首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Abstract— A study was made of the effect of various solubilization procedures on the release of AChE from electric organ tissue of the electric eel and on the molecular state of the enzyme. The procedures employed included homogenization in different ionic media or in the presence of detergents, etuymic treatment and chemical modification. Studies were performed on intact electroplax, tissue homogenates and membrane fractions. The apparent AChE activity of intact cells, homogenates and membrane fractions was shown to be governed by diffusion-controlled substrate and hydrogen ion gradients, generated by AChE-catalyscd hydrolysis, leading to a lower substrate concentration and a lower pH in the vicinity of the particulate enzyme.
Treatment of homogenates with NaCl solutions or with NaCl solutions containing the nonionic detergent Triton X-100 causes release of the native'molecular forms of the enzyme (primarily the 18 S species) which aggregate at low ionic strength. For optimal extraction both high ionic strength (e.g. 1 M-NaCl) and the detergent are needed AChE is also solubilized by treatment of tissue homogenates with trypsin, bacterial protease or collagenase. The first two enzymes caused its release as an 11 S non-aggregating form, while collagenase also produces a minor non-aggregating - 16 S component. Treatment of tissue homogenates with maleic anhydride causes release of AChE as a non-aggregating 18 S species. On the basis of the solubilization experiments it is concluded that the interaction of AChE with the excitable membrane is primarily electrostatic. The possible orientation of the enzyme within the synaptic gap is discussed.  相似文献   

2.
The kinetic behaviour of three forms of acetylcholinesterase as a function of ionic strength of the medium was investigated. The forms of enzyme were that bound to human erythrocyte membranes, acetylcholinesterase solubilized from these by Triton X-100, and a commercial preparation of the enzyme from bovine erythrocytes. The properties investigated were hydrolysis of the substrate acetylthiocholine, decarbamylation of dimethylcarbamyl-acetylcholinesterase and ageing of isopropylmethylphosphonyl-acetylcholinesterase. The effect of 10?5 M gallamine triethiodide on these properties was also examined as a function of ionic strength.Detailed results for the variation of kinetic behaviour with ionic strength and the presence of gallamine are presented. No unified theory to predict the influence of these variables on all three forms of the enzyme could be formulated. Thus, the enzyme conformation stabilized by gallamine at low ionic strength was not necessarily similar to that of the gallamine-free enzyme at physiological ionic strength. Nor was it useful to consider the free enzyme at low ionic strength to be a model of the membrane-bound enzyme in vivo (Crone, 1973).It was concluded that kinetic results for solubilized and partially or wholly purified acetylcholinesterase cannot be extrapolated to the membrane-bound enzyme. Prediction of the effect of drugs on the system in vivo requires the use of the membrane-bound enzyme.  相似文献   

3.
PROPERTIES OF THE EXTERNAL ACETYLCHOLINESTERASE IN GUINEA-PIG IRIS   总被引:1,自引:1,他引:0  
Abstract— The acetylcholinesterase (AChE) of intact iris, the so-called external AChE, differs in several respects from the AChE in an homogenate of iris, called the total AChE. Maximum enzyme activities of the external and total AChE were obtained with an ACh concentration of 10 and 1.3 m m , respectively. The total AChE exhibited substrate inhibition at high substrate concentrations, whereas the external enzyme did not exhibit substrate inhibition in the range studied. The external AChE activity, when measured at 1.3 m m -ACh. accounted only for 12% of the total enzyme activity. After irreversible inhibition of AChE with diisopropylfluorophosphate (DFP) or methylisocyclopentylfluorophosphate (soman) the external AChE recovered to almost normal values after 48 h, whereas only 30% of the total AChE recovered during this period. Pupillographic studies after inhibition with DFP demonstrated that pupillary diameter had reached normal size after 24 h.
Destruction of the cholinergic input to iris reduced the total AChE activity by 40%, but did not alter the external AChE activity nor its rate of recovery after DFP inhibition. The specific activities of total AChE and total choline acetyltransferase were significantly higher in the sphincter than in the dilator muscle. After such denervation of iris the greatest reduction in total AChE and choline acetyltransferase were found in the sphincter region. After treatment with DFP the total AChE was inhibited to the same extent and recovered at the same rate in both regions.
After extraction of AChE from iris with various salt solutions and detergents, the particulate enzyme recovered faster than the soluble enzyme from DFP inhibition.  相似文献   

