct margin induced by ischemia with and without reperfusion, and that Bcl-2 overexpression using gene therapy attenuates apoptosis-related proteins. This suggests a potential therapeutic strategy for stroke.  相似文献   

3.
Although ischemia-reperfusion (I/R) of small intestine is known to induce lung cell apoptosis, there is little information on intracellular and extracellular molecular mechanisms. Here, we investigated the mechanisms of apoptosis including the expression of Fas, Fas ligand (FasL), Bid, Bax, Bcl-2, cytochrome c, and activated caspase-3 in the rat lung at various time-points (0–24 h) of reperfusion after 1-h ischemia of small intestine. As assessed by TUNEL, the number of apoptotic epithelial cells, which were subsequently identified as type II alveolar epithelial cells by electron microscopy and immunohistochemical double-staining, increased at 3 h of reperfusion in the lung. However, intravenous injections of anti-TNF-α antibody decreased the number of TUNEL-positive cells, indicating involvement of tumor necrosis factor-α (TNF-α) in the induction of lung cell apoptosis. Western blotting and/or immunohistochemistry revealed a marked up-regulation of Fas, FasL, Bid, Bax, cytochrome c and activated caspase-3 and down-regulation of Bcl-2 in lung epithelial and stromal cells at 3 h of reperfusion. Our results indicate that I/R of small intestine results in apoptosis of rat alveolar type II cells through a series of events including systemic TNF-α, activation of two apoptotic signaling pathways and mitochondrial translocation of Bid.  相似文献   

4.
5.
Sun M  Zhao Y  Gu Y  Xu C 《Amino acids》2012,42(5):1735-1747
Taurine is reported to reduce tissue damage induced by inflammation and to protect the brain against experimental stroke. The objective of this study was to investigate whether taurine reduced ischemic brain damage through suppressing inflammation related to poly (ADP-ribose) polymerase (PARP) and nuclear factor-kappaB (NF-κB) in a rat model of stroke. Rats received 2 h ischemia by intraluminal filament and were then reperfused. Taurine (50 mg/kg) was administered intravenously 1 h after ischemia. Treatment with taurine markedly reduced neurological deficits, lessened brain swelling, attenuated cell death, and decreased the infarct volume 72 h after ischemia. Our data showed the up-regulation of PARP and NF-κB p65 in cytosolic fractions in the core and nuclear fractions in the penumbra and core, and the increases in the nuclear poly (ADP-ribose) levels and the decreases in the intracellular NAD+ levels in the penumbra and core at 22 h of reperfusion; these changes were reversed by taurine. Moreover, taurine significantly reduced the levels of tumor necrosis factor-α, interleukin-1β, inducible nitric oxide synthase, and intracellular adhesion molecule-1, lessened the activities of myeloperoxidase and attenuated the infiltration of neutrophils in the penumbra and core at 22 h of reperfusion. These data demonstrate that suppressing the inflammatory reaction related to PARP and NF-κB-driven expression of inflammatory mediators may be one mechanism of taurine against ischemic stroke.  相似文献   

6.
Apoptosis plays an essential role in ischemic stroke pathogenesis. Research on the process of neuronal apoptosis in models of ischemic brain injury seems promising. The role of growth arrest and DNA-damage-inducible protein 45 beta (Gadd45b) in brain ischemia has not been fully examined to date. This study aims to investigate the function of Gadd45b in ischemia-induced apoptosis. Adult male Sprague-Dawley rats were subjected to brain ischemia by middle cerebral artery occlusion (MCAO). RNA interference (RNAi) system, which is mediated by a lentiviral vector (LV), was stereotaxically injected into the ipsilateral lateral ventricle to knockdown Gadd45b expression. Neurologic scores and infarct volumes were assessed 24 h after reperfusion. Apoptosis-related molecules were studied using immunohistochemistry and Western blot analysis. We found that Gadd45b-RNAi significantly increased infarct volumes and worsened the outcome of transient focal cerebral ischemia. Gadd45b-RNAi also significantly increased neuronal apoptosis as indicated by increased levels of Bax and active caspase-3, and decreased levels of Bcl-2. These results indicate that Gadd45b is a beneficial mediator of neuronal apoptosis.  相似文献   