4.
1. The effect of the interaction between the charged matrix and substrate on the kinetic behaviour of bound enzymes was investigated theoretically. 2. Simple expression is derived for the apparent Km. 3. The apparent Km can only be used for the characterization of the electrostatic effect of the ionic strength does not vary with the substrate concentration. 4. The deviations from Michaelis-Menton kinetics are graphically illustrated for cases when the ionic strength varies with the substrate concentration. 5. The inhibition of the bound enzyme by a charged inhibitor at constant ionic strength is characterized by an apparent Ki. 6. When both the inhibitor concentration and the ionic strength change there is no apparent Ki, and the inhibition profile is graphically illustrated for this case. 7. Under certain conditions the electrostatic effects manifest thenselves in a sigmoidal dependence of the enzyme activity on the concentration of the substrate or inhibitor.  相似文献   

5.
THE RELEASE AND MOLECULAR STATE OF MAMMALIAN BRAIN ACETYLCHOLINESTERASE   总被引:10,自引:5,他引:5  
Abstract— By incubating the particulate fraction of caudate nucleus from calf brain in ion-free media, about 90 per cent of the AChE activity was brought into solution. The effects of different salts, EDTA and tetracaine on the release were studied. The mol. wt. of the enzyme was determined by gel filtration. About 90 per cent of the activity in a fresh preparation appeared in a form with mol. wt. 80,000. During storage this form was gradually transformed into forms with higher mol. wts. The effects of changes in the ionic environment on the aggregation were investigated. Purification attempts always resulted in the transformation of the enzyme into high mol. wt. forms. If the release was performed in the presence of DEAE-Sephadex-A25, the enzyme no longer aggregated. The cytosol fraction always contained some AChE activity; the significance of the presence of AChE in this fraction is discussed.  相似文献   

6.
Cholinesterase (ChE) activity is present in crustacean muscle extracts. However, since acetylcholine (ACh) is not a neuromuscular transmitter in these animals, the role and exact localization of ChE was unknown. The histochemical localization of the enzyme was studied in whole muscle and in the sarcoplasmic reticulum fraction of the extract, 50-µm frozen sections of glutaraldehyde-fixed crayfish tail flexor muscle were incubated with acetylthiocholine (ATC) as substrate, and examined under the electron microscope. After some modifications in published techniques, dense deposits were found associated with the sarcolemma, sarcolemmal invaginations, and transverse tubules. No deposits were found in 10-4 M eserine, or if butyrylthiocholine (BTC) was substituted for ATC. The vesicles in the sarcoplasmic reticulum fraction which demonstrate the activity must represent minced bits of these membranes. Using a spectrophotometric method, the kinetics of the crustacean muscle enzyme was compared to the acetylcholinesterase (AChE) on mammalian red blood cells and in the lobster ventral nerve cord. Surprisingly, and contrary to previous reports, the crustacean muscle enzyme did not demonstrate substrate inhibition. While a number of similarities to AChE were found, this lack of substrate inhibition makes questionable an unequivocal similarity with classical AChE.  相似文献   

7.
The AChE activity of single slices obtained from the surface of the temporoparietal region of rat brains was measured colorimetrically under anaerobic conditions with acetylthiocholine as substrate. In intact slices from untreated rats AChE activity was only a small proportion of that of homogenates made from the slices, but this proportion increased with the surface area to weight ratio of slices and with an increase in substrate concentration, intact slices not showing substrate inhibition. The inhibition of AChE determined in slices from rats treated with DFP or paraoxon was less than that in homogenates obtained from the slices. When the access of substrate was limited to the cut surface of a slice, the rate of hydrolysis was four times greater than that observed when access was solely from the uncut surface. It is concluded that under anaerobic conditions the substrate diffuses into slices to a depth which is not constant but a function of both substrate and enzyme concentration. Thus the AChE activity of slices cannot be used as a measure of extracellular AChE.  相似文献   