7.
To determine whether the cardioprotection effect of fluvastatin mediates by toll-like receptor 4 (TLR4) signaling pathway, fifty Sprague–Dawley rats were randomly divided into five groups: sham operation group, ischemia/reperfusion (I/R) group, fluvastatin groups (high-dosage, medium-dosage, low-dosage, n = 10 in each group). Except sham operation group, the rest four groups of rats were artificially afflicted with coronary occlusion for 30 min, then reperfusion 2 h. Light microscope and transmission electronic microscope were used to observe structural changes of myocardium. RT–PCR was used to measure TLR4 mRNA expression level, TLR4 protein expression was detected by immunohistochemistry. Western blot was used to measure myocardial NF-κB protein level; ELISA was used to measure the level of TNF-α in myocardium. The results demonstrated that fluvastatin treatment markedly decreased ischemic injury caused by ischemia/reperfusion, and inhibited the expression levels of TLR4, TNF-α and NF-κB, all of which up-regulated by ischemia/reperfusion. Taken together, our results suggest that proper dosage of fluvastatin may have protective effect on the ischemic injury mediated by ischemia/reperfusion in the hearts, which might be associated with inhibition of TLR4 signaling pathway and inflammatory response during ischemia/reperfusion.  相似文献   

8.
Bid, a member of the pro-apoptotic Bcl-2 protein family, is activated through caspase-8-mediated cleavage into a truncated form (p15 tBid) during TNF-α(tumor necrosis factor α)-induced apoptosis. Activated tBid can induce Bax oligomerization and translocation to mitochondria, triggering the release of cytochrome c, caspase-3 activation and cell apoptosis. However, it is debatable that whether Bid and tBid can interact directly with Bax in living cells. In this study, we used confocal fluorescence microscope, combined with both FRET (fluorescence resonance energy transfer) and acceptor photobleaching techniques, to study the dynamic interaction between Bid and Bax during TNF-α-induced apoptosis in single living cell. In ASTC-a-1 cells, full length Bid induced Bax translocation to mitochondria by directly interacting with Bax transiently in response to TNF-α treatment before cell shrinkage. Next, we demonstrated that, in both ASTC-a-1 and HeLa cells, Bid was not cleaved before cell shrinkage even under the condition that caspase-8 had been activated, but in MCF-7 cells Bid was cleaved. In addition, in ASTC-a-1 cells, caspase-3 activation was a biphasic process and Bid was cleaved after the second activation of caspase-3. In summary, these findings indicate that, FL-Bid (full length-Bid) directly regulated the activation of Bax during TNF-α-induced apoptosis in ASTC-a-1 cells and that the cleavage of Bid occurred in advanced apoptosis.  相似文献   

9.
A mild cerebral ischemic insult, also known as ischemic preconditioning (IPC), confers transient tolerance to a subsequent ischemic challenge in the brain. This study was conducted to investigate whether bone morphogenetic protein-7 (BMP-7) is involved in neuroprotection elicited by IPC in a rat model of ischemia. Ischemic tolerance was induced in rats by IPC (15 min middle cerebral artery occlusion, MCAO) at 48 h before lethal ischemia (2 h MCAO). The present data showed that IPC increased BMP-7 mRNA and protein expression after 24 h reperfusion following ischemia in the brain. In rats of ischemia, IPC-induced reduction of cerebral infarct volume and improvement of neuronal morphology were attenuated when BMP-7 was inhibited either by antagonist noggin or short interfering RNA (siRNA) pre-treatment. Besides, cerebral IPC-induced up-regulation of B-cell lymphoma 2 (Bcl-2) and down-regulation of cleaved caspase-3 at 24 h after ischemia/reperfusion (I/R) injury were reversed via inhibition of BMP-7. These findings indicate that BMP-7 mediates IPC-induced tolerance to cerebral I/R, probably through inhibition of apoptosis.  相似文献   

10.
11.
Ischemic post-conditioning (Post-cond) is a phenomenon in which intermittent interruptions of blood flow in the early phase of reperfusion can protect organ from ischemia/reperfusion (I/R) injury. Recent studies demonstrated ischemic Post-cond reduced infarct size in cerebral I/R injury. However, the molecular mechanisms underlying this phenomenon are not completely understood. As inflammation is known to be detrimental to the neurological outcome during the acute phase after stroke, we investigated whether ischemic Post-cond played its protective role in preventing post-ischemic inflammation in the rat middle cerebral artery occlusion model. Rats were treated with ischemic Post-cond after 60 min of occlusion (beginning of reperfusion). The infarct volume and myeloperoxidase activity were assessed at 24 h. The lipid peroxidation levels was evaluated by malondialdehyde assay and the expressions of interleukin-1β, tumor necrosis factor-α, and intercellular adhesion molecule 1 were studied by RT-PCR or western blotting. Ischemic Post-cond decreased myeloperoxidase activity and expressions of interleukin-1β, tumor necrosis factor-α, and intercellular adhesion molecule 1. Ischemic Post-cond also reduced infarct volume and lipid peroxidation levels. These findings indicated that ischemic Post-cond may be a promising neuroprotective approach for focal cerebral I/R injury and it is achieved, at least in part, by the inhibition of inflammation.  相似文献   

12.
Apoptosis is one of the major mechanisms of cell death during cerebral ischemia and reperfusion injury. Flurbiprofen has been shown to reduce cerebral ischemia/reperfusion injury in both focal and global cerebral ischemia models, but the mechanism remains unclear. This study aimed to investigate the potential association between the neuroprotective effect of flurbiprofen and the apoptosis inhibiting signaling pathways, in particularly the Akt/GSK-3β pathway. A focal cerebral ischemia rat model was subjected to middle cerebral artery occlusion (MCAO) for 120 min and then treated with flurbiprofen at the onset of reperfusion. The infarct volume and the neurological deficit scores were evaluated at 24 h after reperfusion. Cell apoptosis, apoptosis-related proteins and the levels of p-Akt and p-GSK-3β in ischemic penumbra were measured using TUNEL and western blot. The results showed that administration of flurbiprofen at the doses of 5 and 10 mg/kg significantly attenuated brain ischemia/reperfusion injury, as shown by a reduction in the infarct volume, neurological deficit scores and cell apoptosis. Moreover, flurbiprofen not only inhibited the expression of Bax protein and p-GSK-3β, but also increased the expression of Bcl-2 protein, the ratio of Bcl-2/Bax as well as the P-Akt level. Taken together, these results suggest that flurbiprofen protects the brain from ischemia/reperfusion injury by reducing apoptosis and this neuroprotective effect may be partly due to the activation of Akt/GSK-3β signaling pathway.  相似文献   

13.
Puerarin, a major isoflavonoid derived from the Chinese medical herb Radix puerariae (kudzu root), has been reported to be useful in the treatment of various cardiovascular diseases. In the present study, we examined the detailed mechanisms underlying the inhibitory effects of puerarin on inflammatory and apoptotic responses induced by middle cerebral artery occlusion (MCAO) in rats. Treatment of puerarin (25 and 50 mg/kg; intraperitoneally) 10 min before MCAO dose-dependently attenuated focal cerebral ischemia in rats. Administration of puerarin at 50 mg/kg, showed marked reduction in infarct size compared with that of control rats. MCAO-induced focal cerebral ischemia was associated with increases in hypoxia-inducible factor-1α (HIF-1α), inducible nitric oxide synthase (iNOS), and active caspase-3 protein expressions as well as the mRNA expression of tumor necrosis factor-α (TNF-α) in ischemic regions. These expressions were markedly inhibited by the treatment of puerarin (50 mg/kg). In addition, puerarin (10~50 μM) concentration-dependently inhibited respiratory bursts in human neutrophils stimulated by formyl-Met-Leu-Phe. On the other hand, puerarin (20~500 μM) did not significantly inhibit the thiobarbituric acid-reactive substance reaction in rat brain homogenates. An electron spin resonance (ESR) method was conducted on the scavenging activity of puerarin on the free radicals formed. Puerarin (200 and 500 μM) did not reduce the ESR signal intensity of hydroxyl radical formation. In conclusion, we demonstrate that puerarin is a potent neuroprotective agent on MCAO-induced focal cerebral ischemia in vivo. This effect may be mediated, at least in part, by the inhibition of both HIF-1α and TNF-α activation, followed by the inhibition of inflammatory responses (i.e., iNOS expression), apoptosis formation (active caspase-3), and neutrophil activation, resulting in a reduction in the infarct volume in ischemia-reperfusion brain injury. Thus, puerarin treatment may represent a novel approach to lowering the risk of or improving function in ischemia-reperfusion brain injury-related disorders.  相似文献   