8.
Abstract— The transport, distribution and turnover of choline O -acetyltransferase (ChAc, EC 2.3.1.6) and acetylcholinesterase (AChE, EC 3.1.1.7) in the vagus and hypoglossal nerves were studied in adult rabbits. The enzymes accumulated proximally and distally to single and double ligatures on both nerves and thus indicated both a proximo-distal and retrograde flow of the enzymes. Double ligature experiments indicated that only 5–20 per cent of the enzymes were mobile in the axon. The rate of accumulation of both enzymes above a single ligature corresponded to the slow rate of axonal flow provided that all the enzymes were mobile, but to an intermediate or fast flow if only a small part of the enzymes was transported. The distribution of ChAc along the hypoglossal neurons was studied and only 2 per cent of ChAc was confined to cell bodies, 42 per cent was localized to the main hypoglossal nerve trunks and 56 per cent to the preterminal axons and axon terminals in the tongue. The ratio of AChE to ChAc was about 3 in the hypoglossal nerve and 32 in the vagus nerve.
Transection of the hypoglossal nerve was followed by a decrease in the activity of ChAc in the hypoglossal nucleus and nerve and in the axons and their terminals in the tongue. The activity of AChE decreased in the hypoglossal nucleus and nerve but not in the tongue. The half-life of ChAc in preterminal axons and terminals of the hypoglossal nerve was estimated to be 16-21 days from the results obtained on transport, axotomy and distribution of the enzyme. Intracisternal injection of colchicine inhibited the cellulifugal transport of both enzymes and led to an increase in enzyme activity in the hypoglossal nucleus.  相似文献   

9.
Studies are in progress to characterize the nature of ligand interactions at peripheral anionic sites on mammalian brain AChE, including the beta-anionic or "accelerator" anionic sites where enzyme activity is increased upon Ca2+ binding. Terbium was studied as a fluorescence probe of Ca2+ binding sites in partially purified AChE from whole rat brain. Scatchard analysis of Tb3+ binding in low ionic strength (2 mM) Pipes buffer revealed at least two populations of sites: high affinity sites with Kd(app) approximately 7.6 microM and low-affinity sites with a Kd(app) approximately 49.6 microM. Low-affinity binding was selectively inhibited by 50 mM NaCl; high-affinity binding was completely inhibited by 2 mM CaCl2; and all the bound Tb3+ could be displaced by 1 mM EDTA. The heterogeneity of Tb3+ binding sites is consistent with the multiple, concentration-dependent effects of Tb3+ on enzyme activity.  相似文献   

10.
Spores of Clostridium perfringens contain at least two spore-lytic enzymes active in hydrolysing cortical peptidoglycan. One enzyme has been purified 1800-fold and has a molecular weight of 17 400 determined from chromatography on Sephadex G-75. Two protein bands were apparent after SDS-PAGE. The isolated enzyme was investigated for response to temperature, pH, ionic strength and enzyme inhibitors, and for mode of action. A second enzyme activity, differing from the first in apparent molecular weight (29 800) as determined by gel exclusion chromatography, and also in its pH optimum and activity on cortical substrate, was also isolated, although not purified to the same extent.  相似文献   

11.
Esters of dimethylcarbamic acid are known to be poor substrates of acetylcholinesterase. They carbamylate the active catalytic site of the enzyme and the subsequent decarbamylation is a slow but measurable process. Similarly, acetylcholinesterase can be phosphonylated, and the dephosphonylation is extremely slow. Rapid hydrolysis of phosphonylated acetylcholinesterase can be brought about by oximes, but dealkylation of the phosphonyl group on the enzyme (known as ageing) renders the inhibited enzyme insensitive to oximes.

In the present work, decarbamylation of dimethylcarbamyl-acetylcholinesterase and ageing of isopropylmethylphosphonyl-acetylcholinesterase were studied at a physiological ionic strength (154 mM). Gallamine, d-tubocurarine and alcuronium accelerated reactivation of dimethylcarbamyl-acetylcholinesterase. Gallamine and tubocurarine enhanced the effect of the nucleophile 3,3-dimethyl-1-butanol on decarbamylation, and the interaction was synergistic in the case of gallamine. Gallamine and tubocurarine retarded ageing of isopropylmethylphosphonyl-acetylcholinesterase, whereas 3,3-dimethyl-1-butanol had no effect. Nevertheless 3,3-dimethyl-1-butanol enhanced the retarding effects of gallamine and tubocurarine.

All these effects, except the effects of 3,3-dimethyl-1-butanol on ageing, had been previously observed at low ionic strength, in which case the effects were more marked and were observed at lower concentrations of the drugs. The effects at low ionic strength have been attributed to binding of the drugs to a peripheral site on the enzyme with a consequent change in conformation at the active site, leading to altered kinetic properties. The present results suggest that such allosteric effects may persist at physiological ionic strength. There have been few indications previously that this is so, particularly in the case of solubilised acetylcholinesterase.  相似文献   


12.
Abstract— In order to examine the hypothesis that acetylcholinesterase (AChE) is contained within dopaminergic neurons of the nigro-striatal projection, the effects of selective destruction of these neurons by 6-hydroxydopamine (6-OHDA) on cholinesterase, tyrosine hydroxylase, and choline acetyltransferase in substantia nigra (SN) and caudate-putamen (CP) were studied in the rat. Four to five weeks after intraventricular or intracerebral 6-OHDA injections tyrosine hydroxylase in these structures was reduced by 90% or more. Choline acetyltransferase was not affected in the SN or CP, but cholinesterase was reduced by about 40% in the SN and by 12% in the CP. To determine that the observed decreases in cholinesterase activity reflected true AChE and not butyrylcholinesterase (BChE), further experiments were conducted on tissues from animals with intracerebral 6-OHDA lesions. (1) Substrate specificity. Acetylcholine (ACh) was replaced by either acetyl-β-methyl-choline (AcβMeCh) or butyrylcholine (BCh) in the cholinesterase assay. SN and CP from 6-OHDA lesioned rats showed 54% and 92% of control tissue cholinesterase activity respectively with AcβMeCh as substrate, in good agreement with values found using ACh. No decrease in activity toward BCh was observed. (2) Kinetics. The decrease in cholinesterase activities at different concentrations of ACh was determined. Analysis of the data revealed that cholinesterase in dopaminergic neurons was inhibited by high ACh concentrations, a characteristic property of AChE but not BChE. (3) Selective inhibitors. In the SN, cholinesterase in dopaminergic neurons was inhibited by the selective AChE inhibitors BW284C51 and ambenonium with a dose-response curve similar to erythrocyte AChE but different from serum BChE. The selective BChE inhibitor, tetraisopropylpyrophosphoramide, inhibited the enzyme in dopaminergic neurons only at concentrations which inhibited erythrocyte AChE, concentrations somewhat higher than those which inhibited serum BChE. These results support recent histochemical observations indicating that AChE is contained in dopaminergic neurons of the SN. Moreover, these experiments represent the first characterization of AChE from a homogeneous population of non-cholinergic neurons in mammalian CNS.  相似文献   

13.
The protozoan haemoflagellate Trypanosoma brucei has two NAD-dependent glyceraldehyde-3-phosphate dehydrogenase isoenzymes, each with a different localization within the cell. One isoenzyme is found in the cytosol, as in other eukaryotes, while the other is found in the glycosome, a microbody-like organelle that fulfils an essential role in glycolysis. The kinetic properties of the purified glycosomal and cytosolic isoenzymes were compared with homologous enzymes from other organisms. Both trypanosome enzymes had pH/activity profiles similar to that of other glyceraldehyde-3-phosphate dehydrogenases, with optimal activity around pH 8.5-9. Only the yeast enzyme showed its maximal activity at a lower pH. The glycosomal enzyme was more sensitive to changes in ionic strength below 0.1 M, while the cytosolic enzyme resembled more the enzymes from rabbit muscle, human erythrocytes and yeast. The affinity for NAD of the glycosomal enzyme was 5-10-fold lower than that of the cytosolic, as well as the other enzymes. A similar, but less pronounced, difference was found for its affinity for NADH. These differences are explained by a number of amino acid substitutions in the NAD-binding domain of the glycosomal isoenzyme. In addition, the effects of suramin, gossypol, agaricic acid and pentalenolactone on the trypanosome enzymes were studied. The trypanocidal drug suramin inhibited both enzymes, but in a different manner. Inhibition of the cytosolic enzyme was competitive with NAD, while in the case of the glycosomal isoenzyme, with NAD as substrate, the drug had an effect both on Km and Vmax. The most potent inhibitor was pentalenolactone, which at micromolar concentrations inhibited the glycosomal enzyme and the enzymes from yeast and Bacillus stearothermophilus in a reversible manner, while the rabbit muscle enzyme was irreversibly inhibited.  相似文献   