14.
Ming Sun  Yi Gu  Yumei Zhao  Chao Xu 《Amino acids》2011,40(5):1419-1429
Taurine, an abundant amino acid in the nervous system, is reported to reduce ischemic brain injury in a dose-dependent manner. This study was designed to investigate whether taurine protected brain against experimental stroke through affecting mitochondria-mediated cell death pathway. Rats were subjected to 2-h ischemia by intraluminal filament, and then reperfused for 22 h. It was confirmed again that taurine (50 mg/kg) administered intravenously 1 h after ischemia markedly improved neurological function and decreased infarct volume at 22 h after reperfusion. In vehicle-treated rats, the levels of intracellular ATP and the levels of cytosolic and mitochondrial Bcl-xL in the penumbra and core were markedly reduced, while the levels of cytosolic Bax in the core and mitochondrial Bax in the penumbra and core were enhanced significantly. There was a decrease in cytochrome C in mitochondria and an increase in cytochrome C in the cytosol of the penumbra and core. These changes were reversed by taurine. Furthermore, taurine inhibited the activation of calpain and caspase-3, reduced the degradation of αII-spectrin, and attenuated the necrotic and apoptotic cell death in the penumbra and core. These data demonstrated that preserving the mitochondrial function and blocking the mitochondria-mediated cell death pathway may be one mechanism of taurine’s action against brain ischemia.  相似文献   

15.
《Phytomedicine》2015,22(2):283-289
Sodium danshensu (SDSS), the sodium salt of danshensu (DSS), has the same pharmacological effects as DSS. In the present study, we aimed to investigate the neuroprotective effect and possible mechanism of SDSS against cerebral ischemic/reperfusion injury. Sprague-Dawley rats were randomly divided into four groups: sham, control, 30 mg/kg and 60 mg/kg SDSS. Cerebral ischemia was induced by 2 h of middle cerebral artery occlusion (MCAO). Neurological functional deficits were evaluated according to the modified neurological severity score (mNSS); cerebral infarct volume and histological damage were measured by TTC or H–E staining. In addition, the number of apoptotic cells and caspase 3/7 activity were assessed by TUNEL or Caspase-Glo assay. And the expression of apoptosis-regulatory proteins and the PI3K/Akt pathway were investigated by western blotting. Our results showed that treatment with SDSS for 5 days after MCAO remarkably improved neurologic deficits and survival rate, reduced infarct volume and the number of dead neurons. SDSS also decreased the number of apoptotic cells, regulated the expression of Bcl-2 and Bax, and increased the ratio of Bcl-2/Bax. Further study revealed that treatment with SDSS also increased the level of p-Akt and p-GSK-3β. Taken together, our results suggest that SDSS has the neuroprotective effect against cerebral I/R injury, and the potential mechanism might to inhibition of apoptosis through activating the PI3K/Akt signal pathway.  相似文献   

16.
Adenosine serves a number of important physiological roles in the body, which is the most widely studied endogenous signal molecules, and the underlying mechanism responsible for such cardioprotection needs more understood, particularly adenosine postconditioning in myocardial ischemia/reperfusion model. In the present study we performed to investigate the inflammatory response of adenosine postconditioning on the cardiac TNF-α expression and NF-κB activation. Eighteen rats were randomly divided into 4 groups: (1) Group A: sham operation group; (2) Group B: ischemia/reperfusion group; (3) Group C: postconditioned groups, four cycles of 30-s reperfusion/30-s occlusion were started immediately after release of the index ischemia (n = 6 each); (4) Group D: adenosine was infused 40 μg kg−1 min−1 5 min before the onset of reperfusion without subsequent postconditioning cycles. Hearts were removed at the termination of experiments, which were preserved in frozen tube and stored at −70°C refrigerator for Measurement of malonyldialdehyde (MDA), activities of the NF-κB and TNF-α and IL-10 assay. The results of this study indicate that adenosine postconditioning immediately after myocardial ischemia can reduce the myocardial tissue MDA generation and infarct size, improve cardiac function, which is coincidence with conventional postconditioning. The study also found that modulation of NF-κB activation and accordingly reduces inflammatory factor TNF-α expression may be a molecular mechanism of adenosine down-regulation of inflammatory cytokine production.  相似文献   