14.
EARLY work on the effects of inorganic ions on the activity of acetylcholine acetyl-hydrolase (EC 3.1.1.7; AChE) from various sources has been summarized by COHEN and OOSTERBAAN (1963) and many other reports have been published subsequently (CHANGEUX, 1966; CRONE, 1973; HELLER and HANAHAN, 1972; IVANOVA, 1967; KITZ, BRASWELL and GINSBURG, 1970; ROUF-CALIS and QUIST, 1972; ROUFOGALIS and THOMAS, 1968; WINS, SCHOFFENIELS and FOIDART, 1970). Despite this work, no comprehensive study has yet been made to determine whether the observed effects are specific to particular ions or dependent only on the ionic strength of the medium (CHANGEUX, 1966). In some cases, specific ion effects have been observed (CHANGEUX, 1966; HELLER and HANAHAN, 1972; ROUFOGALIS and QUIST, 1972; ROUFOGALIS and THOMAS, 1968) at salt concentrations from 600 mM to below 1 mM, but the studies were not detailed enough and in some cases the total ionic strength was not rigidly controlled, so that no general deductions can be drawn. We have studied the hydrolysis of acetylcholine (ACh) by bovine erythrocyte AChE at subinhibitory substrate concentrations, and now present our results on the effect of inorganic salts at varying ionic strength on the kinetic parameters Km, and Vmax. The present work shows that this hydrolysis follows simple Michaelis kinetics very closely, and therefore these two constants suffice to define the complete pattern of initial reaction velocity as a function of substrate concentration (ATKINSON, 1966).  相似文献   

15.
Phosphoglucoisomerase (PGI), a soluble enzyme, and AChE, a membrane-bound enzyme were studied in transected peroneal nerves of dog and in isolated segments of these nerves. Although activities of both enzymes increased at the ends of transected nerves, marked differences in their behaviour were observed. The increment in AChE activity was much sharper than that of PGI and continued to grow with time whereas the increase in PGI developed fully within the initial hours after transection and did not change thereafter. In an isolated nerve segment AChE accumulated at both ends with a concomitant decrease in the middle part, whereas changes in PGI activity appeared only in the terminal parts, the rest of the nerve remaining at the normal level. The terminal increase of PGI did not, contrary to that of AChE, depend on the length of the isolated segment. The changes in PGI activity may be features of a local peritraumatic reaction whereas those of AChE indicate involvement of the whole segment along which the enzyme containing organelles are transported.  相似文献   

16.
Abstract— Choline acetyltransferase (ChAc) and acetylcholinesterase (AChE) levels were measured quantitatively in samples from the archi- and paleocerebellar vermis (Larsell's Lobules IX c,d,-X, and Lobules VII-VIII, respectively) and from the cerebellar peduncles, nuclei and white matter of rat and guinea pig. Lesions to isolate archi- or paleocerebellar areas were made in some rats and the effect on enzyme levels and ultrastructure were studied. In the rat there was a striking correlation between the activity of ChAc and AChE in the different areas; thus in the archicerebellar cortex the levels of both enzymes were 3–4 times those in the paleocortex. Deafferentation caused a fall in ChAc and this practically paralleled the fall in AChE in the same area. The reduction in both enzymes was more pronounced in the archi- than in the paleocerebellar cortex. In the guinea pig the results were very different. The ChAc activity was much lower than in the rat and was equal in the archi- and paleocerebellum. The AChE activity was also uniform in the different areas but, in contrast to ChAc, was higher than in the rat.  相似文献   

17.
To obtain information about the evolution of acetylcholinesterase (AChE), we undertook a study of the enzyme from the skeletal muscle of the lamprey Petromyzon marinus, a primitive vertebrate. We found that the cholinesterase activity of lamprey muscle is due to AChE, not pseudocholinesterase; the enzyme was inhibited by 1,5-bis(4-allyldimethylammonium phenyl) pentane-3-one (BW284C51), but not by tetramonoisopropyl pyrophosphortetramide (iso-OMPA) or ethopropazine. Also, the enzyme had a high affinity for acetylthiocholine and was inhibited by high concentrations of substrate. A large fraction of the AChE was found to be glycoprotein, since it was precipitated by concanavalin A-agarose. Optimal extraction of AChE was obtained in a high-salt detergent-containing buffer; fractional amounts of enzyme were extracted in buffers lacking salt and/or detergent. These data suggest that globular and asymmetric forms of AChE are present. On sucrose gradients, enzyme that was extracted in high-salt detergent-containing buffer sedimented as a broad peak of activity corresponding to G4; additionally, there was usually a peak corresponding to A12. Sequential extraction of AChE in conjunction with velocity sedimentation resolved minor forms of AChE and revealed that the G1, G2, G4, A4, A8, and A12 forms of AChE could be obtained from the muscle. The identity of the forms was confirmed through high-salt precipitation and collagenase digestion. The asymmetric forms of AChE were precipitated in low ionic strength buffer, and their sedimentation coefficients were shifted to higher values by collagenase digestion.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

18.
Abstract— The effects of salt on the properties of human placental choline acetyltransferase have been examined. Increases in enzyme activity, thermal denaturation and susceptibility to proteolysis can be related to increases in ionic strength, rather than to specific salt effects. Increased ionic strength increases the maximal velocity (Km) of the reaction, with no change in the kinetic parameter Vmax/Km (choline). The pH-Km profile, measured over the range of 6.5–8.0, indicates the requirement of a dissociated acidic residue whose pKa is below 7.5 at high ionic strength, and a protonated residue whose pKa is above 7.5 at low ionic strength. It is proposed that the conformation of the enzyme is different at high ionic strength and at low ionic strength, and that these different conformational states of the enzyme result in different rate-determining steps of the reaction.  相似文献   

19.
Acetylcholinesterase (AChE) activity has been studied in the myoblast of skeletal muscle of the 9–13 day fetal rabbit. Cytochemical activity is present in the nuclear envelope and the endoplasmic reticulum, including its derivatives the subsurface reticulum and the sarcoplasmic reticulum. End product is also found in the Golgi complex of the more differentiated myoblasts. The formation of reticulum-bound acetylcholinesterase in the myoblast appears to be independent of nerve-muscle contact, since the enzyme is present before the outgrowth of the spinal nerve. The nerve lacks cytochemical end product until the myoblast is well differentiated. Possible mechanisms of spontaneous muscle contraction have been discussed. A second type of myotomal cell, which exhibits a poorly localized end product of AChE activity, has been described. The ready solubility of the enzyme or diffusibility of its end product suggests that the enzyme may be a lyoesterase. This cell may be the precursor of the morphologically undifferentiated cell which is closely apposed to the myotubes in later stages of skeletal muscle development. Biochemical studies show a significant increase in AChE activity in the dermomyotome by day 12, when many of the myoblasts are well differentiated and the second type of myotomal cell is prominent. Cytochemical studies have indicated that many of the cells in the sample lack reaction product of enzymic activity, whereas others are very active. Biochemical values, therefore, reflect the amount of enzyme in the dermomyotome as a whole, but give little information on the enzymic content of individual cells.  相似文献   

20.
Mutations of the tryptophan residues in the tryptophan-track of the N-terminal domain (W33F/Y and W69F/Y) and in the catalytic domain (W245F/Y) of Serratia sp. TU09 Chitinase 60 (CHI60) were constructed, as single and double point substitutions to either phenylalanine or tyrosine. The enzyme-substrate interaction and mode of catalysis, exo/endo-type, of wild type CHI60 and mutant enzymes on soluble (partially N-acetylated chitin), amorphous (colloidal chitin), and crystalline (β-chitin) substrates were studied. All CHI60 mutants exhibited a reduced substrate binding activity on colloidal chitin. CHI60 possesses a dual mode of catalysis with both exo- and endo-type activities allowing the enzyme to work efficiently on various substrate types. CHI60 preferentially uses the endo-type mode on soluble and amorphous substrates and the exo-type mode on crystalline substrate. However, the prevalent mode of hydrolysis mediated by CHI60 is regulated by ionic strength. Slightly elevated ionic strength, 0.1-0.2 M NaCl, which promotes enzyme-substrate interactions, enhances CHI60 hydrolytic activity on amorphous substrate and, interestingly, on partially N-acetylated chitin. High ionic strength, 0.5-2.0 M NaCl, prevents the enzyme from dissociating from amorphous substrate, occupying the enzyme in an enzyme-substrate non-productive complex. However, on crystalline substrates, the activity of CHI60 was only inhibited approximately 50% at high ionic strength, suggesting that the enzyme hydrolyzes crystalline substrates with an exo-type mode processively while remaining tightly bound to the substrate. Moreover, substitution of Trp-33 to either phenylalanine or tyrosine reduced the activity of the enzyme at high ionic strength, suggesting an important role of Trp-33 on enzyme processivity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号