17.
Evidence has shown therapeutic potential of irisin in cerebral stroke. The present study aimed to assess the effects of recombinant irisin on the infarct size, neurological outcomes, blood–brain barrier (BBB) permeability, apoptosis and brain-derived neurotrophic factor (BDNF) expression in a mouse model of stroke. Transient focal cerebral ischemia was established by middle cerebral artery occlusion (MCAO) for 45 min and followed reperfusion for 23 h in mice. Recombinant irisin was administrated at doses of 0.1, 0.5, 2.5, 7.5, and 15 µg/kg, intracerebroventricularly (ICV), on the MCAO beginning. Neurological outcomes, infarct size, brain edema and BBB permeability were evaluated by modified neurological severity score (mNSS), 2,3,5-triphenyltetrazolium chloride (TTC) staining and Evans blue (EB) extravasation methods, respectively, at 24 h after ischemia. Apoptotic cells and BDNF protein were detected by TUNEL assay and immunohistochemistry techniques. The levels of Bcl-2, Bax and caspase-3 proteins were measured by immunoblotting technique. ICV irisin administration at doses of 0.5, 2.5, 7.5 and 15 µg/kg, significantly reduced infarct size, whereas only in 7.5 and 15 µg/kg improved neurological outcome (P?<?0.001). Treatment with irisin (7.5 µg/kg) reduced brain edema (P?<?0.001) without changing BBB permeability (P?>?0.05). Additionally, irisin (7.5 µg/kg) significantly diminished apoptotic cells and increased BDNF immunoreactivity in the ischemic brain cortex (P?<?0.004). Irisin administration significantly downregulated the Bax and caspase-3 expression and upregulated the Bcl-2 protein. The present study indicated that irisin attenuates brain damage via reducing apoptosis and increasing BDNF protein of brain cortex in the experimental model of stroke in mice.  相似文献   

18.
Aims Taurine as an endogenous substance possesses a number of cytoprotective properties. In the study, we have evaluated the neuroprotective effect of taurine and investigated whether taurine exerted neuroprotection through affecting calpain/calpastatin or caspase-3 actions during focal cerebral ischemia, since calpain and caspase-3 play central roles in ischemic neuronal death. Methods Male Sprague–Dawley rats were subjected to 2 h of middle cerebral artery occlusion (MCAo), and 22 h of reperfusion. Taurine was administrated intravenously 1 h after MCAo. The dose–responses of taurine to MCAo were determined. Next, the effects of taurine on the activities of calpain, calpastatin and caspase-3, the levels of calpastatin, microtubule-associated protein-2 (MAP-2) and αII-spectrin, and the apoptotic cell death in penumbra were evaluated. Results Taurine reduced neurological deficits and decreased the infarct volume 24 h after MCAo in a dose-dependent manner. Treatment with 50 mg/kg of taurine significantly increased the calpastatin protein levels and activities, and markedly reduced the m-calpain and caspase-3 activities in penumbra 24 h after MCAo, however, it had no significant effect on μ-calpain activity. Moreover, taurine significantly increased the MAP-2 and αII-spectrin protein levels, and markedly reduced the ischemia-induced TUNEL staining positive score within penumbra 24 h after MCAo. Conclusions Our data demonstrate the dose-dependent neuroprotection of taurine against transient focal cerebral ischemia, and suggest that one of protective mechanisms of taurine against ischemia may be blocking the m-calpain and caspase-3-mediated apoptotic cell death pathways.  相似文献   

19.
20.
7,8-dihydroxyflavone (7,8-DHF) is a recently identified potent agonist of tropomyosin-related kinase B that can cross the blood–brain barrier after oral or intraperitoneal administration. The aim of the present study was to determine whether 7,8-DHF has neuroprotective effects against cerebral ischemia and reperfusion (I/R) injury and, if so, to investigate the possible underlying mechanisms. Cerebral I/R injury rats were induced by middle cerebral artery occlusion for 90 min followed by reperfusion for 24 h. 7,8-DHF was administered intraperitoneally at a dose of 5 mg/kg immediately after ischemia. Our results showed that 7,8-DHF significantly reduced neurological deficit scores, infarct volumes, and neuronal apoptosis in brains of I/R rats. Meanwhile, 7,8-DHF also increased Bcl-2 expression, decreased expression of cleaved caspase-3, Bax and inducible nitric oxide synthase, and inhibited nuclear factor-κB activation in ischemic cortex. Finally, malondialdehyde and nitric oxide contents were reduced, but activities of glutathione, glutathione peroxidase and superoxide dismutase were restored in ischemic cortex treated with 7,8-DHF. Taken together, our findings demonstrated that 7,8-DHF is able to protect against cerebral I/R injury, which may be, at least in part, attributable to its anti-apoptotic, anti-oxidative and anti-inflammatory actions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号